

Introducing the Universal LibraryTM

Congratulations and thank you for selecting the Universal Library! We believe it is the easiest and most comprehensive data
acquisition software interface available anywhere.

The Universal Library (UL) includes programming libraries and components for developing 32-bit and 64-bit applications using
Windows programming languages. The UL is easy to use, but significant documentation and explanation is still required to help new
users get going, and to allow existing users to take advantage of the Library's powerful features.

The Universal Library Help is presented in three parts:

n Universal Library User's Guide: The User's Guide provides a general description of the Universal Library, offers an
overview of the various features and functions of the library, and discusses how you can use the Universal Library features in
different operating systems and languages.

The User's Guide also provides board-specific information relating to the features and functions that are included with the
Universal Library.

n Universal Library Function Reference: The Function Reference details the features, usage, and options of the Universal
Library functions and methods.

n Example programs: The examples programs demonstrate the use of many of the most frequently used functions, and are
valuable learning tools. They are written for many popular languages. Each example program is fully functional, and provides
an ideal starting place for your own programming effort. You can cut and paste from the example programs to create your
own programs. It's easier to cut-and-paste pieces from a known, working program than to start writing everything from
scratch.

In addition to the Universal Library Help, refer to the ReadMe files shipped with the Universal Library software for the latest
information available.

Revision: 12.0

October, 2012

Page 1 of 700

Your new Measurement Computing product comes with a fantastic extra:

MANAGEMENT COMMITTED TO YOUR SATISFACTION

Thank you for choosing a Measurement Computing product — and congratulations! You own the finest, and you can now enjoy the
protection of the most comprehensive warranties and unmatched phone tech support. It's the embodiment of our mission:

n To provide data acquisition hardware and software that will save time and save money.

Simple installations minimize the time between setting up your system and actually making measurements. We offer quick and
simple access to outstanding live FREE technical support to help integrate MCC products into a DAQ system.

30-day Money Back Guarantee
Any Measurement Computing Corporation product may be returned within 30 days of purchase for a full refund of the price paid for
the product being returned. If you are not satisfied, or chose the wrong product by mistake, you do not have to keep it.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for
a particular application. The remedy provided herein is the buyer's sole and exclusive remedy. Neither Measurement Computing
Corporation, nor its employees shall be liable for any direct or indirect, special, incidental or consequential damage arising from the
use of its products, even if Measurement Computing Corporation has been notified in advance of the possibility of such damages.

Page 2 of 700

Redistribution, Trademark, and Copyright Information

Redistributing a custom UL application
Customers can distribute the necessary runtime files (University Library driver files) for any application created using the Universal
Library. Customers may not distribute any files that give the end user the ability to develop applications using the Universal Library.

Trademark and copyright information
TracerDAQ, Universal Library, Measurement Computing Corporation, and the Measurement Computing logo are either trademarks
or registered trademarks of Measurement Computing Corporation.

Windows, Microsoft, and Visual Studio are either trademarks or registered trademarks of Microsoft Corporation

LabVIEW is a trademark of National Instruments.

CompactFlash is a registered trademark of SanDisk Corporation.

All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corporation is believed to be accurate and reliable. However, no responsibility is
assumed by Measurement Computing Corporation neither for its use; nor for any infringements of patents or other rights of third
parties, which may result from its use. No license is granted by implication or otherwise under any patent or copyrights of
Measurement Computing Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any
means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement
Computing Corporation.

Notice: Measurement Computing Corporation does not authorize any Measurement Computing Corporation
product for use in life support systems and/or devices without prior written consent from Measurement Computing
Corporation. Life support devices/systems are devices or systems which, a) are intended for surgical implantation
into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in
injury. Measurement Computing Corporation products are not designed with the components required, and are not
subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

Page 3 of 700

About this Document
The online help includes information about the Windows Universal Library API, Universal Library for .NET, and InstaCal. The earliest
revisions discussed in this document include changes for product versions 5.20 and later.

Page 4 of 700

Contact Measurement Computing Corporation
You can contact us via the following methods:

Address: Measurement Computing Corporation

10 Commerce Way

Norton, MA 02766

Telephone: 508-946-5100

Fax: 508-946-9500

Email: Technical Support: techsupport@measurementcomputing.com

 Sales: sales@measurementcomputing.com

 All other correspondence: info@measurementcomputing.com

Visit our Web site: www.measurementcomputing.com

Page 5 of 700

mailto:techsupport@measurementcomputing.com
mailto:sales@MeasurementComputing.com
mailto:info@MeasurementComputing.com
http://www.measurementcomputing.com/

Universal Library Overview
The Universal Library is the software required to write your own programs for use with any Measurement Computing data
acquisition and control board. The Universal Library is universal in three ways:

n Universal across boards: The library contains high-level functions for all of the common operations for all boards.
Although each of the boards has different hardware, the Universal Library hides these differences from your program. For
example, a program written for use with one A/D board will work without modification with a different A/D board.

n Universal across languages: The Universal Library provides identical sets of functions and arguments for each supported
language. If you switch languages, you will not have to learn a new library, with new syntax, and different features.

If you are programming for the .NET Framework, you will find that the Universal Library for .NET has the same "look and feel" as
the Universal Library API, and is just as easy to program.

32-bit languages supported by the Universal Library at the time the library was released are listed below:

n Universal across platforms: The Universal Library provides the same sets of functions for the following operating
systems:

n Windows 8 (32-bit and 64-bit1)

n Windows 7 (32-bit and 64-bit1)

n Windows Vista (32-bit and 64-bit1)

n Windows XP (32-bit (SP2) and 64-bit1)

1 64-bit operating systems support Measurement Computing USB, WLS, WEB, and most PCI hardware.

Note: Visual Studio 2005 or later is required to develop .NET applications and to run the example programs.

Hardware requirements
Supported Measurement Computing data acquisition hardware:

n 64-bit operating systems: USB, WLS, WEB, and most PCI hardware are supported.

n 32-bit operating systems: Windows XP supports USB, PCI, WLS, WEB, and PC-CARD hardware. Windows 7 and Windows
Vista support USB, PCI, WLS, and WEB hardware. Note that ISA, PC104, and PCMCIA devices (PC-CARD and PCM hardware)
are not supported for Windows Vista or Windows 7.

Microsoft Windows Languages .NET Languages

Visual Basic VB .NET

Visual C++ C# .NET

Quick C for Windows

Microsoft C

Page 6 of 700

Installing the Universal Library and InstaCal
Note: The Microsoft .NET Framework 2.0 be must be installed on the system before you install the Universal Library and InstaCal.

Perform the following procedure to install the Universal Library and InstaCal:

1. Place the Measurement Computing Data Acquisition Software CD in your CD drive.

The MCC DAQ dialog opens.

2. Select InstaCal & Universal Library and click the Install button.

3. Follow the installation instructions as prompted.

InstaCal is a powerful installation, test, and calibration software package that is installed with the Universal Library application.
Refer to the Quick Start Guide that shipped with your hardware for examples of using InstaCal with Measurement Computing's
DEMO-BOARD.

Page 7 of 700

Universal Library support for .NET
Universal Library support for .NET requires that the Microsoft .NET Framework 2.0 be installed on the system before you install the
Universal Library.

Page 8 of 700

CB.CFG Configuration File
Board-specific information is stored in the CB.CFG configuration file which is read by Universal Library. The CB.CFG file is created
the first time you run InstaCal, and is updated each time you add DAQ hardware or modify device configuration settings.

The Universal Library cannot run without the CB.CFG file. For this reason, you must use InstaCal to install/remove DAQ hardware
and to configure device settings.

Page 9 of 700

Redistributing a Custom UL Application
The easiest way to distribute an application written with the Universal Library is to include a copy of Measurement Computing's
InstaCal installation package with the application. Instruct the end user to install InstaCal before installing the application.

Some developers may want to integrate the installation of the required Universal Library drivers into the custom application's
installation. This should only be attempted by developers experienced in installation development.

Following is an overview of the two methods.

Distributing InstaCal in addition to your custom UL application
If you create an application using the Universal Library, you may distribute the necessary runtime files (Universal Library driver
files) with the application royalty free. These files may be installed from Measurement Computing's InstaCal installation package.
To distribute a custom UL application, provide the end user with two CDs or disks:

n One CD or disk that contains Measurement Computing's InstaCal application. InstaCal must be installed before the custom UL
application.

n One CD or disk that contains the setup program for their custom VB or C++ application.

You may not distribute any files that give the end user the ability to develop applications using the Universal Library.

Integrating InstaCal into your custom UL installation CD or disk
For developers who wish to distribute their application on one CD, refer to the Universal Library Distribution Guide. This document
contains procedures to merge the setup programs for both InstaCal and the custom UL application into one setup program that you
can distribute on one CD or disk. The merging process is complicated – only experienced programmers should attempt to do this.

When you install the software, the Universal Library Redistribution Guide (ULRedistribution.pdf) is copied to the default installation
directory "C:\Program Files\Measurement Computing\DAQ\Documents" on your local drive.

Page 10 of 700

Getting Started
The Universal Library is callable from Visual Basic and Visual C++. A list of the languages currently supported by the Universal
Library is provided in the "Universal Library Overview" topic. Additionally, the UL is now callable from any language supported by
the .NET Framework.

Before starting your application, perform the following:

1. Set up and test your board with InstaCal. The Universal Library will not function until InstaCal has created a configuration file
(CB.CFG).

2. Run the example programs for the language in which you program.

Example programs
You can install example programs for supported languages when you install the Universal Library software. If selected, the example
programs are installed into the following installation subdirectories:

n C

n C#

n CWIN

n VB.NET

n VBWIN

On Windows 8, Windows 7, and Windows Vista, the example programs are installed by default to
\Users\Public\Documents\Measurement Computing\DAQ.

On Windows XP, the example programs are installed by default to \Program Files\Measurement Computing\DAQ.

Note: Visual Studio 2005 or later is required to run the example programs.

When you install the example programs, an Examples shortcut is added to the directory where you installed the Universal Library
software. When selected, the directory containing the example programs opens in Windows Explorer.

For a complete list of example programs, refer to the Universal Library Function Reference. This document includes tables that list
the UL and UL for .NET example programs. Each table contains the name of the sample program and the functions that the program
demonstrates. Click on a link below to display each table.

n UL example programs sorted by program name

n UL example programs sorted by function call

n UL for .NET example programs sorted by program name

n UL for .NET example programs sorted by method call

Multi-threading
Only one application program that calls the Measurement Computing driver can be running at a time.

For example, when you are running a program created with the Universal Library, you cannot change any hardware configuration
settings with the InstaCal program until you first stop the UL program. This is because InstaCal stores hardware configuration
settings in a file (cb.cfg) which is read by the Universal Library when you run an application. To change device settings, stop the UL
application and run InstaCal.

Page 11 of 700

Differences between the UL and UL for .NET
The table below lists the main differences between the Universal Library and the Universal Library for .NET.

Board Number
In a .NET application, you can program multiple boards by creating an MccBoard class for each board installed.

Board0=new MccBoard(0)

Board1=new MccBoard(1)

Board2=new MccBoard(2)

The board number may be passed into the MccBoard class, which eliminates the need to include the board number as a parameter
to the board methods.

MCC classes
To use board-specific Universal Library functions inside a .NET application, you use methods of the appropriate class. UL for .NET
classes include:

Methods
Methods are accessed through the class containing them. The following example demonstrates how to call the AIn() method from
within a 32-bit Windows application and also from a .NET application:

 Universal Library Universal Library for .NET

Board
Number

The board number is included as a
parameter to the board functions.

An MccBoard class is created for each board
installed, and the board number is passed to
that board class.

Functions Set of function calls defined in a
header.

Set of methods in the MccBoard and
MccService classes. To access a method,
instantiate a UL for .NET class and call the
appropriate method using that class.

Constants Constants are defined and assigned a
value in the "header" file.

Constants are defined as enumerated types.

Return
value

The return value is an Error code. The return value is an ErrorInfo object that
contains the error's number and message.

Universal Library
for .NET Class

Description

MccBoard Accesses board-related Universal Library functions.

ErrorInfo Utility class for storing and reporting error codes and messages.

BoardConfig Gets and sets board configuration settings.

CtrConfig Gets and sets counter configuration settings.

DioConfig Gets and sets digital I/O configuration settings.

ExpansionConfig Gets and sets expansion board configuration settings.

GlobalConfig Gets and sets global configuration settings.

MccService Accesses utility Universal Library functions.

DataLogger Reads and converts binary log files.

VB Application using CBW32.DLL VB Application using CBW32.DLL

Dim Board As Integer

Dim Channel As Integer

Dim Range As Integer

Dim ULStat As Integer

Dim DataValue As Short

Board = 0

Channel = 0

Range = BIP5VOLTS;

ULStat = cbAIn(Board, Channel, Range,
DataValue)

Dim Board0 as MccBoard

Board0 = new MccDaq.MccBoard(0)

Dim Channel As Integer

Dim Range As MccDaq.Range

Dim ULStat As ErrorInfo

Dim DataValue As UInt16

Channel = 0

Range = Range.BIP5VOLTS;

ULStat = Board0.AIn(Channel, Range,
DataValue)

Page 12 of 700

Enumerated Types
Instead of using constants such as BIP5VOLTS, the Universal Library for .NET uses enumerated types. An enumerated type take
settings such as range types, scan options or digital port numbers and puts them into logical groups.

Some examples are:

Range.Bip5Volts

Range.Bip10Volts

Range.Uni5Volts

Range.Uni10Volts

ScanOptions.Background

ScanOptions.Continuous

ScanOptions.BurstMode

TimeZone.GMT

FileType.Text

If you are programming inside of Visual Studio .NET, the types that are available for a particular enumerated value display
automatically when you type code:

Error Handling
For .NET applications, the return value for the Universal Library functions is an object (ErrorInfo) rather than a single integer value.
The ErrorInfo object contains both the number of the error that occurred, as well as associated error message. Within a .NET
application, error checking may be performed as follows:

ULStat=Board0.AIn(Channel, Range, DataValue)

'check the numeric value of ULStat

If Not ULStat.Value = ErrorInfo.ErrorCode.NoErrors Then

'if there was an error, then display the error message

MsgBox ULStat.Message

EndIf

Service Methods
You can access other Universal Library functions that are not board-specific through the MccService class. This class contains a set
of static methods you can access directly, without having to instantiate an MccService object. The following examples demonstrate
Library calls to .NET memory management methods.

WindowHandle=MccService.WinBuffAlloc(1000)

MccService.WinBuffFree(WindowHandle)

Configuration Methods
In 32-bit Windows applications, you access board configuration information by calling the cbGetConfig() and cbSetConfig() API
functions. In .NET applications, you access board configuration information through separate classes, such as MccBoard and its
BoardConfig, CtrConfig, DioConfig, and ExpansionConfig properties. Each configuration item has a separate get and set method.
Below are some examples of how to access board configuration within a .NET application.

MccDaq.ErrorInfo UlStat = Board0.BoardConfig.GetRange(DevNumber, RangeValue

MccDaq.ErrorInfo UlStat = Board1.DioConfig.GetNumBits(DevNumber, Number)

MccDaq.ErrorInfo UlStat = Board2.CtrConfig.GetCtrType(DevNumber, CounterType

MccDaq.ErrorInfo UlStat = Board3.BoardConfig.SetClock(DevNumber, ClockSource

MccDaq.ErrorInfo UlStat = Board4.ExpansionConfig.SetCJCChan(DevNumber, CjcChan)

Page 13 of 700

DataLogger Methods
In 32-bit Windows applications, you access the information contained in binary files logged from MCC hardware by calling the Data
Logger API functions. In .NET applications, you access this information by calling the DataLogger class and its methods.

The following example demonstrates how to retrieve the name of the first binary log file using the cbLogGetFileName() function and
GetFileName() method.

C/C++ application C# application

char filename[50];

char* path = "C:\\LogData";

int retval = 0;

retval = cbLogGetFileName
(GETFIRST, path, filename);

string filename = new string('\0', 50);

char* path = "C:\\LogData";

ErrorInfo status;

status = DataLogger.GetFileName(MccService.GetFirst,
ref path, ref filename);

Page 14 of 700

Using the Universal Library in Windows
All 32-bit applications (including console applications) access the 32-bit Windows Dynamic Link Library (DLL) version of the
Universal Library (CBW32.DLL). Example programs that illustrate the use of CBW32.DLLs are provided for each supported
language.

Buffer management
The Universal Library contains numerous functions and methods for managing Windows global memory buffers. Click on a link
below for a list of the available functions and methods.

n Windows memory management functions()

n Windows memory management methods()

Real-Time Acquisition Under Windows
Real-time acquisition is available for Windows. To operate at full speed in Windows, the A/D board must have an onboard FIFO
buffer. All of our advanced designs have FIFO buffers, including our PCI-DAS boards (except for the PCI-DAS08), and many of our
CIO- boards, such as the CIO-DAS80x, CIO-DAS160x, CIO-DAS140x, and CIO-DAS16/330x. All of these data acquisition boards
will operate at full speed in Windows.

Applying software calibration factors in real time on a per-sample basis eats up machine cycles. If your CPU is slow, or if
processing time is at a premium, withhold calibration until after the acquisition run is complete. Turning off real-time software
calibration saves CPU time during a high speed acquisition run.

Multi-threading
Only one application program that calls the Measurement Computing driver can be running at a time.

For example, when you are running a program created with the Universal Library, you cannot change any hardware configuration
settings with the InstaCal program until you first stop the UL program. This is because InstaCal stores hardware configuration
settings in a file (cb.cfg) which is read by the Universal Library when you run an application. To change device settings, stop the UL
application and run InstaCal.

Processor Speed
Processor speed remains a factor for DMA transfers and for real-time software calibration. Processors of less than 150 megahertz
(MHz) Pentium class may impose speed limits below the capability of the board (refer to board-specific information).

If your processor is less than a 150 MHz Pentium and you need an acquisition speed in excess of 200 kilohertz (kHz), use the
NOCALIBRATEDATA option to a turn off real-time software calibration and save CPU time. After the acquisition is run, calibrate the
data with cbACalibrateData().

Visual Basic for Windows

To use the Universal Library with Visual Basic®, include the Universal Library declaration file CBW.BAS in your program. Include
the file as a module in the project, or include it by reference inside those Forms which call into the Universal Library. Once the
declarations for the Universal Library have been added to your project, call the library functions from any Form's event handlers.

When using Visual Basic, CBW.BAS references CBW32.DLL to call Universal Library functions. This is accomplished with conditional
compile statements.

For Visual Basic 6.0 and older, Windows memory buffers cannot be mapped onto arrays. As a consequence, the cbWinArrayToBuf()
and cbWinBufToArray() functions must be used to copy data between arrays and Windows buffers.

Example:

Count = 100

MemHandle = cbWinBufAlloc (Count)

cbAInScan (......,MemHandle,...)

For i = 0 To Count

Print DataArray(i)

Next i

cbWinBufFree (MemHandle)

CB.CFG Locations with Visual Basic
All programs that use the Universal Library read the CB.CFG configuration file. Include a copy of the CB.CFG configuration file with
any compiled stand alone Visual Basic programs that you wish to distribute to another machine or directory.

Visual Basic Example Programs
A complete set of Visual Basic example programs is included in the VBWIN folder of the Universal Library installation directory.

Page 15 of 700

Each program illustrates the use of a Universal Library function from within a Visual Basic program. The .FRM files contain the
programs, and the corresponding .VBP or .MAK files are the project files used to build the programs for Visual Basic.

Microsoft Visual C++
To use the Universal Library with MS Visual C++, include the Universal Library header file CBW.H in your C/C++ program and add
the library file CBW32.LIB to your library modules for linking to the CBW32.DLL.

Microsoft Visual C++ Example Programs

The CWIN folder of the Universal Library installation directory contains three sample programs - Wincai01, Wincai02 and Wincai03.
Each program is an example of a simple C program that calls a few of the Universal Library functions from a Windows application.
Use the .DSP project files to build a 32 bit application.

The non-Windows C examples in the C folder of the installation directory provide a more complete set of examples. You can
compile these programs as 32-bit console applications for Windows by using the MAKEMC32.BAT file

Page 16 of 700

Universal Library Language Interface
The interface to all languages is a set of function calls and a set of constants. The list of function calls and constants are identical for
each language. All of the functions and constants are defined in a "header" file for each language. Refer to the sections below, and
especially to the example programs for each language. This manual is brief with respect to details of language use and syntax.
Review the example programs for more detailed information. The example programs for each language are located in the
installation directory.

Function arguments
Each library function takes a list of arguments and most return an error code. Some functions also return data via their arguments.
For example, one of the arguments for cbAIn() is the name of a variable in which the analog input value will be stored. All function
arguments that return data are listed in the "Returns:" section of the function description.

Constants
Many functions take arguments that must be set to one of a small number of choices. These choices are all given symbolic constant
names. For example, cbLogGetPreferences() takes an argument called TimeFormat that must be set to either
TIMEFORMAT_12HOUR or TIMEFORMAT_24HOUR. These constant names are defined and assigned a value in the "header" file for
each language. Although it is possible to use the numbers rather than the symbolic constant names, we strongly recommend that
you use the names. This will make your programs more readable and more compatible with future versions of the library. The
numbers may change in future versions but the symbolic names will always remain the same.

Options arguments
Some library functions have an argument called Options. The option argument is used to turn on and off various optional features
associated with the function. If you set Options = 0, then the function will set all of these options to the default value, or off.

Some options can have an alternative value, such as BACKGROUND and FOREGROUND. If an option can have more than one
value, one of the values is designated as the default.

Individual options can be turned on by adding them to the Options argument. For example, Options = BACKGROUND will turn on
the "background execution" feature. Options = BACKGROUND+CONTINUOUS will select both the "background execution" and the
"continuous execution" feature.

Error handling
Most library functions return an error code. If no errors occurred during a library call, 0 (or NOERRORS) is returned as the error
code; otherwise, one of the codes listed in Error Codes is returned.

If a non-zero error code is returned, you can use cbGetErrMsg() to convert the error code to a specific error message. As an
alternative to checking the error code after each function call, you can turn on the library's internal error handling with
cbErrHandling().

16-bit values using a signed integer data type

When using functions that require 16-bit values, the data is normally in the range 0 to 65,535. However, some programming

languages, such as Visual Basic®, only provide signed data types. When using signed integers, reading values above (32,767) can
be confusing.

The number (32,767) is equivalent to (0111 1111 1111 1111) binary. The next increment (1000 0000 0000 0000) binary has a
decimal value of (–32,768). The maximum value (1111 1111 1111 1111) binary translates to (-1) decimal. Keep this in mind if you
are using languages that don't support unsigned integers.

There is additional information on this topic in the Universal Library Function Reference. Also, refer to the documentation supplied
with your language compiler.

32-bit values using a signed long data type

When using functions that require 32-bit values, the data is normally in the range 0 to 4,294,967,295. However, some programming

languages, such as Visual Basic®, only provide signed data types. When using signed integers, reading values above
(2,147,483,647) can be confusing. The number (2,147,483,647) is equivalent to (0111 1111 1111 1111 1111 1111 1111 1111)
binary. The next increment (1000 0000 0000 0000 0000 0000 0000 0000) binary has a decimal value of (-2,147,483,648). The
maximum value (1111 1111 1111 1111 1111 1111 1111 1111) binary translates to (-1) decimal. Keep this in mind if you are using
languages that don't support unsigned longs.

Page 17 of 700

Configuring a UL for .NET Project
Programming the Universal Library API is available through the various languages supported by the Microsoft .NET Framework.
All .NET applications access the Universal Library (CBW32.DLL and CBW64.DLL) through the MccDaq .NET assembly
(MCCDAQ.DLL). The MccDaq assembly provides an interface that exposes each Universal Library function that is callable from
the .NET language.

The Universal Library for .NET is designed to provide the same "look and feel" as the Universal Library for Windows. This design
makes it easier to port over existing data acquisition programs, and minimizes the learning curve for programmers familiar with the
Universal Library API.

In the Universal Library for .NET, each function is exposed as a class method with virtually the same parameter set as their UL
counterparts.

Referencing the MccDaq Namespace in a .NET Project
In a .NET application, there are no header files to include in your project. You define methods and constants by adding the MccDaq
assembly, or Namespace, as a reference to your project. You access UL for .NET methods through a class that has the Universal
Library as a member.

To add the MccDaq Namespace as a reference in a Visual Studio .NET project:

1. Start a new Visual Basic or C# project in Visual Studio .NET.

2. From the Visual Studio .NET Solution Explorer window, right-click on References and select Add Reference.

The Add Reference window appears.

3. From the .NET tab, select the MccDaq option from the displayed list of .NET assemblies and click on the OK button.

MccDaq appears under the References folder in the Solution Explorer window.

Page 18 of 700

javascript:hhctrl.TextPopup('A logical naming scheme for grouping related types. The .NET Framework uses a hierarchical naming scheme for grouping types into logical categories of related functionality.','Arial,8',10,10,000,000)

The MccDaq Namespace is now referenced by your Visual Studio .NET project.

Page 19 of 700

Universal Library for .NET Language Interface
The MccDaq Namespace provides an interface that exposes each Universal Library for .NET function as a member of a class with
virtually the same parameters set as their UL counterparts.

When you develop a .NET application that uses the Universal Library, you add the MccDaq Namespace as a reference to your
project. There are no "header" files in a .NET project.

The MccDaq Namespace contains the classes and enumerated values by which your UL for .NET applications can access to the
Universal Library data types and functions.

The MccDaq Namespace contains five main classes:

n MccBoard class

n ErrorInfo class

n MccService class

n GlobalConfig class

n DataLogger class

The MccDaq assembly allows you to design Common Language Specification (CLS) - compliant programs. A CLS-compliant program
contains functions that can be called from any existing or future language developed for the Microsoft .NET Framework. Using CLS-
compliant data types ensures future compatibility.

MccBoard class
The MccBoard class provides access to all of the methods for data acquisition and properties providing board information and
configuration for a particular board.

Class constructors

The MccBoard class provides two constructors – one which accepts a board number argument and one with no arguments.

The following code examples demonstrate how to create a new instance of the MccBoard class using the latter version with a
default board number of 0:

The following code example demonstrates how to create a new instance of the MccBoard class with the board number passed to it:

Class properties

The MccBoard class also contains six properties that you can use to examine or change the configuration of your board:

The configuration information for all boards is stored in the CB.CFG file, and is loaded from CB.CFG by all programs that use the
library.

Visual
Basic

Private DaqBoard As MccDaq.MccBoard

New MccDaq.MccBoard(0)

C# private MccDaq.MccBoard DaqBoard;

DaqBoard = new Mccdaq.MccBoard(0);

Visual
Basic

Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard(BoardNumber)

C# private MccDaq.MccBoard DaqBoard;

DaqBoard = new Mccdaq.MccBoard(BoardNumber);

Properties Description

BoardName Name of the board associated with an instance of the MccBoard class.

BoardNum Number of the board associated with an instance of the MccBoard class.

BoardConfig Gets a reference to a cBoardConfig class object. Use this class reference to get
or set various board settings.

CtrConfig Gets a reference to a cCtrConfig class object. Use this class reference to get or
set various counter settings.

DioConfig Gets a reference to a cDioConfig class object. Use this class reference to get or
set various digital I/O settings.

ExpansionConfig Gets a reference to a cExpansionConfig class object. Use this class reference to
get or set various expansion board settings.

Page 20 of 700

javascript:hhctrl.TextPopup('A logical naming scheme for grouping related types. The .NET Framework uses a hierarchical naming scheme for grouping types into logical categories of related functionality.','Arial,8',10,10,000,000)
javascript:BSSCPopup('../../Function_Reference/Miscellaneous_Functions_for_NET/BoardName_property.htm');
javascript:BSSCPopup('../../Function_Reference/Configuration_Functions_for_NET/BoardNum_property.htm');
javascript:BSSCPopup('../../Function_Reference/Configuration_Functions_for_NET/BoardConfig_property.htm');
javascript:BSSCPopup('../../Function_Reference/Configuration_Functions_for_NET/CtrConfig_property.htm');
javascript:BSSCPopup('../../Function_Reference/Configuration_Functions_for_NET/DioConfig_property.htm');
javascript:BSSCPopup('../../Function_Reference/Configuration_Functions_for_NET/ExpansionConfig_property.htm');

Class methods

The MccBoard class contains close to 80 methods that are equivalents of the function calls used in the standard Universal Library.
The MccBoard class methods have virtually the same parameters set as their UL counterparts.

The following code examples demonstrate how to call the AIn() method of the MccBoard object MccDaq:

Many of the arguments are MccDaq enumerated values. Enumerated values take settings such as range types or scan options and
put them into logical groups. For example, to set a range value, reference a value from the MccDaq.Range enumerated type, such
as Range.Bip5Volts.

The Universal Library Function Reference contains detailed information about all MccBoard class methods.

ErrorInfo class
Most UL methods return ErrorInfo objects. These objects contain two properties that provide information on the status of the
method called:

n MccService.ErrHandling() method sets the manner of reporting and handling errors for all methods.

n ErrorInfo.Message property gets the text of the error message associated with a specific error code.

n ErrorInfo.Value property gets the named constant value associated with the ErrorInfo object.

The ErrorInfo class also includes Error Code enumerated values that define the error number and associated message which can
be returned when you call a method. Click here for information about the properties, methods, and enumerated constants in the
Error Info class.

MccService class
The MccService Class contains all members for calling utility UL functions.

The following code examples demonstrate how to call a UL for .NET memory management method from within a Universal Library
program:

WindowHandle=MccService.WinBuffAlloc(1000)

MccService.WinBuffFree(WindowHandle)

GlobalConfig class
The GlobalConfig class contains members that are used to obtain global configuration information.

DataLogger class
The DataLogger Class contains all members for reading and converting binary log files.

MccDaq enumerations
The MccDaq Namespace contains enumerated values which are used by many of the methods available from the MccDaq classes.
Refer to specific method descriptions in the Universal Library Function Reference for the values of each enumerated type.

Visual
Basic

ULStat = DaqBoard.AIn(Chan, Range, DataValue)

C# ULStat = DaqBoard.AIn(Chan, Range, out DataValue);

MccDaq.BCDMode Lists BCD mode options (enabled/disabled).

MccDaq.C8254Mode Lists all of the operating modes for 8254 counters.

MccDaq.C8536OutputControl Lists all of the types of output from an 8536 counters.

MccDaq.C8536TriggerType Lists all of the options for specifying the trigger type for 8536 counters.

MccDaq.C9513OutputControl List all of the types of output from 9513 counters.

MccDaq.ChannelType List all of the options for setting the channel type.

MccDaq.CompareValue List all options for comparing values while configuring a 9513 counter.

MccDaq.ConnectionPin Defines the connector pins to associate with the signal type and direction when
calling the SelectSignal function.

MccDaq.CountDirection Defines the count direction when configuring counters.

MccDaq.CountEdge Defines the edge used for counting

MccDaq.CounterControl Defines the possible state of each counter channel (enabled/disabled).

MccDaq.CounterDebounceMode Lists all options for specifying the debounce mode.

MccDaq.CounterDebounceTime Lists all options for specifying the debounce time.

MccDaq.CounterEdgeDetection Lists all options for specifying the edge detection.

MccDaq.CounterMode List all options for specifying the counter mode.

Page 21 of 700

javascript:BSSCPopup('../../Enumerations/MccDaq.Range.htm');
javascript:BSSCPopup('../../Classes/MccService_Class.htm');
javascript:BSSCPopup('../../Function_Reference/Configuration_Functions_for_NET/GlobalConfig_class_and_properties.htm');
javascript:BSSCPopup('../../Function_Reference/DataLogger_Functions_for_NET/DataLogger_Class_Overview.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.BCDMode.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.C8254Mode.htm');
javascript:BSSCPopup('../../Enumerations/Mccdaq.C8536OutputControl.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.C8536TriggerType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.C9513OutputControl.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.ChannelType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CompareValue.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.Connection.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CountDirection.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CountEdge.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CounterControl.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DebounceModes.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DebounceTimes.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.EdgeDetection.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CounterModes.htm');

Parameter data types

MccDaq.CounterRegister Lists all of the register names used to load counters.

MccDaq.CounterSource Lists all counter input sources.

MccDaq.CountingMode Lists all valid modes for a C7266 counter configuration.

MccDaq.CtrlOutput Lists all options for linking counter 1 to counter 2.

MccDaq.DACUpdate Lists the available DAC update modes.

MccDaq.DataEncoding Lists the format of the data that is returned by a counter.

MccDaq.DigitalLogicState Defines all digital logic states.

MccDaq.DigitalPortDirection Configures a digital I/O port as input or output.

MccDaq.DigitalPortType Defines all digital port types.

MccDaq.DTMode Lists all modes to transfer to/from the memory boards.

MccDaq.ErrorHandling Defines all error handling options.

MccDaq.ErrorReporting Defines all error reporting options.

MccDaq.EventParameter Lists all options for latching data.

MccDaq.EventType Lists all available event conditions.

MccDaq.FieldDelimiter Defines the delimiter character used to separate fields in a converted log file.

MccDaq.FileType Defines the file type used to convert a binary log file.

MccDaq.FlagPins Lists all signals types that can be routed to the FLG1 and FLG2 pins on the 7266
counters.

MccDaq.FunctionType Lists all valid function types used with data acquisition functions.

MccDaq.GateControl Lists all of the gating modes for configuring a 9513 counter.

MccDaq.IdleState Lists all options for specifying the idle state.

MccDaq.IndexMode Lists the actions to take when the index signal is received by a 7266 counter.

MccDaq.InfoType Lists the the configuration information to be used with the MccBoard class
configuration functions.

MccDaq.LoggerUnits Lists the options used to specify the units for analog data in a binary file.

MccDaq.OptionState Enables or disables various options.

MccDaq.PrimaryBitConfigPortType Defines digital port types for bit level configuration.

MccDaq.PrimaryDigitalPortType Defines digital port types for bit level input/output methods.

MccDaq.Quadrature Lists all of the resolution multipliers for quadrature input.

MccDaq.Range Defines the set of ranges within the UL for A/D and D/A operations.

MccDaq.RecycleMode Lists the recycle mode options for 9513 and 8536 counters.

MccDaq.Reload Lists the options for reloading the 9513 counter.

MccDaq.ScanOptions Lists the available scan options for paced input/output functions.

MccDaq.SetpointFlag Lists the options for setting the flag type.

MccDaq.SetpointOutput Lists the options for setting the output source.

MccDaq.SignalDirection Lists all of the directions available from a specified signal type assigned to a
connector pin.

MccDaq.SignalPolarity Lists all available polarities for a specified signal.

MccDaq.SignalSource List all of the signal sources of the signal from which the frequency will be calculated.

MccDaq.SignalType Lists all signal types associated with a connector pin on boards supporting a DAQ-
Sync connector.

MccDaq.SoftwareTriggerType Defines trigger types for software triggering.

MccDaq.StatusBits List all status bits available when reading counter status.

MccDaq.TEDSReadOptions Lists the options for reading data from a TEDS sensor into an array.

MccDaq.TempScale Lists valid temperature scales that the input can be converted to.

MccDaq.ThermocoupleOptions Specifies whether or not to apply smoothing to temperature readings.

MccDaq.TimeFormat Defines the formats for displaying time stamp data.

MccDaq.TimeOfDay List all time of day options for initializing a 9513 counter.

MccDaq.TimeZone Defines the available time zones to store time stamp data.

MccDaq.TriggerEvent Lists all options for specifying the trigger event.

MccDaq.TriggerSensitivity Lists all options for specifying the trigger sensitivity.

MccDaq.TriggerSource Lists all options for specifying the trigger source.

MccDaq.TriggerType List all valid trigger types for the MccBoard.SetTrigger method.

MccDaq.VInOptions Lists all options for specifying voltage input options.

MccDaq.VOutOptions Lists all options for specifying voltage output options.

Page 22 of 700

javascript:BSSCPopup('../../Enumerations/MccDaq.CounterRegister.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CounterSource.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CountingMode.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.CtrlOutput.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DACUpdate.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DataEncoding.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DigitalLogicState.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DigitalPortDirection.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DigitalPortType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.DTMode.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.ErrorHandling.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.ErrorReporting.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.EventParameter.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.EventType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.FieldDelimiter.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.FileType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.FlagPins.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.FunctionType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.GateControl.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.IdleState.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.IndexMode.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.InfoType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.LoggerUnits.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.OptionState.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.PrimaryBitConfigPortType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.PrimaryDigitalPortType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.Quadrature.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.Range.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.RecycleMode.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.Reload.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.ScanOptions.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SetpointFlag.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SetpointOutput.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SignalDirection.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SignalPolarity.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SignalSource.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SignalType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.SoftwareTriggerType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.StatusBits.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TEDSReadOptions.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TempScale.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.ThermocoupleOptions.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TimeFormat.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TimeOfDay.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TimeZone.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TriggerEvent.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TriggerSensitivity.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TriggerSource.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.TriggerType.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.VInOptions.htm');
javascript:BSSCPopup('../../Enumerations/MccDaq.VOutOptions.htm');

Many of the Universal Library for .NET methods are overloaded to provide for signed or unsigned data types as parameters. The
AConvertData() function is shown below using both signed and unsigned data types.

For most data acquisition applications, unsigned data values are easier to manage. However, since Visual Basic (version 6 and
earlier) does not support unsigned data types, it may be easier to port these programs to .NET if the signed (Int16) data types are
used for the function parameters. For additional information on using signed data types, refer to 16-bit values using a signed
integer data type.

The short (Int16) data type is Common Language Specification (CLS) compliant, is supported in VB, and will be included in any
future .NET language developed for the .NET Framework. Using CLS-compliant data types ensures future compatibility. Unsigned
data types (UInt16) are not CLS-compliant, but are still supported by various .NET languages, such as C#.

VB .NET Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As Short,
ByRef chanTags As Short) As MccDaq.ErrorInfo

Member of MccDaq.MccBoard

 Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As
System.UInt16, ByRef chanTags As System.UInt16) As MccDaq.ErrorInfo

Member of MccDaq.MccBoard

C# .NET public MccDaq.ErrorInfo AConvertData (System.Int32 numPoints, System.Int16
adData, System.Int16 chanTags)

Member of MccDaq.MccBoard

 public MccDaq.ErrorInfo AConvertData(System.Int32 numPoints, System.UInt16
adData, System.UInt16 chanTags)

Member of MccDaq.MccBoard

Page 23 of 700

Analog Input Hardware
All devices with analog inputs support the cbAIn()/ AIn() and cbAInScan()/ AInScan() functions. If using an expansion device, refer
to specific hardware information for information regarding whether cbAInScan()/AInScan() are supported.

When hardware paced A/D conversion is not supported, cbAInScan()/ AInScan() loops through software paced conversions. The
scan executes at the maximum speed possible. The speed varies with CPU speed. The only valid option in this case is
CONVERTDATA.

Concurrent analog input and output

Concurrent analog input and output scans are supported on devices with both paced analog inputs and outputs. These devices allow
operations with analog input functions (cbAInScan()/ AInScan() and cbAPretrig()/APretrig()) and analog output functions
(cbAOutScan()/AOutScan()) to overlap without having to call cbStopBackground()/StopBackground() between the start of the input
and output scans.

Trigger support

Digital Trigger

If trigger support is "Polled gate" (as opposed to "Hardware"), you implement a trigger by gating the on-board pacer; doing so
disables the on-board pacer. The trigger input is then polled continuously until the trigger occurs. When the trigger occurs, the
software disables the gate input so that the pacer is not affected when the trigger returns to its original state. Acquisition continues
until the requested number of samples is acquired. There are two side effects to this type of trigger:

n The polling portion of the function does not occur in the background, even if the BACKGROUND option is specified (although
the actual data acquisition occurs).

n The trigger does not necessarily occur on the rising edge. Acquisition can start at any time after the function is called if the
trigger input is at "active" level. For this reason, it is best to use a trigger that goes active for a much shorter time than it is
inactive.

Analog Trigger

Set up the trigger levels for an analog trigger using the cbSetTrigger() function /SetTrigger() method, and pass the appropriate
values to the HighThreshold and LowThreshold arguments.

For most devices that support analog triggering, you can calculate the HighThreshold and LowThreshold values by passing the
required trigger voltage level and the appropriate Range to the cbFromEngUnits() function/FromEngUnits() method.

However, for some devices, you must manually calculate HighThreshold and LowThreshold. If a device requires manual calculation,
that information is included in the Trigger information for the specific product in this section. The procedure for manually calculating
these values is described in the cbSetTrigger() function/SetTrigger() method sections of the Universal Library Function Reference.

Pretrigger Implementations

You can implement pretrigger functionality through software or hardware. These two methods have different limitations and
requirements. Most Measurement Computing products with pretrigger capability are implemented in hardware.

n When pretrigger functionality is implemented in hardware, the buffer created using cbWinBufAlloc() must be large enough to
hold 512 samples more than the requested TotalCount. The trigger location is tracked by a counter on the device. When the
trigger condition is met, data is acquired and the library functions return the actual number of pretrigger points that were
acquired. When run in BACKGROUND mode, the cbGetStatus() function typically shows CurCount rise to the value of
PretrigCount and remain there while CurIndex cycles from 0 to TotalCount continuously until the trigger is received.

n When pretrigger functionality is implemented in software, the additional space in the buffer is not required. The trigger
location is tracked by software. Any triggers that occur before the number of samples defined by the pretrigger count
argument are ignored. When run in BACKGROUND mode, the cbGetStatus() function will typically show CurCount at a value
of 0 and CurIndex at a value of –1 until the trigger is received. They will then rise from PretrigCount to TotalCount.

Sampling rate using SINGLEIO
When transfering data using SINGLEIO mode, the maximum analog sampling rate is dependent on the speed of the computer in
which the device is installed. In general the max rate is between 5 kHz and 50 kHz. An OVERRUN error will occur if the requested
speed cannot be achieved. Data will be returned, but there may be gaps in the data. Some devices only support SINGLEIO mode,
so the maximum rate attainable with these devices is system-dependent.

Page 24 of 700

CIO-DAS08 Series, PCI-DAS08, and PC104-DAS08
The CIO-DAS08 Series includes the following hardware:

n CIO-DAS08

n CIO-DAS08-AOH

n CIO-DAS08-AOL

n CIO-DAS08-AOM

n CIO-DAS08-PGH

n CIO-DAS08-PGL

n CIO-DAS08-PGM

This topic also includes the following hardware:

n PCI-DAS08

n PC104-DAS08

The CIO-DAS08 Series, PCI-DAS08, and PC104-DAS08 support the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, EXTTRIGGER

HighChan

7

Rate

From 63 up to 50000 (refer to the Introduction: Analog input boards topic regarding SINGLEIO scans).

Range

The CIO-DAS08, PCI-DAS08, and PC104-DAS08 boards do not have programmable gain, so the Range argument to analog
input functions is ignored. However, the following are valid ranges for switch settings on these boards, and can also be used with
cbToEngUnits()/ToEngUnits().

PCI-DAS08:

CIO-DAS08 and PC104-DAS08:

The CIO-DAS08-PGH and CIO-DAS08-AOH support the following programmable ranges:

The CIO-DAS08-PGL and CIO-DAS08-AOL support the following programmable ranges:

BIP5VOLTS (±5 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI1VOLTS (0 to 1 volts)

BIP1VOLTS (±1 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIPPT5VOLTS (±0.5 volts) UNIPT01VOLTS (0 to 0.01 volts)

BIPPT1VOLTS (±0.1 volts)

BIP1PT05VOLTS (±0.05 volts)

BIP1PT01VOLTS (±0.01 volts)

BIP1PT005VOLTS (±0.005 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

Page 25 of 700

The CIO-DAS08-PGM and CIO-DAS08-AOM support the following programmable ranges:

Analog output (CIO-DAS08-AOH, CIO-DAS08-AOL, and CIO-DAS08-AOM only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

HighChan

1 max

Rate

Ignored

Count

2 max

Range

Ignored - not programmable; fixed at one of eight switch-selectable ranges:

DataValue

0 to 4,095

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

CIO-DAS08 and CIO-DAS08-AOH, -AOL, and -AOM also support:

UL: cbDConfigPort() for FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

UL for .NET: DConfigPort() for FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

PortNum

AUXPORT

CIO-DAS08 and CIO-DAS08-AOH, -AOL, and -AOM also support these digital ports:

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 15 using cbDOut() or DOut()

0 to 7 using cbDIn() or DIn()

CIO-DAS08 and CIO-DAS08-AOH, -AOL, and -AOM also support these values:

0 to 255 using FIRSTPORTA or FIRSTPORTB

0 to 15 using FIRSTPORTCL or FIRSTPORTCH

BitNum

0 to 3 using cbDBitOut() or DBitOut()

0 to 2 using cbDBitIn() or DBitIn()

BIPPT625VOLTS (±0.625 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI1VOLTS (0 to 1 volts)

BIPPT5VOLTS (±0.5 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIPPT1VOLTS (±0.1 volts) UNIPT01VOLTS (0 to 0.01 volts)

BIPPT05VOLTS (±0.05 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT67VOLTS (±1.67 volts) UNI1PT67VOLTS (0 to 1.67 volts)

Page 26 of 700

0 to 2 using cbDBitIn() or DBitIn()

CIO-DAS08 and CIO-DAS08-AOH, -AOL, and -AOM also support these values:

0 to 23 using FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

Before using the cbAInScan() function or the AInScan() method for timed analog input with a CIO-DAS08 or PC104-DAS08
series board, the output of counter 1 must be wired to the Interrupt input.

If you have a CIO-DAS08 board revision 3 or higher, a jumper is provided on the board to accomplish this. An interrupt level
must have been selected in InstaCal and the CB.CFG file saved.

Triggering and gating

Polled digital input triggering (TTL) supported. Refer to "Trigger support" in the "Introduction: Analog input Boards" section for
more information.

Use pin 25 as the trigger input.

Pacing analog output

Software pacing only

Digital output

Since the channel settings and DOut bits share a register, attempting to change the digital output value during an analog input
scan may result in no change or unexpected values in digital output ports.

Page 27 of 700

CIO-DAS08/JR Series
The CIO-DAS08/JR Series includes the following hardware:

n CIO-DAS08/JR

n CIO-DAS08/JR-AO

n CIO-DAS08JR/16

n CIO-DAS08/JR/16-AO

The CIO-DAS08/JR Series support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

CONVERTDATA

HighChan

0 to 7

Rate

Ignored

Range

These boards do not have programmable gain, so the Range arguments for analog input functions are ignored.

Analog Output
Valid if the optional D/A converters are installed on the board.

Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

HighChan

1 max

Rate

Ignored

Count

2 max

Range

Ignored - not programmable; fixed at BIP5VOLTS (±5 volts)

DataValue

0 to 4,095

For the CIO-DAS08/JR/16-AO, the following argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

AUXPORT*

Page 28 of 700

DataValue

0 to 255

BitNum

0 to 7

*AUXPORT is not configurable for these boards.

Counter I/O
Functions

These boards do not have any counters and do not support any of the counter I/O functions.

Hardware Considerations
Pacing analog input

Software pacing only

Page 29 of 700

CIO-DAS1400 Series and CIO-DAS1600 Series
The CIO-DAS1400 Series includes the following hardware:

n CIO-DAS1401/12

n CIO-DAS1402/12

n CIO-DAS1402/16

The CIO-DAS1600 Series includes the following hardware:

n CIO-DAS1601/12

n CIO-DAS1602/12

n CIO-DAS1602/16

The CIO-DAS1400 Series and CIO-DAS1600 Series support the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BURSTMODE, EXTTRIGGER

For the CIO-DAS1601/12, CIO-DAS1602/12, and CIO-DAS1602/16, these argument values are also valid:

DTCONNECT, EXTMEMORY

HighChan

0 to 15 single-ended mode

0 to 7 differential mode

Rate

CIO-DAS1401/12, CIO-DAS1402/12, CIO-DAS1601/12, and CIO-DAS1602/16:

160000

CIO-DAS1402/16 and CIO-DAS1602/16:

100000

CIO-DAS1401/12, CIO-DAS1402/12, CIO-DAS1601/12, and CIO-DAS1602/12 to external memory (DT Connect):

330000

Range

CIO-DAS1402/12, CIO-DAS1402/16, CIO-DAS1602/12 and CIO-DAS1602/16:

CIO-DAS1401/12 and CIO-DAS1601/12:

Analog output (CIO-DAS1600 series only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP1VOLTS (±1 volts) UNI1VOLTS (0 to 1 volts)

BIPPT1VOLTS (±0.1 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIPPT01VOLTS (±0.01 volts) UNIPT01VOLTS (0 to 0.01 volts)

Page 30 of 700

HighChan

1 max

Count

2 max

Rate

Ignored

Pacing

Software pacing only

Range

Ignored - not programmable; fixed at one of four jumper-selectable ranges:

DataValue

0 to 4,095

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

The CIO-DAS1600 series also supports cbDConfigPort() and DConfigPort()

PortNum

AUXPORT*

The CIO-DAS1600 series also supports these digital ports:

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

* AUXPORT is not configurable for these boards.

DataValue

0 to 15

The CIO-DAS1600 series also supports these values.

0 to 255 using FIRSTPORTA or FIRSTPORTB

0 to 15 using FIRSTPORTCL or FIRSTPORTCH

BitNum

0 to 3

The CIO-DAS1600 series also supports these bit number settings.

0 to 23 using FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

Page 31 of 700

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported. Specifying SINGLEIO while also specifying BURSTMODE is not
recommended. If this combination is used, the Count value should be set as low as possible, preferably to the number of channels
in the scan. Otherwise, overruns may occur.

When EXTMEMORY is used with the CIO-DAS1600 Series, the cbGetStatus() function or GetStatus() method does not return the
current count and current index. This is a limitation imposed by maintaining identical registers to the KM-DAS1600.

Triggering and gating

External digital (TTL) polled gate trigger supported. Refer to the "Trigger support" section of the "Introduction: Analog input boards"
topic.

Range

The CIO-DAS1400 Series and CIO-DAS1600 Series board's A/D ranges are configured with a combination of a switch
(Unipolar/Bipolar) and a programmable gain code. The state of this switch is set in the configuration file using InstaCal. After the
UNI/BIP switch setting is selected, only matching ranges can be used in Universal Library programs.

Page 32 of 700

CIO-DAS16 Series and PC104-DAS16 Series
The CIO-DAS16 Series and PC104-DAS16 Series includes the following hardware:

n CIO-DAS16/330

n CIO-DAS16/330i

n CIO-DAS16/M1

n CIO-DAS16/M1/16

n CIO-DAS16

n CIO-DAS16/F

n CIO-DAS16/JR

n CIO-DAS16/JR/16

The CIO-DAS16 Series and PC104-DAS16 Series includes the following hardware:

n PC104-DAS16JR/16

n PC104-DAS16JR/12

The CIO-DAS16 Series and PC104-DAS16 Series support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), FileAInScan(), ATrig()

The DAS16/330, DAS16/330i, DAS16/M1 and DAS16/M1/16 also support the following functions:

UL: cbAPretrig(), cbFilePretrig()

UL for .NET: APretrig(), FilePretrig()

The DAS16/330i and DAS16/M1 also support the following functions:

UL: cbALoadQueue()

UL for .NET: ALoadQueue()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, EXTTRIGGER

The DAS16/330, DAS16/330i, DAS16/M1 and DAS16/M1/16 also support the following settings:

DTCONNECT, BLOCKIO, EXTMEMORY

The DAS16, DAS16/F, DAS16/JR, DAS16/JR/16 and PC104-DAS16JR series also support the following settings:

SINGLEIO, DMAIO

The DAS16/M1/16 also supports the following setting:

BURSTMODE

HighChan

0 to 7 (DAS16/M1 and DAS16/M1/16)

0 to 15 in single-ended mode, or 0 to 7 in differential mode (all others)

Rate

DAS16/M1 and DAS16/M1/16:

Up to 1000000

CIO-DAS16JR:

Up to 130000

DAS16/330 and DAS16/330i:

Up to 330000

DAS16/F and DAS16JR/16:

Up to 100000

Page 33 of 700

DAS16:

Up to 50000

PC104-DAS16JR/12:

Up to 160000

Range

The CIO-DAS16 and CIO-DAS16/F do not have programmable gain, so the Range argument to analog input functions is ignored.

All other boards in this series support the following ranges:

For all programmable gain boards in this series except the DAS16/M1/16, this argument value is also valid:

For all programmable gain boards in this series except the CIO-DAS16/JR/16 and PC104-DAS16JR/16, this argument value is
also valid:

Analog output(CIO-DAS16 and CIO-DAS16/F only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET:AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

HighChan

1 maximum

Rate

Ignored

Count

2 max

Range

Ignored - not programmable; fixed at UNI5VOLTS (0 to 5 volts)

DataValue

0 to 4,095

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 also support:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

AUXPORT (not configurable for these boards)

CIO-DAS16, 1CIO-DAS16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 also support:

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 15

CIO-DAS16, 1CIO-DAS16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 also support:

0 to 255 for FIRSTPORTA and FIRSTPORTB

BIP5VOLTS (±5 volts) UNI10VOLTS (0 to 10 volts)

BIP2PT5VOLTS (±2.5 volts) UNI5VOLTS (0 to 5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI2PT5VOLTS (0 to 2.5 volts)

 UNI1PT25VOLTS (0 to 1.25 volts)

BIP10VOLTS (±10 volts)

BIPPT625VOLTS (±0.625 volts)

Page 34 of 700

0 to 255 for FIRSTPORTA and FIRSTPORTB

0 to 15 for FIRSTPORTCL & FIRSTPORTCH

BitNum

0 to 3

CIO-DAS16, 1CIO-DAS16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 also support:

0 to 23 using FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

CIO-DAS16/M1/16 also supports counter 4 through counter 6, with counter 4 being the only independent user counter.

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Triggering (CIO-DAS16/M1/16 only)
UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Threshold

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Page 35 of 700

CIO-DAS48-PGA, CIO-DAS48-I
The CIO-DAS48-PGA and CIO-DAS48-I supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), FileAInScan(), ATrig()

Options

CONVERTDATA

HighChan

47 single-ended, 23 differential

Rate

Ignored

Range

The CIO-DAS48-PGA can be configured with a jumper for either voltage or current input. The CIO-DAS48-I is configured for
current input only.

Voltage input ranges:

Current input ranges:

Notes
The CIO-DAS48/PGA and CIO-DAS48-I do not support analog output, digital I/O, or counter I/O functions.

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volt) UNI2PT5VOLTS (0 to 2.5 volt)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIPPT625VOLTS (±0.625 volts)

MA4TO20 (4 to 20 mA) MA1TO5 (1 to 5 mA)

MA2TO10 (2 to 10 mA) MAPT5TO2PT5 (0.5 to 2.5 mA)

Page 36 of 700

CIO-DAS800 Series
The CIO-DAS800 Series includes the following hardware:

n CIO-DAS800

n CIO-DAS801

n CIO-DAS802

n CIO-DAS802/16

CIO-DAS800 Series supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO, EXTTRIGGER

HighChan

0 to 7

Rate

CIO-DAS802/16:

100,000

All others in the series:

50,000

Range

CIO-DAS800:

Ignored - Not programmable

CIO-DAS801:

CIO-DAS802:

CIO-DAS802/16:

Analog output
These boards do not have D/A converters, and do not support analog output functions.

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI1VOLTS (0 to 1 volts)

BIP1VOLTS (±1 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIPPT5VOLTS (±0.5 volts) UNIPT01VOLTS (0 to 0.01 volts)

BIPPT05VOLTS (±0.05 volts)

BIPPT01VOLTS (±0.01 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIPPT625VOLTS (±0.625 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

Page 37 of 700

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

AUXPORT (not configurable for these boards)

DataValue

UL: 0 to 15 using cbDOut(), 0 to 7 using cbDIn()

UL for .NET: 0 to 15 using DOut(), 0 to 7 using DIn()

BitNum

0 to 3 using cbDBitOut()/DBitOut()

0 to 2 using cbDBitIn()/DBitIn()

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

The packet size is 128 samples.

Note that digital output is not compatible with concurrent cbAInScan()/AInScan() operation, since the channel multiplexor control
shares the register with the digital output control. Writing to this register during a scan may adversely affect the scan.

Triggering and gating

Digital hardware triggering supported.

Page 38 of 700

DEMO-BOARD
The DEMO-BOARD is a software simulation of a data acquisition device that simulates analog input and digital I/O operations. The
DEMO-BOARD supports the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

BACKGROUND, CONTINUOUS, SINGLEIO, DMAIO

HighChan

7 max

Rate

300000

Page 39 of 700

Digital I/O
Functions

UL: cbDIn(), cbDBitIn(), cbDInScan(), cbDOut(), cbDBitOut(), cbDOutScan(), cbDConfigPort()

UL for .NET: DIn(), DBitIn(), DInScan(), DOut(), DBitOut(), DOutScan(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

AUXPORT

DataValue

0 to 255 using FIRSTPORTA, FIRSTPORTB, or AUXPORT

BitNum

0 to 15 using FIRSTPORTA

0 to 7 using AUXPORT

Using the DEMO-BOARD

Analog input

The DEMO-BOARD simulates eight channels of 16-bit analog input. InstaCal is used to configure the following waveforms on the
analog input channels:

n Sine wave

n Square wave

n Saw-tooth

n Ramp

n Damped sine wave

n Input from a data file

The data file is a streamer file, so any data that has been previously saved in a streamer file can be used as a source of demo data
by the board. Data files are named DEMO0.DAT through DEMO7.DAT. When a data file is assigned to a channel, the library tries
to extract data for that channel from the streamer file. If data for that channel does not exist, then the first (and possibly only)
channel data in the streamer is extracted and used.

For example, DEMO2.DAT is assigned as the data source for channel 5 on the DEMO-BOARD. The library will try to extract data
from the file that corresponds to channel 5. If DEMO2.DAT has scan data that corresponds to channels 0 through 15, then channel 5
data is extracted. If DEMO2.DAT only has data for a single channel, the data for that channel is used as the data source for channel
5.

Digital I/O

The DEMO-BOARD simulates the following:

n One eight-bit AUXPORT configurable digital input/output port. Each bit of the AUXPORT generates a square wave with a
different period.

n Two eight-bit configurable digital I/O ports — FIRSTPORTA and FIRSTPORTB — which can be used for high speed scanning.
FIRSTPORTA functions like AUXPORT in that it generates square waves. Each bit of FIRSTPORTB generates a pulse with a
different frequency.

Page 40 of 700

miniLAB 1008
The miniLAB 1008 supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

*The channel-gain queues are limited to eight channel-gain pairs.

Options

BACKGROUND, BURSTIO**, BLOCKIO***, CONTINUOUS, EXTTRIGGER, CONVERTDATA, NOCALIBRATEDATA

** BURSTIO cannot be used with the CONTINUOUS option. BURSTIO can only be used with sample count scans of 4096 or less.

*** The BLOCKIO packet size is 64 samples wide.

HighChan

0 to 7 in single-ended mode, 0 to 3 in differential mode

Rate

8000 hertz (Hz) maximum for BURSTIO mode. The rate is 1200 Hz maximum for all other modes.

When using cbAInScan() or AInScan(), the minimum sample rate is 100 S/s aggregate.

Range

Single-ended:

Differential:

Pacing

Hardware pacing, internal clock supported.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGHIGH, TRIGLOW

Digital (TTL) hardware triggering supported. The hardware trigger is source selectable via InstaCal (AUXPORT inputs 0 - 3).

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Count

(HighChan-LowChan)+1

HighChan

1

Range

Ignored - not programmable; fixed at UNI5VOLTS (0 to 5 V)

DataValue

0 to 1023

BIP10VOLTS (±10 volts)

BIP20VOLTS (±20 volts) BIP2PT5VOLTS (±2.5 volts)

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1PT25VOLTS (±1.25 volts)

BIP4VOLTS (±4 volts) BIP1VOLTS (±1 volts)

Page 41 of 700

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

AUXPORT*

PortType

AUXPORT*

* Only AUXPORT is bitwise configurable on this board, and must be configured using cbDConfigBit() or cbDConfigPort() (or the
UL for .NET functions DConfigBit() or DConfigPort()) before use for output.

Port I/O Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

AUXPORT

DataValue

0 to 15 for AUXPORT, FIRSTPORTCL, or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

FIRSTPORTA

BitNum

0 to 3 on AUXPORT

0 to 23 on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232-1 when reading the counter.

0 when loading the counter

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are used only to reset the counter for this board to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards topic apply when using cbCIn() or CIn() for
values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

Page 42 of 700

LOADREG1

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_SCAN_ERROR (analog input), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware considerations
Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and 2,047). However, the
Universal Library maps this data to 12-bit values, so the range of data is no different from the differential configuration.
Consequently, the data returned contains only even numbers between 0 and 4,094 when the NOCALIBRATEDATA option is used.

BURSTIO

Allows higher sampling rates (up to 8000 Hz) for sample counts up to 4096. Data is collected into the miniLAB's local FIFO. Data is
collected into the USB device's local FIFO. Data transfers to the PC don't occur until the scan completes. For BACKGROUND scans,
the Count and Index returned by cbGetStatus() and GetStatus() remain 0, and STATUS=RUNNING until the scan finishes. The
Count and Index are not updated until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus()
and GetStatus() are updated to the current Count and Index, and Count = IDLE.

BURSTIO is the default mode for non-CONTINUOUS fast scans (aggregate sample rates above 1000 Hz) with sample counts up to
4096. BURSTIO mode allows higher sampling rates (up to 8000 Hz) for sample counts up to 4096. Non-BURSTIO scans are limited
to a maximum of 1200 Hz. To avoid the BURSTIO default, specify BLOCKIO mode.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, you should consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, make the total number of samples an integer multiple of the
packet size and the number of channels.

Concurrent operations

Concurrent operations on a particular USB device are not allowed. If you invoke a UL or UL for .NET function on a USB device while
another function is running on that USB device, the ALREADYACTIVE error is returned.

Page 43 of 700

PCI-2500 Series
The PCI-2500 Series includes the following hardware:

n PCI-2511

n PCI-2513

n PCI-2515

n PCI-2517

The PCI-2500 Series support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbAPretrig()*, cbATrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), FileAInScan(), APretrig()*, ATrig(), ALoadQueue()

* Pretrigger capability is implemented in software. PretrigCount must be less than the TotalCount and cannot exceed 100000
samples. TotalCount must be greater than the PretrigCount. If a trigger occurs while the number of collected samples is less
than the PretrigCount, that trigger will be ignored. Requires a call to cbSetTrigger/SetTrigger for the analog trigger type.

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan

PCI-2517, PCI-2515, PCI-2513:

0 to 15 in single-ended mode, 0 to 7 in differential mode

PCI-2511:

0 to 15 in single-ended mode

Rate

Up to 1 MHz

Range

PCI-2517, PCI-2515, PCI-2513:

PCI-2511:

Analog Output (PCI-2517 and PCI-2515 only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, NONSTREAMEDIO, SIMULTANEOUS

NONSTREAMEDIO can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO holds 524288
samples.

HighChan

PCI-2517: 0 to 3

PCI-2515: 0 to 1

Rate

1 MHz

Range

BIP10VOLTS (±10 volts) BIPPT5VOLTS (±0.5 volts)

BIP5VOLTS (±5 volts) BIPPT2VOLTS (±0.2 volts)

BIP2VOLTS (±2 volts) BIPPT1VOLTS (±0.1 volts)

BIP1VOLTS (±1 volt)

BIP10VOLTS (±10 volts)

Page 44 of 700

Ignored - not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Configuration

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

PortType

FIRSTPORTA

Port I/O

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

*FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to DIO PortNum in the Hardware
Considerations section below for more information.

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, HIGHRESRATE, NONSTREAMEDIO,
WORDXFER,

The EXTTRIGGER option can only be used with the cbDInScan() function. You can use the cbSetTrigger() function to program the
trigger for rising edge, falling edge, or the level of the digital trigger input (TTL).

The WORDXFER option can only be used with FIRSTPORTA.

The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with the cbDOutScan() function.

The NONSTREAMEDIO option can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO
holds 524288 samples.

Rate

12 MHz

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DataValue

0 to 255

0 to 65,535 using the WORDXFER option with FIRSTPORTA

Bit I/O

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 23

Counter Input
Functions

UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan, CInScan(), CClear()

Note: Counters on these boards are zero-based (the first counter number is "0").

Rate

6 MHz

Page 45 of 700

CounterNum

0 to 3

Options

BACKGROUND, CONTINUOUS, EXTTRIGGER

You can use the cbSetTrigger() function to program the trigger for rising edge, falling edge, or the level of the digital trigger
input (TTL).

LoadValue

0 to 65,535 (Refer to "16-bit values using a signed integer data type" for information on 16-bit values using unsigned integers.)

Timer Output
Functions

UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

TimerNum

0 to 1

Frequency

15.260 Hz to 1.0 MHz

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

Digital triggering (TRIG_HIGH, TRIG_LOW, TRIGPOSEDGE, TRIGNEGEDGE) is not supported for pre-trigger acquisitions
(cbAPretrig() function).

Analog triggering (TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the cbCInScan() function.

Threshold

Analog hardware triggering, 12-bit resolution: 0 to 4,095 (supported for cbAInScan() only)

Analog software triggering, 16-bit resolution: 0 to 65,535 (supported for cbAPretrig() only)

DAQ Input
Functions

UL: cbDaqInScan()

UL for .NET: DaqInScan()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

ChanTypeArray

ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, SETPOINTSTATUS

ChanArray

ANALOG:

n PCI-2517, PCI-2515, PCI-2513: 0 to 15 in single-ended mode, 0 to 7 in differential mode

n PCI-2511: 0 to 15 in single-ended mode

DIGITAL8: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DIGITAL16: FIRSTPORTA

CTR16: 0-3 counters

CTR32LOW: 0-3 counters

CTR32HIGH: 0-3 counters

SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible setpoints.

Page 46 of 700

ChanTypeArray flag value:

n SETPOINT_ENABLE: Enables a setpoint. Refer to Setpoints in the Hardware Considerations section below for more
information.

Rate

Analog: Up to 1 MHz.

Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

GainArray

ANALOG only; ignore for other ChanTypeArray values.

PCI-2517, PCI-2515, PCI-2513:

PCI-2511:

Ignored; fixed at BIP10VOLTS (±10 volts)

ChanCount

Number of elements in ChanArray, ChanTypeArray and GainArray. Up to 512 elements max.

PretrigCount

100000 max. This argument is ignored if the EXTTRIGGER option is not specified.

DAQ Triggering
Functions

UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

TrigSource

TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW, TRIG_DIGPATTERN, TRIG_COUNTER,
TRIG_SCANCOUNT

TrigSense

RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent

START_EVENT, STOP_EVENT

DAQ Setpoint
Functions

UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

SetpointFlagsArray

SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB, SF_OUTSIDE_LIMITS, SF_HYSTERESIS,
SF_UPDATEON_TRUEONLY, SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray

SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1

Also available for PCI-2515 and PCI-2517:

SO_DAC0, SO_DAC1

Also available for PCI-2517:

SO_DAC2, SO_DAC3

LimitAArray

Any value valid for the associated input channel.

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray

BIP10VOLTS (±10 volts) BIPPT5VOLTS (±0.5 volts)

BIP5VOLTS (±5 volts) BIPPT2VOLTS (±0.2 volts)

BIP2VOLTS (±2 volts) BIPPT1VOLTS (±0.1 volts)

BIP1VOLTS (±1 volt)

Page 47 of 700

LimitBArray

Any value valid for the associated input channel and less than LimitA.

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array

For SetpointOutputArray = SO_NONE: Ignored

For SetpointOutputArray = SO_FIRSTPORTC: 0 to 65,535

For SetpointOutputArray = SO_TMR#: 0 (to disable the timer) or 15.26 to 1000000 (to set the output frequency)

For SetpointOutputArray = SO_DAC#: Voltage values between –10 and +10

OutputMask#Array>

For SetpointOutputArray = SO_FIRSTPORTC: 0 to 65,535

For SetpointOutputArray = all other values: Ignored

SetpointCount

0 (to disable setpoints) to 16

DAQ Output (PCI-2517 and PCI-2515 only)
Functions

UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

ChanType

ANALOG, DIGITAL16

ChanArray

ANALOG:

PCI-2517: 0 to 3

PCI-2515: 0 to 1

DIGITAL16:

FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate

ANALOG: Up to 1 MHz.

DIGITAL16: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

Range

Ignored

Hardware considerations
Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a BADCOUNT error is
returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling rates when using
BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use NONSTREAMEDIO mode, if
supported.

The minimum size buffer is 256 for cbAOutScan(), cbDInScan(), and cbDOutScan(). Values less than that result in a
BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning multiple channels and
one or more channels are connected to a high impedance source, you may get better results by increasing the settling time. Keep
in mind that increasing the settling time reduces the maximum acquisition rate. You can set the time between A/D conversions with
the ADC Settling Time option in InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray argument values. You set
the setpoint criteria with the cbDaqSetSetpoints()/DaqSetSetpoints(). The number of channels set with the SETPOINT_ENABLE flag
must match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Page 48 of 700

must match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The aggregate size of the data
output buffer must be less than or equal to the size of the internal data output FIFO in the device. The FIFO holds 524288 samples.
This allows the data output buffer to be loaded into the device's internal output FIFO. Once the sample data are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't make any changes to the output buffer once
the output begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCKTRIG option to trigger a data output operation upon the start of the ADC clock.

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are treated as one 16-bit port.
These functions can only be used with FIRSTPORTA. You must configure both FIRSTPORTA and FIRSTPORTB for output using the
cbDConfigPort() function.

Synchronous scanning with multiple boards

You can operate up to four PCI-2500 Series boards synchronously by setting the direction of the A/D and D/A pacer pins (XAPCR
or XDPCR) in InstaCal.

On the board used to pace each device, set the pacer pin that you want to use (XAPCR or XDPCR) for Output. On the board(s) that
you want to synchronize with this board, set the pacer pin that you want to use (XAPCR or XDPCR) for Input.

You set the direction using the InstaCal configuration dialog's XAPCR Pin Direction and XDPCR Pin Direction settings. If you
have an older version of InstaCal, these settings might be labeled "ADC Clock Output" (set to Enabled to configure XAPCR for
output) or "DAC Clock Output" (set to Enabled to configure XDPCR for output).

Wire the pacer pin configured for output to each of the pacer input pins that you want to synchronize.

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/CConfigScan() Mode argument values
to set a specified counter to encoder mode, set the encoder measurement mode to X1, X2, or X4, and then set the count to be
latched either by the internal "start of scan" signal (default) or by the signal on the mapped channel.

You can optionally perform the following operations:

n Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When the mapped
channel is low, the counter is disabled but holds the count value.

n Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

n Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) channel. By default, "clear on Z" is
disabled, and the counter is not cleared.

Asynchronous reads

The CConfigScan() method's Bit32 counter mode option only affects counter resolution for asynchronous calls (CIn() and CIn32()),
and only when the counter is configured for StopAtMax.

This mode is recommended for use only with CIn32(). Using the Bit32 option with CIn() is not very useful, since the value returned
by CIn() is only 16 bits. The effect is that the value returned by CIn() rolls over 65,535 times before stopping.

Page 49 of 700

PCI-DAS1602, PCI-DAS1200 and PCI-DAS1000 Series
The PCI-DAS1602, PCI-DAS1200 and PCI-DAS1000 Series includes the following hardware:

n PCI-DAS1000, PCI-DAS1001, PCI-DAS1002

n PCI-DAS1200, PCI-DAS1200/JR

n PCI-DAS1602/12, PCI-DAS1602/16

The PCI-DAS1602, PCI-DAS1200 and PCI-DAS1000 Series support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO, BURSTMODE, EXTTRIGGER

HighChan

0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate

PCI-DAS1602/12, PCI-DAS1200, PCI-DAS1200/JR: Up to 330000

PCI-DAS1000: Up to 250000

PCI-DAS1602/16, PCI-DAS1002: Up to 200000

PCI-DAS1001: Up to 150000

Range

PCI-DAS1602/12, PCI-DAS1602/16, PCI-DAS1200, PCI-DAS1200JR, PCI-DAS1002, PCI-DAS1000:

indent2

PCI-DAS1001:

Analog Output
Excludes PCI-DAS1200/JR.

Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

For PCI-DAS1602 Series, the following argument values are also valid:

BACKGROUND, CONTINUOUS, EXTCLOCK

HighChan

0 to 1

Rate

PCI-DAS1602/16: Up to 100000

PCI-DAS1602/12: Up to 250000

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP1VOLTS (±1 volts) UNI1VOLTS (0 to 1 volts)

BIPPT1VOLTS (±0.1 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIPPT01VOLTS (±0.01 volts) UNIPT01VOLTS (0 to 0.01 volts)

Page 50 of 700

All others: ignored

Range

DataValue

0 to 4,095

For PCI-DAS1602/16, the following argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

BitNum

0 to 23 FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

4 to 6

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

Loadvalue

0 to 65,535

Triggering
PCI-DAS1602/12 and PCI-DAS1602/16 only

Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE,
GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold

PCI-DAS1602/16: 0 to 65,535

PCI-DAS1602/12: 0 to 4,095

Event Notification (PCI versions only)
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

Page 51 of 700

EventType

ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

PCI-DAS1602/12 and PCI-DAS1602/16 also support: ON_END_OF_AO_SCAN

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

The clock edge used to trigger acquisition for the external pacer may be rising or falling and is selectable using InstaCal.

For the PCI-DAS1602/16, the packet size is 256 samples. All others in this series have a packet size of 512 samples.

Analog input configuration:

The analog input mode is selectable via InstaCal for either 8 channel differential or 16 channel single-ended.

Triggering and gating - PCI-DAS1602 Series

Digital (TTL) and analog hardware triggering supported.

Analog thresholds are set relative to the ±10V range. For example: a threshold of 0 equates to -10 V. Thresholds of 65,535 and
4,095 correspond to +9.999695 and +9.995116 volts for the 16-bit and 12-bit boards, respectively.

When using analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable for other functions. If
the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE, TRIGBELOW) then DAC0 is available. If
the trigger function requires two references (GATEINWINDOW, GATE OUTWINDOW, GATENEGHYS, GATEPOSHYS), then neither
DAC is available for other functions.

Triggering and gating - PCI-DAS1200, PCI-DAS1000 Series

Digital (TTL) hardware triggering supported.

Concurrent operations - PCI-DAS1602 Series

Concurrent analog input and output scans supported. That is, PCI-DAS1602 Series boards allow for operations of analog input
functions (cbAInScan() and cbAPretrig(), or AInScan() and APretrig()), and analog output functions (cbAOutScan() or AOutScan())
to overlap without having to call cbStopBackground or StopBackground() between the start of input and output scans.

Pacing analog output - PCI-DAS1602 Series

Hardware pacing, external or internal clock supported.

The clock edge used to trigger analog output updates for the external pacer may be rising or falling and is selectable using
InstaCal.

Counters

The source for counter 4 may be internal or external and is selectable using InstaCal.

Although counters 4, 5 and 6 are programmable through the counter functions, the primary purpose for some of these counters
may conflict with these functions.

Potential conflicts:

n PCI-DAS1200, PCI-DAS1000 Series: Counters 5 and 6 are always available to the user. Counter 4 is used as a residual
counter by some of the analog input functions and methods.

n PCI-DAS1602 Series: Counters 5 and 6 are used as DAC pacers by some analog output functions and methods. Counter 4 is
used as a residual counter by some of the analog input functions and methods.

Page 52 of 700

PCI-DAS4020/12

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO*, EXTTRIGGER

*The packet size is based on the Options setting:

HighChan

3 max. When scanning multiple channels, the number of channels scanned must be even.

Rate

Up to 20000000. The minimum value for Rate is 1000. Note that contiguous memory is no longer required to achieve the
maximum sample rate.

Range

BIP5VOLTS (±5 volts)

BIP1VOLTS (±1 volts)

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

NONE

HighChan

1 max

Count

2

Rate

Ignored

Range

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

DataValue

0 to 4,095

Pacing

Software only

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

Options setting Packet size

BLOCKIO 2,048

Page 53 of 700

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

BitNum

0 to 23 for FIRSTPORTA

Counter I/O
Functions

No counter functions are supported.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE,
GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold

0 to 4,095

Event Notification
Functions

UL: cbDisableEvent(), cbEnableEvent()

UL for .NET: DisableEvent(), EnableEvent()

Types

ON_SCAN_ERROR, ON_PRETRIGGER*, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

*Note that the EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below the actual
number of pretrigger samples available in the buffer.

Hardware Considerations
EXTCLOCK

An approximation of the rate is used to determine the size of the packets to transfer from the board. When the EXTCLOCK option is
used, set the Rate argument to an approximate maximum value.

Pacing analog input

Hardware pacing, external or internal clock supported. The clock source can be set via InstaCal to either the "Trig/Ext Clk" BNC
input or the "A/D External Clock" input on the 40 pin connector (P3). Configuring for the BNC clock input will disable the clock input
(pin 10) on the 40-pin connector. When the EXTCLOCK option is used, the clock signal presented to the "Trig/Ext Clk" BNC input or
the "A/D External Clock" input is divided by 2 in one or two channel mode, and is divided by 4 in four channel mode. If both
EXTCLOCK and EXTTRIGGER are used, both the Trigger BNC and pin 10 on the 40-pin connector require signals. This is further
explained in the Triggering section below.

When using EXTCLOCK, the Rate argument is used by the Universal Library to calculate the appropriate chain size; set the Rate
argument to the approximate rate that the external clock will be pacing acquisitions.

When executing cbAInScan()/AInScan() with the EXTCLOCK option, the first three clock pulses are used to set up the PCI-
DAS4020/12, and the first sample is actually taken on the fourth clock pulse.

Triggering and gating

Digital (TTL) hardware triggering supported. The trigger source can be set via InstaCal to either the "Trig/Ext Clk" BNC input, the
"A/D Start Trigger" input on the 40-pin connector (P3) or the "A/D Stop Trigger" input on the 40-pin connector (P3). Use the A/D
Start Trigger input for the cbAInScan() and cbFileAInScan() functions, and AInScan() and FileAInScan() methods. For the
cbAPretrig() or cbFilePretrig() functions, and the APretrig() or FilePretrig() methods, use the A/D Stop Trigger input.

When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either clock or trigger) must be assigned to the Trig/Ext
Clk BNC input. The function of the Trigger BNC is determined by the setting of "Trig/Ext Clock Mode" in InstaCal. The Trig/Ext
Clock BNC can be set to function as either the trigger ("A/D Start Trigger") or the clock ("A/D External Clock"). Pin 10 on the 40-pin
connector then assumes the opposite function.

Analog hardware triggering supported. The trigger source can be set via InstaCal to any of the analog BNC inputs. cbSetTrigger
()/SetTrigger() is supported for TRIGBELOW and TRIGABOVE trigger types. Analog thresholds are set relative to the voltage range
set in the scan. For example, using a range of BIP1VOLTS during a cbAInScan()/AInScan(), (0) corresponds to -1V and 4,095
corresponds to +1V.

When using the cbAPretrig() function or the APretrig() method, use either the TRIGGER BNC or pin 8 of the 40 pin connector. To
use the BNC, set the InstaCal option "Trig/Ext Clock Mode" to A/D Stop Trigger; otherwise, if not set to this selection, pin 8 of the
40-pin connector is used.

Page 54 of 700

When using cbAPretrig()/APretrig() with EXTCLOCK, the two inputs are required. The TRIGGER BNC can be set to function as either
the pacer clock or the trigger. For the BNC to be setup as the pacer clock, set the InstaCal option "Trig/Ext Clk Mode" to A/D
External Clock. To use the BNC as the trigger, set this InstaCal option to A/D Stop Trigger. If neither of these selections are used,
the 40-pin connector will be used for both inputs; pin 8 will be input for A/D Stop Trigger, and pin 10 will be input for the pacer
clock signal.

Digital (TTL) hardware gating supported. The gate source can be set via InstaCal to either the "Trig/Ext Clk" BNC input or the "A/D
Pacer Gate" input on the 40-pin connector (P3).

Analog hardware gating supported. Analog thresholds are set relative to the voltage range set in the scan. For example, using a
range of BIP1VOLTS during a cbAInScan()/AInScan(), (0) corresponds to (–1V) and 4,095 corresponds to +1V.

The gate must be in the active (enabled) state before starting an acquisition.

For EXTCLOCK or EXTTRIGGER (digital triggering) using the BNC connector, InstaCal provides a configuration setting for
thresholds. The selections available are either 0 volts (V) or 2.5 volts (V). Use 0 volts if the incoming signal is BIPOLAR. Use the 2.5
volts option if the signal is UNIPOLAR, such as standard TTL.

When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either clock or trigger) must be assigned to the Trig/Ext
Clk BNC input.

Sample Size Requirements

With the following functions and methods, be aware of packet size, and adjust the number of samples acquired accordingly:

n cbAPretrig(), APretrig()

n cbAInScan(), AInScan() with the CONTINUOUS scan option

These functions and methods use a circular buffer. Align the data by packets in the buffer. The total number of samples must be
greater than one packet , and must be an integer multiple of packet size; refer to the following table. The minimum value for
contiguous memory is calculated as:

(# of KB) = {(# of samples) ÷ 512}

For example, to run cbAInScan() on one channel at 18 MHz with the CONTINUOUS option set, the minimum sample size from the
table below is 262,144, since the Rate is between 14 and 20 MHz. The minimum contiguous memory is then calculated as:

(262,144 ÷ 512) = 512 KB

of
channels

Rate in MHz Packet size in
samples

Minimum sample size
(2 packets)

1 20 ≥ Rate ≥ 13.3 131,072 262,144

13.3 > Rate > 4 65,536 131,072

4 ≥ Rate ≥ 2 4,096 8,192

2 > Rate 2,048 4,096

2 20 ≥ Rate ≥ 6.6 131,072 262,144

6.6 > Rate ≥ 2 65,536 131,072

2 > Rate ≥ 1 4,096 8,192

1 > Rate 2,048 4,096

4 10 ≥ Rate ≥ 3.3 131,072 262,144

3.3 > Rate ≥ 1 65,536 131,072

1 > Rate ≥ 0.5 4,096 8,192

0.5 > Rate 2,048 4,096

Page 55 of 700

PCI-DAS6000 Series
The PCI-DAS6000 Series includes the following hardware:

n PCI-DAS6013, PCI-DAS6014

n PCI-DAS6023, PCI-DAS6025

n PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6034, PCI-DAS6035, PCI-DAS6036

n PCI-DAS6040

n PCI-DAS6052

n PCI-DAS6070, PCI-DAS6071

The PCI-DAS6000 Series support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig(), ALoadQueue()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO, BURSTMODE, EXTTRIGGER

Packet size is 512 for all PCI-6000 Series in most configurations. The exceptions are shown below.

HighChan

0 to 15 in single-ended mode. 0 to 7 in differential mode.

For the PCI-DAS6031, PCI-DAS6033 and PCI-DAS6071, the following additional argument values are also valid:

16 to 63 in single-ended mode, 8 to 31 in differential mode

Rate

PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033:

Up to 100,000

PCI-DAS6013, PCI-DAS6014, PCI-DAS6023, PCI-DAS6025, PCI-DAS6034, PCI-DAS6035, PCI-DAS6036:

Up to 200,000

PCI-DAS6040:

Single-channel: Up to 500,000

Multi-channel: Up to 250,000

PCI-DAS6052:

Up to 333,000

PCI-DAS6070, PCI-DAS6071:

Up to 1,250,000

Range

PCI-DAS6013*, PCI-DAS6014*, PCI-DAS6023, PCI-DAS6025, PCI-DAS6034*, PCI-DAS6035*, and PCI-DAS6036*:

* Note: Mixing high gains (BipPt05Volts, BipPt5Volts) with low gains (Bip5Volts, Bip10Volts) within an AInScan() function is not
supported.

Device Aggregate rate Packet size

PCI-DAS6040

PCI-DAS6070

PCI-DAS6071

400 kHz to 800 kHz 1,024

>800 kHz 2,048

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

BIPPT5VOLTS (±0.5 volts)

BIPPT05VOLTS (±0.05 volts)

Page 56 of 700

PCI-DAS6030, PCI-DAS6031, PCI-DAS6032 and PCI-DAS6033:

PCI-DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DA6071:

Analog Output
PCI-DAS6014, PCI-DAS6025, PCI-DAS6030, PCI-DAS6031, PCI-DAS6035, PCI-DAS6036, PCI-DAS6040, PCI-DAS6052, PCI-
DAS6070 and PCI-DAS6071 only.

Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS, BACKGROUND, EXTCLOCK, CONTINUOUS (packet size = 512)

HighChan

0 to 1

Rate

PCI-DAS6014, PCI-DAS6025, PCI-DAS6035, PCI-DAS6036:

10 kHz

PCI-DAS6030, PCI-DAS6031:

100 kHz

PCI-DAS6040:

Single-channel: 1.0 MHz

Multi-channel: 500 kHz

PCI-DAS6052:

333 kHz

PCI-DAS6070, PCI-DAS6071:

1.0 MHz

Range

PCI-DAS6014, PCI-DAS6025, PCI-DAS6035 and PCI-DAS6036:

Ignored - Not programmable; fixed at BIP10VOLTS (±10 volts)

PCI-DAS6030, PCI-DAS6031, PCI-DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071:

BIP10VOLTS (±10 volts)

UNI10VOLTS (0 to 10 volts)

DataValue

0 to 4,095

For the PCI-DAS6014, PCI-DAS6030, PCI-DAS6031, PCI-DAS6036 and PCI-DAS6052, the following additional argument value is
valid:

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2VOLTS (±2 volts) UNI2VOLTS (0 to 2 volts)

BIP1VOLTS (±1 volt) UNI1VOLTS (0 to 1 volt)

BIPPT5VOLTS (±0.5 volts) UNIPT5VOLTS (0 to 0.5 volts)

BIPPT2VOLTS (±0.2 volts) UNIPT2VOLTS (0 to 0.2 volts)

BIPPT1VOLTS (±0.1 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2VOLTS (0 to 2 volts)

BIP1VOLTS (±1 volt) UNI1VOLTS (0 to 1 volt)

BIPPT5VOLTS (±0.5 volts) UNIPT5VOLTS (0 to 0.5 volts)

BIPPT25VOLTS (±0.25 volts) UNIPT2VOLTS (0 to 0.2 volts)

BIPPT1VOLTS (±0.1 volts) UNIPT1VOLTS (0 to 0.1 volts)

BIPPT05VOLTS (±0.05 volts)

Page 57 of 700

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigBit(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigBit(), DConfigPort(), GetDInMask(), GetDOutMask()

PortNum

AUXPORT*

DataValue

0 to 255

BitNum

0 to 7

*AUXPORT is bitwise configurable for these boards, and must be configured using cbDConfigBit()/DConfigBit() or cbDConfigPort
()/DConfigPort() before use.

PCI-DAS6025:

The PCI-DAS6025 is designed with the 82C55 chip, and the following additional ports are also available on this board. Click
here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for hardware
designed with the 82C55 chip or 82C55 emulation.

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0-15 for FIRSTPORTCL or FIRSTPORTCH

0-255 for FIRSTPORTA or FIRSTPORTB

BitNum

0-23 for FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 2

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

RegNum

LOADREG1, LOADREG2

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

For the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6040, PCI-DAS6052, PCI-DAS6070, and PCI-
DAS6071, the following additional argument values are valid:

TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Page 58 of 700

Threshold

PCI-DAS6040, PCI-DAS6070 and PCI-DAS6071:

0 to 255

PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6052:

0 to 4,095

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_SCAN_ERROR, ON_PRETRIGGER*, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN**

*Note that the EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below the actual
number of pretrigger samples available in the buffer.

**Not supported for PCI-DAS6013, PCI-DAS6023, PCI-DAS6032, PCI-DAS6033 and PCI-DAS6034.

Hardware Considerations
Advanced timing and control configuration

You can access the advanced features provided by the Auxiliary Input/Output and DAQ-Sync interfaces through the board
configuration page of InstaCal and the UL functions cbGetSignal() and cbSelectSignal()*, or the UL for .NET methods GetSignal()
and SelectSignal()*.

ADC_TB_SRC and DAC_TB_SRC are intended to synchronize the timebase of the analog input and output pacers across two or
more boards. Internal calculations of sampling and update rates assume that the external timebase has the same frequency as its
internal clock. Adjust sample rates to compensate for differences in clock frequencies.

For example, if the external timebase has a frequency of 10 MHz on a board that has an internal clock frequency of 40 MHz, the
scan function samples or updates at a rate of about 1/4 the rate entered. However, while compensating for differences in the
external timebase and internal clock frequency, if the rate entered results in an invalid pacer count, the function returns a
BADRATE error.

*Although the PCI-DAS6013 and PCI-DAS6014 both support cbSelectSignal/SelectSignal(), these boards do not support DAQ-Sync.
Therefore:

n Using the DS_CONNECT option with the Connection argument for the cbSelectSignal() function generates a BADCONNECTION
error.

n Using the DsConnector option with the connectionPin parameter for the SelectSignal() method generates a BADCONNECTION
error.

Pacing analog input

Hardware pacing, external or internal clock supported. The clock edge is selectable through InstaCal and cbSelectSignal
()/SelectSignal().

When using EXTCLOCK and BURSTMODE together, do not use the A/D External Pacer to supply the clock. Use the A/D Start Trigger
input instead. Since BURSTMODE is actually paced by the internal burst clock, specifying EXTCLOCK when using BURSTMODE is
equivalent to specifying EXTTRIGGER.

Except for SINGLEIO transfers, CONTINUOUS mode scans require enough memory for two packets, or 1,024 samples. The packet
size is 512 samples.

Analog input configuration

n 16-channel boards: The analog input mode may be 8 channel differential, 16 channel single-ended referenced to ground,
or 16 channel single-ended non-referenced and may be selected using InstaCal.

n 64-channel boards: The analog input mode may be 32 channel differential, 64 channel single-ended referenced to ground,
or 64 channel single-ended non-referenced and may be selected using InstaCal.

Triggering and Gating

Digital (TTL) hardware triggering is supported for the entire series. cbSetTrigger()/SetTrigger() is supported for GATEHIGH,
GATELOW, TRIGPOSEDGE, TRIGNEGEDGE.

The A/D PACER GATE input is used for gating with GATEHIGH or GATELOW. The A/D START TRIGGER input is used for triggering
with TRIGPOSEDGE and TRIGNEGEDGE.

When using cbAPretrig()/APretrig() or cbFilePretrig()/FilePretrig(), use the A/D Stop Trigger input to supply the trigger.

For the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-
DAS6071: Analog hardware triggering and gating are supported. cbSetTrigger()/SetTrigger() is supported for TRIGABOVE,
TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW.

Page 59 of 700

The analog trigger source may be set via InstaCal as either the ATRIG input (pin #43 on the I/O connector), or as the first channel
in the scan (CH# IN). To use the ATRIG input as the trigger source, set the InstaCal Analog input Trig Source to Analog Trigger Pin.
To use the first scanned channel as the trigger source, set InstaCal to 1st Chan in the Scan.

Note: When using analog gating features, we strongly recommend setting the ATRIG input as the trigger source.

Using the ATRIG input as the trigger input

When the trigger source is set to Analog Trigger Pin, analog thresholds are set relative to the ±10V range.

Using the "First Channel in Scan" as the trigger input

When the trigger source is set to 1st Chan in Scan, the range used for the thresholds is the same as the A/D channel. When using
analog gating features with 1st Channel in Scan as the trigger source, be careful to only scan a single channel.

Calculating analog trigger thresholds

Analog thresholds for the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, and PCI-DAS6052 are 12-bit values. For
example: a threshold value of 0 equates to –10 volts, while a threshold value of 4,095 equates to +9.9976 volts. Analog thresholds
for the PCI-DAS6040, PCI-DAS6070, and PCI-DAS6071 are 8-bit values. For example: a threshold value of 0 equates to –10 volts,
while a threshold value of 255 equates to +9.92188 volts.

You need to manually calculate trigger threshold values for these PCI-DAS6000 Series boards. For information on calculating
thresholds, refer to the Notes section in the cbSetTrigger()" or SetTrigger() topics in the Universal Library Function Reference.

Channel-Gain Queue

When using cbALoadQueue()/ALoadQueue(), up to 8k elements may be loaded into the queue.

For PCI-DAS6013, PCI-DAS6014, PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036: Mixing high gains (BipPt05Volts, BipPt5Volts)
with low gains (Bip5Volts, Bip10Volts) within an AInScan() function is not supported.

Analog Output

Using cbAOutScan() / AOutScan() in CONTINUOUS mode requires a minimum sample size of two packets. A packet is 512 samples.

Digital I/O Configuration

AUXPORT is bitwise configurable for these boards, and must be configured using cbDConfigBit() or cbDConfigPort()/DConfigBit() or
DConfigPort() before use.

Counters

The source for counters 1 and 2 may be internal 10 MHz, internal 100 kHz, or external, and is selectable using InstaCal.

Page 60 of 700

PCI-DAS64/M1/16, PCI-DAS64/M2/16
The PCI-DAS64/M1/16 and PCI-DAS64/M2/16 support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig(), ALoadQueue()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO, BURSTMODE, EXTTRIGGER

HighChan

0 to 63 in single-ended mode; 0 to 31 in differential mode.

Rate

PCI-DAS64/M2/16:

Single-channel, Single-range:Up to 2000000

Multi-channel, Single-range: Up to 1500000

Channel/Gain Queue: Up to 750000

PCI-DAS64/M1/16:

Single-channel, Single-range: Up to 1000000

Multi-channel, Single-range: Up to 1000000

Channel/Gain Queue: Up to 750000

Range

When using cbALoadQueue() or ALoadQueue(), up to 8k elements may be loaded into the queue.

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

HighChan

1 max

Count

2

Rate

up to 100000

Range

Ignored - Not programmable; fixed at BIP5VOLTS (±5 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volt) UNI1PT25VOLTS (0 to 1.25 volt)

BIPPT625VOLTS (±0.625 volts)

Page 61 of 700

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCH, FIRSTPORTCL, AUXPORT*

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

0 to 15 for FIRSTPORTCL or FIRSTPORTCH or AUXPORT*

BitNum

0 to 23 for FIRSTPORTA

0 to 3 for AUXPORT*

*AUXPORT is not configurable for these boards.

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

Loadvalue

0 to 65,535

Refer to "16-bit values using a signed integer data type" for information on 16-bit values using unsigned integers.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE,
GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold

0 to 65,535

Refer to "16-bit values using a signed integer data type" for information on 16-bit values using unsigned integers.

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_SCAN_ERROR, ON_PRETRIGGER*, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN

Hardware Considerations
Pacing analog input

n Hardware pacing, external or internal clock supported.

n The clock edge used to trigger acquisition for the external pacer may be rising or falling and is selectable using InstaCal.

n The packet size is 512 samples.

Options

Except for SINGLEIO transfers, CONTINUOUS mode scans require enough memory for half FIFO of memory.

Analog Input configuration

The analog input mode may be 32 channel differential or 64 channel single-ended and may be selected using InstaCal.

Triggering and gating

Digital (TTL) hardware triggering supported. Use the A/D Start Trigger Input (pin 55) for triggering and gating with cbAInScan() and

Page 62 of 700

cbFileAInScan() / AInScan() and FileAInScan(). Use the A/D Stop Trigger Input (pin 54) for cbAPretrig() and cbFilePretrig() /
APretrig() and FilePretrig().

Analog hardware triggering and gating are supported. cbSetTrigger() / SetTrigger() are supported for TRIGABOVE, TRIGBELOW,
GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW. Use the Analog Trigger Input (pin
56) for analog triggering. Analog thresholds are set relative to the ±5V range. For example: a threshold of 0 equates to –5 volts, a
threshold of 65,535 equates to +4.999847 volts.

When running BURSTMODE scans with the EXTCLOCK option for cbAInScan() / AInScan(), connect the clock source to the A/D
Start Trigger Input (pin 55). Since the trigger input is used as the clock signal, the EXTTRIGGER option cannot be combined with
EXTCLOCK BURSTMODE scans. Since BURSTMODE is actually paced by the internal burst clock, specifying EXTCLOCK when using
BURSTMODE is equivalent to specifying EXTTRIGGER.

When using the analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable for other
functions. If the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE, TRIGBELOW) then DAC0 is
available. If the trigger function requires two references (GATEINWINDOW, GATE OUTWINDOW, GATENEGHYS, GATEPOSHYS) then
neither DAC is available for other functions.

Caution! Gating should NOT be used with BURSTMODE scans.

Pacing analog output

Hardware pacing, external or internal clock supported.

The clock edge used to trigger analog output updates for the external pacer may be rising or falling and is selectable using
InstaCal.

EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below the actual number of pretrigger
samples available in the buffer.

These boards support concurrent analog input and output scans. That is, these boards allow for operations of analog input functions
and methods (cbAInScan() and cbAPretrig() / AInScan() and APretrig()) and analog output functions and methods (cbAOutScan() /
AOutScan()) to overlap without having to call cbStopBackground()/ StopBackground() between the start of input and output scans.

Output pin 59 configuration

Pin 59 may be configured as the DAC Pacer Output, SSH Output with hold configured as high level or SSH Output with hold
configured as low level. These options are selected via InstaCal

Page 63 of 700

PCI-DAS6402/16, CIO-DAS6402 Series, and PCI-DAS3202/16
The CIO-DAS6402 Series includes the following hardware:

n CIO-DAS6402/12, CIO-DAS6402/16

This topic also includes the PCI-DAS6402/16 and PCI-DAS3202/16.

The PCI-DAS6402/16, CIO-DAS6402 Series, and PCI-DAS3202/16 support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig()

For PCI-Versions, the following function also applies:

cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

For PCI-Versions, the following method also applies:

ALoadQueue()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO*, BURSTMODE, EXTTRIGGER

*Packet size: 512 for both CIO- and PCI- boards.

HighChan

PCI-DAS6402 and CIO-DAS6402:

0 to 63 in single-ended mode, 0 to 31 in differential mode

PCI-DAS3202/16:

0 to 31

Rate

CIO-DAS6402/12:

Up t0 33000 kHz

PCI-DAS3202/16 and PCI-DAS6402/16:

Up to 200000

CIO-DAS6402/16:

Up to 100000

Range

PCI versions, CIO-DAS6402/12:

CIO-DAS6402/16:

Ignored - not programmable; fixed at one of six switch-selectable ranges:

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volt) UNI1PT25VOLTS (0 to 1.25 volt)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

Page 64 of 700

Options

SIMULTANEOUS

For PCI versions, the following argument values are also valid:

BACKGROUND, EXTCLOCK, CONTINUOUS

HighChan

1 max

Rate

CIO versions: Ignored

PCI versions: Up to 100000

Range

PCI versions, CIO-DAS6402/12:

CIO-DAS6402/16:

Ignored - not programmable; fixed at one of six switch-selectable ranges:

Data Value

0 to 4,095

For PCI-DAS6402/16, PCI-DAS3202/16, CIO-DAS6402/16, the following additional argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut().

For PCI- Versions, the following additional function is also valid:

cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

For PCI- Versions, the following additional method is also valid:

DConfigPort()

PortNum

AUXPORT*

DataValue

0 to 15

BitNum

0 to 3

*AUXPORT is not configurable for these boards.

PCI versions:

For PCI-versions, the following additional argument values are also valid. Click here to display a table of the port numbers and
corresponding bit numbers that are set by the digital I/O functions for hardware designed with the 82C55 chip or 82C55
emulation.

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0-15 for FIRSTPORTCL or FIRSTPORTCH

0 -255 for FIRSTPORTA or FIRSTPORTB

BitNum

0-23 for FIRSTPORTA

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

Page 65 of 700

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

Loadvalue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

For PCI- versions, the following additional argument values are also valid:

TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold

0 to 4,095

For /16 versions the following argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Event Notification (PCI- version only)
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event Types

ON_SCAN_ERROR, ON_PRETRIGGER*, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN

Hardware considerations
Pacing Analog input

Hardware pacing, external or internal clock supported.

Triggering and gating

Digital (TTL) hardware triggering supported. The PCI version also supports analog hardware triggering. Analog thresholds are set
relative to the ±10V range. For example, a threshold of 0 equates to –10 volts (V), and a threshold of 65,535 equates to +9.999695
volts.

When using the cbAPretrig() or cbFilePretrig() functions or the APretrig() or FilePretrig() methods on the PCI-DAS6402/16 or PCI
DAS3202/16, use the A/D Stop Trigger In (pin 47) input to supply the trigger.

When using both EXTCLOCK and BURSTMODE on the PCI-DAS6402/16 or PCI-DAS3202/16, use the A/D Start Trigger In (pin 45)
input to supply the clock and not the A/D External Pacer (pin 42). Since BURSTMODE is actually paced by the internal burst clock,
specifying EXTCLOCK when using BURSTMODE is equivalent to specifying EXTTRIGGER.

When using analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable for other functions. If
the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE, TRIGBELOW) then DAC0 is available. If
the trigger function requires two references (GATEINWINDOW, GATE OUTWINDOW, GATENEGHYS, GATEPOSHYS), then neither
DAC is available for other functions.

Caution! Gating should NOT be used with BURSTMODE scans.

Gain queue

When using cbALoadQueue() or ALoadQueue() with the PCI version, up to 8k elements may be loaded into the queue.

Pacing analog output

Page 66 of 700

n CIO Version: Software only

n PCI Version: Hardware pacing, external or internal clock supported.

Output pin 49 configuration

On the PCI version, pin 49 may be configured as the DAC Pacer Output, SSH Output with hold configured as high level or SSH
Output with hold configured as low level. These options are selected via InstaCal.

Event Notification

The PCI- version of these boards support concurrent analog input and output scans. That is, these boards allow for operations of
analog input functions cbAInScan() and cbAPretrig() or methods AInScan() and APretrig(), and the analog output function
cbAOutScan() or method AOutScan() to overlap without having to call cbStopBackground or StopBackground() between the start of
input and output scans.

Page 67 of 700

PCIe-DAS1602/16
The PCIe-DAS1602/16 supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), FileAInScan(), ATrig()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO, BURSTMODE, EXTTRIGGER

Mode

Single-ended and differential

HighChan

0 to 15 in single-ended mode

0 to 7 in differential mode

Rate

Up to 100 kS/s

Range

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

Ignored

HighChan

1 max

Count

2

Rate

Ignored

Range

Ignored - not programmable; fixed at one of four jumper-selectable ranges:

DataValue

0 to 4,095

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

Page 68 of 700

AUXPORT*, FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 15 for FIRSTPORTCL, FIRSTPORTCH or AUXPORT*

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum

0 to 23 for FIRSTPORTA

0 to 3 for AUXPORT*

* AUXPORT is not configurable.

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Threshold

0 to 65,535

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

Analog input ranges

The A/D ranges are configured with a combination of a switch (Unipolar / Bipolar) and a programmable gain code. The state of this
switch is set in the configuration file using InstaCal. After the UNI/BIP switch setting is selected, only matching ranges can be used
in Universal Library programs.

Triggering and gating

Digital (TTL) hardware triggering supported.

Pacing analog output

Software pacing only

Page 69 of 700

PCIM-DAS1602/16, PCIM-DAS16JR/16
The PCIM-DAS1602/16 and PCIM-DAS16JR/16 support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), FileAInScan(), ATrig()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO, BURSTMODE, EXTTRIGGER

HighChan

0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate

Up to 100000

Range

Analog Output (PCIM-DAS1602/16 only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

Ignored

HighChan

1 max

Count

2

Rate

Ignored

Range

Ignored - not programmable; fixed at one of four jumper-selectable ranges:

DataValue

0 to 4,095

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

The PCIM-DAS1602/16 also supports:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

Page 70 of 700

PortNum

AUXPORT*

The PCIM-DAS1602/16 also supports:

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 15 for FIRSTPORTCL, FIRSTPORTCH or AUXPORT*

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum

0 to 23 for FIRSTPORTA

0 to 3 for AUXPORT*

* AUXPORT is not configurable for these boards.

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Threshold

0 to 65,535

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

Analog input ranges

For the PCIM-DAS1602/16, the A/D ranges are configured with a combination of a switch (Unipolar / Bipolar) and a programmable
gain code. The state of this switch is set in the configuration file using InstaCal. After the UNI/BIP switch setting is selected, only
matching ranges can be used in Universal Library programs.

Triggering and gating

Digital (TTL) hardware triggering supported.

Pacing analog output

Software pacing only

Page 71 of 700

PCM-DAS08
The PCM-DAS08 supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, NOTODINTS, EXTTRIGGER, NOCALIBRATEDATA

For information on real time software calibration, refer to the note listed in the function cbACalibrateData()/ACalibrateData().

HighChan

7

Rate

25000 max. For other restrictions, refer to the PCM-DAS08 User's Manual and the Maximizing sampling rates discussion below.)

Range

This board does not have programmable gain, so the Range argument to analog input functions is ignored.

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

AUXPORT

DataValue

0 to 7

BitNum

0 to 2

Hardware Considerations
Pacing analog input

Internal or external clock

Maximizing sampling rates

When paced by the onboard clock, the rate is set by an onboard oscillator running at 25 kilohertz (kHz). The oscillator output may
be divided by 2, 4 or 8, resulting in rates of 12.5 kHz, 6.25 kHz, or 3.13 kHz. When pacing a single channel from the onboard clock,
these are the four choices of rate available. When a rate is requested within the range of 3000 to 25000, the library selects the
closest of the four available rates.

Scanning more than one channel has the effect of dividing the rate requested among the number of channels requested. Therefore,
the maximum rate when scanning eight channels is 3130 (25000 divided by eight channels).

Page 72 of 700

PCM-DAS16 Series and PC-CARD-DAS16 Series
The PCM-DAS16 Series and PC-CARD-DAS16 Series includes the following hardware:

n PCM-DAS16D/12

n PPCM-DAS16D/12AO

n PPCM-DAS16D/16

n PPCM-DAS16S/12

n PPCM-DAS16S/16

n PPCM-DAS16S/330

The PCM-DAS16 Series and PC-CARD-DAS16 Series includes the following hardware:

n PC-CARD-DAS16/12

n PC-CARD-DAS16/12AO

n PC-CARD-DAS16/16

n PC-CARD-DAS16/16AO

n PC-CARD-DAS16/330

The PCM-DAS16 Series and PC-CARD-DAS16 Series support the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO, EXTTRIGGER, NOTODINTS,
NOCALIBRATEDATA

The PC-CARD-DAS16 series also supports BURSTMODE.

HighChan

DAS16/S and DAS16/330: 0 to 15

DAS16/D: 0 to 7

Rate

DAS16/330: 330000

PC-CARD-DAS16/16: 200000

All others in this series: 100000

Range

DAS16x/12:

DAS16x/16:

DAS16/330:

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

BIP1PT25VOLTS (±1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

BIP2PT5VOLTS (±2.5 volts)

BIP1PT25VOLTS (±1.25 volts)

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

Page 73 of 700

Analog Output
PCM-DAS16D/12AO and PC-CARD-DAS16/xxAO only.

Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS (PCM version only)

HighChan

1 max

Rate

Ignored

Count

2 max

Range

PC-CARD-DAS16/12AO and PCM-DAS16D/12AO:

All others in this series:

Ignored - not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 4,095

For PC-CARD-DAS16/16AO, the following argument values is also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Software pacing only

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

PC-CARD-DAS16/xxAO:

FIRSTPORTA

All others in this series:

FIRSTPORTA, FIRSTPORTB

DataValue

PC-CARD-DAS16/xxAO:

0 to 15 for FIRSTPORTA

All others in this series

0 to 15 for FIRSTPORTA or FIRSTPORTB

BitNum

PC-CARD-DAS16/xxAO:

0 to 3 for FIRSTPORTA

All others in this series:

0 to 7 for FIRSTPORTA

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

Page 74 of 700

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

RegNum

LOADREG1, LOADREG2, LOADREG3

Triggering
PC-CARD only

Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

All at External Trigger input.

Hardware considerations
Pacing analog input

n Internal or external clock

n The packet size is 256 samples for PCM boards; 2,048 samples for PC-CARD boards.

n For CONTINUOUS mode scans, the sample count should be at least one packet size (>=2,048 samples) for the PC-CARD
boards.

These cards do not have residual counters, so BLOCKIO transfers must acquire integer multiples of the packet size before
completing the scan. This can be lengthy for the PC-CARDs which must acquire 2,048 samples between interrupts for BLOCKIO
transfers. In general, it is best to allow the library to determine the best transfer mode (SINGLEIO vs. BLOCKIO) for these boards.

Triggering and gating

n External digital (TTL) polled gate trigger supported on PCM versions. Refer to the "Trigger support" section of the
"Introduction: Analog input Boards" topic.

n External digital (TTL) hardware trigger supported on PC-CARD versions.

Page 75 of 700

PPIO-AI08
The PPIO-AI08 supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Options

CONVERTDATA

HighChan

0 to 7

Rate

Ignored

Range

This board does not have programmable gain, so the Range argument to analog input functions is ignored.

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

AUXPORT*

DataValue

0 to 15 using cbDOut() or DOut()

0 to 7 using cbDIn() or DIn()

BitNum

0 to 3 using cbDBitOut() or DBitOut()

0 to 2 using cbDBitIn() or DBitIn()

* AUXPORT is not configurable for this board.

Hardware Considerations
Pacing analog input

Software pacing only

Page 76 of 700

USB-1208FS and USB-1408FS
The USB-1208FS and USB-1408FS supports the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Options

BACKGROUND, BLOCKIO*, CONTINUOUS, EXTCLOCK, EXTTRIGGER, NOCALIBRATEDATA, RETRIGMODE**, SINGLEIO

* The USB-1208FS packet size is based on the Options setting:

BLOCKIO: 31

SINGLEIO: 1

** RETRIGMODE can only be used with cbAInScan()/AInScan().

Mode

Single-ended and differential

HighChan

0 to 7 in single-ended mode

0 to 3 in differential mode

Count

In CONTINUOUS mode, Count must be an integer multiple of the packet size.

Rate

USB-1208FS: 50 kHz maximum for BLOCKIO mode.

USB-1408FS: 48 kHz maximum for BLOCKIO mode.

The throughput depends on the system being used. Most systems can achieve 40 kHz aggregate.

When using cbAInScan()/AInScan(), the minimum sample rate is 1 Hz.

Range

Single-ended:

Differential:

Pacing

Hardware pacing, internal clock supported.

External clock supported via the SYNC pin.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE

Both devices support external digital (TTL) hardware triggering. Use the TRIG_IN input for the external trigger signal.

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

BIP10VOLTS (±10 volts)

BIP20VOLTS (±20 volts) BIP2PT5VOLTS (±2.5 volts)

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1PT25VOLTS (±1.25 volts)

BIP4VOLTS (±4 volts) BIP1VOLTS (±1 volts)

Page 77 of 700

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS

The number of samples (Count) in a CONTINUOUS scan must be an integer multiple of the packet size (32).

HighChan

0 to 1

Count

Count must be an integer multiple of the number of channels in the scan.

In a CONTINUOUS scan, Count must be an integer multiple of the packet size (32).

Rate

Up to 10 kHz maximum for a single channel

Up to 5 kHz maximum for two channels

Range

Ignored - not programmable; fixed at UNI4VOLTS (0 to 4 V, nominal. Actual range is 0 to 4.096 V.)

DataValue

0 to 4,095

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration Functions

UL: cbDConfigPort()

UL for .NET:DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

Port I/O Functions

UL: cbDIn(), cbDOut()

UL for .NET:DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 15 for on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn()/CIn() are valid for use with this counter, cbCIn32()/CIn32() may be more appropriate, since the values
returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Page 78 of 700

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad()/CLoad() and cbCLoad32()/CLoad32() are only used to reset the counter for this device to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards section apply when using cbCIn() or CIn()
for values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Event notification
Functions

UL: cbEnableEvent(),cbDisableEvent()

UL for .NET: EnableEvent(),DisableEvent()

Event types

ON_SCAN_ERROR (analog input and analog output), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer, use this function to
identify a particular device by making its LED blink.

Hardware considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. The Universal Library cannot always detect this data loss.

Most systems can sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1 kS/s aggregate in SINGLEIO mode.

Channel-gain queue

When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to 16 elements. The queue accepts any combination
of valid channels and gains in each element.

EXTCLOCK

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To configure the pin for
pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test or calibrate the
device with InstaCal, as the SYNC pin drives the output.

Repetitive trigger events

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with
cbSetConfig() to set the A/D trigger count, and the ConfigItem option BIDACTRIGCOUNT to set the D/A trigger count.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and 2,047). However, the
Universal Library maps this data to 12-bit values, so the range of data is no different from the differential configuration.
Consequently, the data returned contains only even numbers between 0 and 4,094 when the NOCALIBRATEDATA option is used.

Continuous scans

When running cbAInScan()/ AInScan() with the CONTINUOUS option, consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, set the total number of samples to be an integer multiple of the
packet size and the number of channels in the scan.

Concurrent operations

The USB-1208FS and USB-1408FS supports these concurrent operations:

UL function/method Can be run with:

cbAOutScan() / AOutScan()
(BACKGROUND mode)

n cbDOut() / DOut()

n cbCLoad() / CLoad()

Page 79 of 700

Analog output

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated simultaneously.

n cbCLoad32() / CLoad32()

cbAInScan() / AInScan()
(BACKGROUND mode)

n cbAOut() / AOut()

n cbDIn() / DIn()

n cbDBitIn() / DBitIn()

n cbDOut() / DOut()

n cbDBitOut() / DBitOut()

n cbDConfigPort() / DConfigPort()

n cbCIn() / CIn()

n cbCIn32() / CIn32()

n cbCLoad() / CLoad()

n cbCLoad32() / CLoad32()

Page 80 of 700

USB-1208FS-Plus and USB-1408FS-Plus
The USB-1208FS-Plus and USB-1408FS-Plus support the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, EXTCLOCK, EXTTRIGGER, HIGHRESRATE, NOCALIBRATEDATA, RETRIGMODE*,
SINGLEIO

* RETRIGMODE can only be used with cbAInScan()/AInScan().

Mode

Single-ended and differential

HighChan

0 to 7 in single-ended mode

0 to 3 in differential mode

Count

Count must be an integer multiple of the number of channels in the scan.

Packet size

Rate dependent. The default packet size is 32 samples. At higher rates, the packet size increases by a multiple of 32.

Rate

USB-1208FS: 0.014 Hz to 51.993 kHz for BLOCKIO mode.

USB-1408FS: 0.14 Hz to 48 kHz maximum for BLOCKIO mode.

The throughput depends on the system being used. Most systems can achieve 40 kHz aggregate.

When using cbAInScan()/AInScan(), the minimum sample rate is 1 Hz.

Range

Single-ended:

Differential:

Pacing

Hardware pacing, internal clock supported.

External clock supported via the SYNC pin.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE, TRIGNEGEDGE, TRIGHIGH, TRIGLOW

Both devices support external digital (TTL) hardware triggering. Use the TRIG_IN input for the external trigger signal.

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

BIP10VOLTS (±10 volts)

BIP20VOLTS (±20 volts) BIP2PT5VOLTS (±2.5 volts)

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1PT25VOLTS (±1.25 volts)

BIP4VOLTS (±4 volts) BIP1VOLTS (±1 volts)

Page 81 of 700

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS

HighChan

0 to 1

Count

Count must be an integer multiple of the number of channels in the scan.

Packet size

Rate dependent.

Rate

Up to 10 kHz maximum for a single channel

Up to 5 kHz maximum for two channels

Range

Ignored - not programmable; fixed at UNI5VOLTS (0 to 5 V, nominal. Actual range is 0 to 4.096 V.)

DataValue

0 to 4,095

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration Functions

UL: cbDConfigPort()

UL for .NET:DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

Port I/O Functions

UL: cbDIn(), cbDOut()

UL for .NET:DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 15 for on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn()/CIn() are valid for use with this counter, cbCIn32()/CIn32() may be more appropriate, since the values
returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Page 82 of 700

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad()/CLoad() and cbCLoad32()/CLoad32() are only used to reset the counter for this device to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards section apply when using cbCIn() or CIn()
for values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Event notification
Functions

UL: cbEnableEvent(),cbDisableEvent()

UL for .NET: EnableEvent(),DisableEvent()

Event types

ON_SCAN_ERROR (analog input and analog output), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer, use this function to
identify a particular device by making its LED blink.

Hardware considerations
Channel-gain queue

The channel-gain queue is limited to 8 elements in single-eneded mode, and 4 elements in differential mode. The channels specified
must be unique and listed in increasing order. The gains may be any valid value.

Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. The Universal Library cannot always detect this data loss.

Most systems can sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1 kS/s aggregate in SINGLEIO mode.

HIGHRESRATE

Specify the HIGHRESRATE scan option to acquire data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel".

EXTCLOCK

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To configure the pin for
pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test or calibrate the
device with InstaCal, as the SYNC pin drives the output.

Retriggering

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with
cbSetConfig() to set the A/D trigger count, and the ConfigItem option BIDACTRIGCOUNT to set the D/A trigger count.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and 2,047). However, the
Universal Library maps this data to 12-bit values, so the range of data is no different from the differential configuration.
Consequently, the data returned contains only even numbers between 0 and 4,094 when the NOCALIBRATEDATA option is used.

Continuous scans

When running cbAInScan()/ AInScan() with the CONTINUOUS option, set the count to be an integer multiple of the number of
channels in the scan in order to keep the data aligned properly in the array.

Analog output

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated simultaneously.

Page 83 of 700

USB-1208HS Series
The USB-1208HS Series includes the following devices:

n USB-1208HS

n USB-1208HS-2AO

n USB-1208HS-4AO

The USB-1208HS Series supports the following UL and UL for .NET features:

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ALoadQueue(), ATrig(), FileAInScan()

Options

BACKGROUND, BLOCKIO, BURSTMODE, CONTINUOUS, EXTCLOCK, EXTTRIGGER, NOCALIBRATEDATA, RETRIGMODE*,
SINGLEIO

Packet size

Rate dependent. The default packet size is 256 samples. At higher rates, the packet size increases by a multiple of 256.

Count

Count must be an integer multiple of the number of channels in the scan.

Mode

Single-ended or differential

HighChan

0 to 7 in single-ended mode

0 to 3 in differential mode

Rate

1 MS/s, maximum

Range

Single-ended mode:

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

BIP2PT5VOLTS (±2.5 volts)

UNI10VOLTS (0 to 10 volts)

Differential mode:

BIP20VOLTS (±20 volts)

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TrigPosEdge, TrigNegEdge, TrigHigh, TrigLow

Analog output (USB-1208HS-2AO and USB-1208HS-4AO only)
Functions

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Options

Page 84 of 700

BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, RETRIGMODE

Range

BIP10VOLTS (±10 Volts)

HighChan

USB-1208HS-2AO: 0 to 1

USB-1208HS-4AO: 0 to 3

Packet size

Rate dependent.

Count

Count must be an integer multiple of the number of channels in the scan.

Rate

1 MHz per channel, maximum

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AuxPort

PortType

AuxPort

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AuxPort

DataValue

0 to 65,535

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut()

PortType

AuxPort

BitNum

0 to 15 on AuxPort

Counter I/O
Functions

UL: cbCIn(), cbCIn32(), cbCLoad(), cbCLoad32()

UL for .NET: CIn(), CIn32(), CLoad(), CLoad32()

Note: Counters on these boards are zero-based (the first counter number is "0").

CounterNum

0 to 1

Count

232 when reading the counter.

Page 85 of 700

LoadValue

0 when loading the counter.

cbCLoad() and cbCLoad32()CLoad() and CLoad32() are only used to reset the counter to 0. No other values are valid.

Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.

RegNum

LOADREG0, LOADREG1

Timer
Functions

UL: cbPulseOutStart(), cbPulseOutStop()

UL for .NET: PulseOutStart(), PulseOutStop()

TimerNum

0

Frequency

0.0094 Hz to 20 MHz

DutyCycle

0 to 1, non-inclusive

InitialDelay

0 sec to 107.37 sec

IdleState

IDLE_LOW, IDLE_HIGH

PulseCount

0 to 232 – 1 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Set to 0 to continuously generate pulses until PulseOutStop() is called.

Configuration
Functions

UL: cbSetConfig()

InfoType

BOARDINFO

ConfigItem

BIADTRIGCOUNT, BIDACTRIGCOUNT

Device number

0

String Configuration
Functions

UL: cbGetConfigString(), cbSetConfigString()

InfoType

BOARDINFO

ConfigItem

BINODEID

maxConfigLen

At least 64 for BINODEID

Event Notification
Functions

UL: cbEnableEvent() cbDisableEvent()

UL for .NET: EnableEvent() DisableEvent()

Page 86 of 700

Event types

UL: ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_SCAN_ERROR, ON_END_OF_AO_SCAN

UL for .NET: OnDataAvailable, OnEndOfAiScan, OnScanError, OnEndOfAoScan

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware Considerations
Retriggering

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with
cbSetConfig() to set the A/D trigger count, and the ConfigItem option BIDACTRIGCOUNT to set the D/A trigger count.

When using RETRIGMODE, set the values for the Count argument (cbAInScan()/AInScan()) and the BIADTRIGCOUNT argument
(cbSetConfig()/SetAdRetrigCount()) to an integer multiple of the number of channels in the scan. so that the entire buffer, or the
portion of the buffer defined by BIADTRIGCOUNT, will contain updated data.

Device identifier

You can enter up to 64 characters for the value of the device's text identifier using the ConfigItem option BINODEID with
cbSetConfigString().

Page 87 of 700

USB-1208LS
The USB-1208LS supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Options

BACKGROUND, BLOCKIO*, BURSTIO**, CONTINUOUS, EXTTRIGGER, NOCALIBRATEDATA, CONVERTDATA

*The packet size is based on the Options setting. When set to BLOCKIO, the packet size is 64 samples.

** BURSTIO can only be used with the number of samples (Count) set equal to the size of the FIFO or less. The USB-1208LS
FIFO holds 4096 samples. BURSTIO cannot be used with the CONTINUOUS option.

HighChan

0 to 7 in single-ended mode

0 to 3 in differential mode

Count

In CONTINUOUS mode, Count must be an integer multiple of the packet size.

Rate

8000 Hz maximum for BURSTIO mode.

The maximum rate is 1200 Hz for all other modes.

When using cbAInScan() or AInScan(), the minimum sample rate is 100 Hz.

Range

Single-ended:

Differential

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGHIGH, TRIGLOW

External digital (TTL) hardware triggering is supported. Use the TRIG_IN input (pin # 18 on the screw terminal) for the external
trigger signal.

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

All settings are ignored

HighChan

0 to 1

Count

(HighChan - LowChan) + 1

BIP10VOLTS (±10 volts)

BIP20VOLTS (±20 volts) BIP2PT5VOLTS (±2.5 volts)

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1PT25VOLTS (±1.25 volts)

BIP4VOLTS (±4 volts) BIP1VOLTS (±1 volts)

Page 88 of 700

Rate

All settings are ignored

Range

Ignore - Not programmable; fixed at UNI5VOLTS (0 to 5 volts)

DataValue

0 to 1023

Digital I/O
This board has an 82C55 chip. Click here to display a table of the port numbers and corresponding bit numbers that are set by
the digital I/O functions for hardware designed with the 82C55 chip or 82C55 emulation.

Configuration

Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 15 for on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad() and cbCLoad32()/CLoad() and CLoad32() are only used to reset the counter for this device to 0. No other values are
valid.

The Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using cbCIn32
() or CIn32() for values greater than 2,147,483,647.

RegNum

Page 89 of 700

LOADREG1

Event notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

ON_SCAN_ERROR (analog input), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer, use this function to
identify a particular device by making its LED blink.

Hardware considerations
BURSTIO

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The USB-1208LS FIFO holds 4096
samples. Data is collected into the device's local FIFO. Data transfers to the PC don't occur until the scan completes. For
BACKGROUND scans, the Count and Index returned by cbGetStatus() and GetStatus() remain 0, and Status=RUNNING until the
scan finishes. The Count and Index are not updated until the scan is completed. When the scan is complete and the data is
retrieved, cbGetStatus() and GetStatus() are updated to the current Count and Index, and Status = IDLE.

The USB-1208LS uses BURSTIO as the default mode for non-CONTINUOUS fast scans with sample counts up to the size of the FIFO
(4096 samples). BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. Maximum Rate values of
non-BURSTIO scans are limited (refer to the Rate option above). To avoid the BURSTIO default, specify BLOCKIO mode.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and 2,047). However, the
Universal Library maps this data to 12-bit values, so the range of data is no different from the differential configuration.
Consequently, the data returned contains only even numbers between 0 and 4,094 when the NOCALIBRATEDATA option is used.

Continuous scans

When running cbAInScan()/AInScan() with the CONTINUOUS option, consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, set the total number of samples to be an integer multiple of the
packet size and the number of channels in the scan.

Concurrent operations

Concurrent operations are not allowed. If you invoke a UL or UL for .NET function on a USB-1208LS while another function is
running on that same unit, the ALREADYACTIVE error is returned.

Channel-gain queue

When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to eight elements.

Analog output

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated simultaneously.

Page 90 of 700

USB-1602HS Series
The USB-1602HS Series includes the following devices:

n USB-1602HS

n USB-1602HS-2AO

The USB-1602HS Series supports the following UL and UL for .NET features.

Analog Input
UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbAPretrig()*, cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), APretrig()*, ATrig()

*Pretrigger capability is implemented in software. PretrigCount must be less than the TotalCount and cannot exceed 100000
samples. If a trigger occurs while the number of collected samples is less than the PretrigCount, that trigger will be ignored.
Requires a call to cbSetTrigger/ SetTrigger for the analog trigger type.

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK*, EXTTRIGGER, HIGHRESRATE

* With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan

0 to 1

Count

Count must be an integer multiple of the number of channels in the scan.

Rate

Up to 2 MHz

Range

Analog Output (USB-1602HS-2AO only)
UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

NONSTREAMEDIO can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO holds 524288
samples.

HighChan

0 to 1

Rate

1 MHz each channel

Count

Count must be an integer multiple of the number of channels in the scan.

Range

Ignored - Not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Port I/O

BIP10VOLTS (±10 volts)

BIP2PT5VOLTS (±2.5 volts)

BIPPT5VOLTS (±0.5 volts)

Page 91 of 700

Functions

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, HIGHRESRATE, NONSTREAMEDIO

n The EXTTRIGGER option can only be used with the cbDInScan() function. You can use the cbSetTrigger() function to program
the trigger for rising edge, falling edge, or the level of the digital trigger input (TTL).

n The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with the cbDOutScan() function.

n The HIGHRESRATE option can only be used with the cbDInScan() function.

Rate

8 MHz

PortNum

AUXPORT

DataValue

0 to 65,535

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 15

Counter Input
UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan, CInScan(), CClear()

Note: Counters on these devices are zero-based (the first counter number is "0").

Rate

4 MHz

CounterNum

0 to 3

Options

BACKGROUND, CONTINUOUS, EXTTRIGGER, HIGHRESRATE

You can use the cbSetTrigger() function to program the trigger for rising edge, falling edge, or the level of the digital trigger
input (TTL).

LoadValue

0 to 65,535

The Visual Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using
cbCIn32() or CIn32() for values greater than 2,147,483,647.

Timers
UL: cbPulseOutStart(), cbPulseOutStop()

UL for .NET: PulseOutStart(), PulseOutStop()

TimerNum

0 to 1

Frequency

0.112 Hz to 24 MHz

Duty cycle

Page 92 of 700

0 to 1, non-inclusive

PulseCount

Ignored

Triggering
UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

n Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not supported for pre-trigger acquisitions
(cbAPretrig() function).

n Analog triggering (TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the cbCInScan() function.

Threshold

Analog hardware triggering, 12-bit resolution: 0 to 4,095 (supported for cbAInScan() only)

Analog software triggering, 16-bit resolution: 0 to 65,535 (supported for cbAPretrig() only)

DAQ Input
UL: cbDaqInScan()

UL for .NET: DaqInScan()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

ChanTypeArray

ANALOG, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH

n When mixing ANALOG channel types with any other input types, the ANALOG channels should be the first in the list.

ChanArray

ANALOG: 0 to 3

DIGITAL16: AUXPORT

CTR16: 0-3 counters

CTR32LOW: 0-3 counters

CTR32HIGH: 0-3 counters

SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible setpoints.

ChanTypeArray flag value:

n SETPOINT_ENABLE: Enables a setpoint. Refer to Setpoints in "Hardware Considerations" below for more information.

Rate

Analog: Up to 2 MHz

Digital: Up to 8 MHz if no analog channel is selected. Otherwise up to 2 MHz.

Counter: Up to 8 MHz if no analog channel is selected. Otherwise up to 2 MHz.

GainArray

ANALOG only; ignore for other ChanTypeArray values.

BIP10VOLTS (±10 volts)

BIP2PT5VOLTS (±2.5 volts)

BIPPT5VOLTS (±0.5 volt)

PretrigCount

100000 max

DAQ Triggering
UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

TrigSource

Page 93 of 700

TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ANALOGSW, TRIG_DIGPATTERN, TRIG_COUNTER,
TRIG_SCANCOUNT

TrigSense

RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent

START_EVENT, STOP_EVENT

DAQ Setpoint
UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

SetpointFlagsArray

SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB, SF_OUTSIDE_LIMITS, SF_HYSTERESIS,
SF_UPDATEON_TRUEONLY, SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray

SO_NONE, SO_DIGITALPORT

Also available for USB-1602HS-2AO:

SO_DAC0, SO_DAC1

LimitAArray

Any value valid for the associated input channel.

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray

Any value valid for the associated input channel and less than LimitA.

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array

For SetpointOutputArray = SO_NONE: Ignored

For SetpointOutputArray = SO_DIGITALPORT: 0 to 65,535

For SetpointOutputArray = SO_DAC#: Voltage values between –10 and +10

OutputMask#Array

For SetpointOutputArray = SO_DIGITALPORT: 0 to 65,535

For SetpointOutputArray = all other values: Ignored

SetpointCount

0 (to disable setpoints) to 16

DAQ Output (USB-1602HS-2AO only)
UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, ADCCLOCKTRIG, ADCCLOCK

ChanType

ANALOG, DIGITAL16

ChanArray

ANALOG: 0 to 1

DIGITAL16: AUXPORT

Rate

Analog: Up to 2 MHz

Digital16: Up to 8 MHz (system-dependent) if no analog channel is selected. Otherwise up to 2 MHz.

Range

BIP10VOLTS (±10 volts)

Hardware considerations

Page 94 of 700

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels in the scan or a BADCOUNT
error is returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling rates when using
BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use NONSTREAMEDIO mode, if
supported.

The minimum size buffer is 256 for cbAOutScan(). Values less than that result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning multiple channels and
one or more channels are connected to a high impedance source, you may get better results by increasing the settling time. Keep
in mind that increasing the settling time reduces the maximum acquisition rate. You can set the time between A/D conversions with
the ADC Settling Time option in InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray argument values. You set
the setpoint criteria with cbDaqSetSetpoints()/DaqSetSetpoints(). The number of channels set with the SETPOINT_ENABLE flag must
match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The aggregate size of the data
output buffer must be less than or equal to the size of the internal data output FIFO in the device. The FIFO holds 524288 samples.
This allows the data output buffer to be loaded into the device's internal output FIFO. Once the sample updates are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't change the output buffer once the output
begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCK option to trigger a data output operation upon the start of the ADC clock.

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/ CConfigScan() Mode argument
values to set a specified counter to encoder mode, set the encoder measurement mode to X1, X2, or X4, and then set the count to
be latched either by the internal "start of scan" signal (default) or by the signal on the mapped channel.

You can optionally perform the following operations:

n Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When the mapped
channel is low, the counter is disabled but holds the count value.

n Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

n Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) channel. By default, "clear on Z" is
disabled, and the counter is not cleared.

Asynchronous reads

The CConfigScan() method's Bit32 counter mode option only affects counter resolution for asynchronous calls (CIn() and CIn32()),
and only when the counter is configured for StopAtMax.

This mode is recommended for use only with CIn32(). Using the Bit32 option with CIn() is not very useful, since the value returned
by CIn() is only 16 bits. The effect is that the value returned by CIn() rolls over 65,535 times before stopping.

Page 95 of 700

USB-1604HS Series
The USB-1604HS Series includes the following devices:

n USB-1604HS

n USB-1604HS-2AO

The USB-1604HS Series supports the following UL and UL for .NET features.

Analog Input
UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbAPretrig()*, cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), APretrig()*, ATrig()

*Pretrigger capability is implemented in software. PretrigCount must be less than the TotalCount and cannot exceed 100000
samples. If a trigger occurs while the number of collected samples is less than the PretrigCount, that trigger will be ignored.
Requires a call to cbSetTrigger/ SetTrigger for the analog trigger type.

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK*, EXTTRIGGER, HIGHRESRATE

* With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan

0 to 3

Count

Count must be an integer multiple of the number of channels in the scan.

Rate

Up to 1.33 MHz

Range

Analog Output (USB-1604HS-2AO only)
UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

NONSTREAMEDIO can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO holds 524288
samples.

HighChan

0 to 1

Rate

1 MHz each channel

Count

Count must be an integer multiple of the number of channels in the scan.

Range

Ignored - Not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Port I/O

BIP10VOLTS (±10 volts)

BIP2PT5VOLTS (±2.5 volts)

BIPPT5VOLTS (±0.5 volts)

Page 96 of 700

Functions

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, HIGHRESRATE, NONSTREAMEDIO

n The EXTTRIGGER option can only be used with the cbDInScan() function. You can use the cbSetTrigger() function to program
the trigger for rising edge, falling edge, or the level of the digital trigger input (TTL).

n The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with the cbDOutScan() function.

n The HIGHRESRATE option can only be used with the cbDInScan() function.

Rate

8 MHz

PortNum

AUXPORT

DataValue

0 to 65,535

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 15

Counter Input
UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan, CInScan(), CClear()

Note: Counters on these devices are zero-based (the first counter number is "0").

Rate

4 MHz

CounterNum

0 to 3

Options

BACKGROUND, CONTINUOUS, EXTTRIGGER, HIGHRESRATE

You can use the cbSetTrigger() function to program the trigger for rising edge, falling edge, or the level of the digital trigger
input (TTL).

LoadValue

0 to 65,535

The Visual Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using
cbCIn32() or CIn32() for values greater than 2,147,483,647.

Timers
UL: cbPulseOutStart(), cbPulseOutStop()

UL for .NET: PulseOutStart(), PulseOutStop()

TimerNum

0 to 1

Frequency

0.112 Hz to 24 MHz

Duty cycle

Page 97 of 700

0 to 1, non-inclusive

PulseCount

Ignored

Triggering
UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

n Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not supported for pre-trigger acquisitions
(cbAPretrig() function).

n Analog triggering (TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the cbCInScan() function.

Threshold

Analog hardware triggering, 12-bit resolution: 0 to 4,095 (supported for cbAInScan() only)

Analog software triggering, 16-bit resolution: 0 to 65,535 (supported for cbAPretrig() only)

DAQ Input
UL: cbDaqInScan()

UL for .NET: DaqInScan()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

ChanTypeArray

ANALOG, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH

n When mixing ANALOG channel types with any other input types, the ANALOG channels should be the first in the list.

ChanArray

ANALOG: 0 to 3

DIGITAL16: AUXPORT

CTR16: 0-3 counters

CTR32LOW: 0-3 counters

CTR32HIGH: 0-3 counters

SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible setpoints.

ChanTypeArray flag value:

n SETPOINT_ENABLE: Enables a setpoint. Refer to Setpoints in "Hardware Considerations" below for more information.

Rate

Analog: Up to 1.33 MHz

Digital: Up to 8 MHz if no analog channel is selected. Otherwise up to 1.33 MHz.

Counter: Up to 8 MHz if no analog channel is selected. Otherwise up to 1.33 MHz.

GainArray

ANALOG only; ignore for other ChanTypeArray values.

BIP10VOLTS (±10 volts)

BIP2PT5VOLTS (±2.5 volts)

BIPPT5VOLTS (±0.5 volt)

PretrigCount

100000 max

DAQ Triggering
UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

TrigSource

Page 98 of 700

TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ANALOGSW, TRIG_DIGPATTERN, TRIG_COUNTER,
TRIG_SCANCOUNT

TrigSense

RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent

START_EVENT, STOP_EVENT

DAQ Setpoint
UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

SetpointFlagsArray

SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB, SF_OUTSIDE_LIMITS, SF_HYSTERESIS,
SF_UPDATEON_TRUEONLY, SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray

SO_NONE, SO_DIGITALPORT

Also available for USB-1604HS-2AO:

SO_DAC0, SO_DAC1

LimitAArray

Any value valid for the associated input channel.

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray

Any value valid for the associated input channel and less than LimitA.

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array

For SetpointOutputArray = SO_NONE: Ignored

For SetpointOutputArray = SO_DIGITALPORT: 0 to 65,535

For SetpointOutputArray = SO_DAC#: Voltage values between –10 and +10

OutputMask#Array

For SetpointOutputArray = SO_DIGITALPORT: 0 to 65,535

For SetpointOutputArray = all other values: Ignored

SetpointCount

0 (to disable setpoints) to 16

DAQ Output (USB-1604HS-2AO only)
UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, ADCCLOCKTRIG, ADCCLOCK

ChanType

ANALOG, DIGITAL16

ChanArray

ANALOG: 0 to 1

DIGITAL16: AUXPORT

Rate

Analog: Up to 1 MHz

Digital16: Up to 8 MHz (system-dependent) if no analog channel is selected. Otherwise up to 1 MHz.

Range

BIP10VOLTS (±10 volts)

Hardware considerations

Page 99 of 700

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels in the scan or a BADCOUNT
error is returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling rates when using
BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use NONSTREAMEDIO mode, if
supported.

The minimum size buffer is 256 for cbAOutScan(). Values less than that result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning multiple channels and
one or more channels are connected to a high impedance source, you may get better results by increasing the settling time. Keep
in mind that increasing the settling time reduces the maximum acquisition rate. You can set the time between A/D conversions with
the ADC Settling Time option in InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray argument values. You set
the setpoint criteria with cbDaqSetSetpoints()/DaqSetSetpoints(). The number of channels set with the SETPOINT_ENABLE flag must
match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The aggregate size of the data
output buffer must be less than or equal to the size of the internal data output FIFO in the device. The FIFO holds 524288 samples.
This allows the data output buffer to be loaded into the device's internal output FIFO. Once the sample updates are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't change the output buffer once the output
begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCK option to trigger a data output operation upon the start of the ADC clock.

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/ CConfigScan() Mode argument
values to set a specified counter to encoder mode, set the encoder measurement mode to X1, X2, or X4, and then set the count to
be latched either by the internal "start of scan" signal (default) or by the signal on the mapped channel.

You can optionally perform the following operations:

n Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When the mapped
channel is low, the counter is disabled but holds the count value.

n Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

n Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) channel. By default, "clear on Z" is
disabled, and the counter is not cleared.

Asynchronous reads

The CConfigScan() method's Bit32 counter mode option only affects counter resolution for asynchronous calls (CIn() and CIn32()),
and only when the counter is configured for StopAtMax.

This mode is recommended for use only with CIn32(). Using the Bit32 option with CIn() is not very useful, since the value returned
by CIn() is only 16 bits. The effect is that the value returned by CIn() rolls over 65,535 times before stopping.

Page 100 of 700

USB-1608FS and USB-1608FS-Plus
The USB-1608FS and USB-1608FS-Plus support the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Options

BACKGROUND, BLOCKIO*, BURSTIO**, CONTINUOUS, CONVERTDATA, EXTCLOCK, EXTTRIGGER, HIGHRESRATE***,
NOCALIBRATEDATA, and SINGLEIO*

* The packet size is based on the Options setting:

BLOCKIO: packet size = 31 samples

SINGLEIO: packet size = the number of channels being sampled.

** BURSTIO can only be used with the number of samples (Count) set equal to the size of the FIFO or less. The device FIFO
holds 32,768 samples. BURSTIO cannot be used with the CONTINUOUS option.

*** HIGHRESRATE is supported by the USB-1608FS-Plus only.

Mode

Single-ended

HighChan

0 to 7

Count

In BURSTIO mode, Count must be an integer multiple of the number of channels in the scan:

n For one-, two-, four-, and eight-channel scans, the maximum Count is 32,768 samples.

n For three- and six-channel scans, the maximum Count is 32,766 samples.

n For five-channel scans, the maximum Count is 32,765 samples.

n For seven-channel scans, the maximum Count is 32,767 samples.

Rate

USB-1608FS:

200 kS/s maximum for BURSTIO mode (50 kS/s for any one channel).

The maximum rate is 100 kS/s for all other modes (50 kS/s for any one channel).

When using cbAInScan() or AInScan(), the minimum sample rate is 1 S/s. In BURSTIO mode, the minimum sample rate is 20
S/s per channel.

USB-1608FS-Plus:

800 kS/s maximum for BURSTIO mode (100 kS/s for any one channel).

For all other modes the rate is 400 kS/s nominal (100 kS/s for any one channel). Sampling at rates >400 kS/s may result in
a data overrun on some systems. If errors occur, and the application requires fewer than 32,768 samples, consider a finite
scan with BURSTIO mode enabled.

When using cbAInScan() or AInScan(), the minimum sample rate is 0.01 S/s (using HIGHRESRATE with Rate set to 10.)

Range

Pacing

Hardware pacing, internal clock supported. External clock supported via the SYNC pin.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

BIP10VOLTS (±10 volts) BIP5VOLTS (±5 volts)

BIP2VOLTS (±2 volts) BIP1VOLTS (±1 volts)

Page 101 of 700

Digital triggering: TRIGPOSEDGE, TRIGNEGEDGE

The USB-1608FS-Plus also supports TRIGHIGH and TRIGLOW

External digital (TTL) hardware triggering supported. Set the hardware trigger source with the Trig_In input.

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

Functions

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum

AUXPORT (eight bits, bit-configurable)

DataValue

0 to 255 for AUXPORT

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232-1 when reading the counter.

LoadValue

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter to 0. No other values are valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards topic apply when using cbCIn() or CIn() for
values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Event Notification

Page 102 of 700

Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

UL: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

UL for .NET:OnScanError(), OnDataAvailable(), OnEndOfAiScan()

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on the USB device to blink. When you have several USB devices connected to the computer, use this function to
identify a particular device by making its LED blink.

Hardware Considerations
Channel-gain queue

The channel-gain queue is limited to eight elements. The gains may be any valid value. The channels specified must be unique and
listed in increasing order. The gains may be any valid value.

n USB-1608FS: The channels specified in the queue must be contiguous and in increasing order, except when wrapping around
from channel 7 to channel 0.

n USB-1608FS-Plus: The channels specified in the queue must be in increasing order.

Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. If the requested speed cannot be sustained, an OVERRUN error will occur.

HIGHRESRATE

USB-1608FS-Plus only. Specify the HIGHRESRATE scan option to acquire data at a high resolution rate. When specified, the rate at
which samples are acquired is in "samples per 1000 seconds per channel".

Continuous scans

When running cbAInScan()/ AInScan() with the CONTINUOUS option, consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, make the total number of samples an integer multiple of the
packet size and the number of channels.

EXTCLOCK

You can set the SYNC pin as a pacer input or a pacer output from InstaCal. By default, this pin is set for pacer input. If set for
output when using the cbAInScan()/AInScan() option, EXTCLOCK results in a BADOPTION error.

BURSTIO mode

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The device FIFO holds 32,768 samples.
Data is collected into the device local FIFO. Data transfers to the computer don't occur until the scan completes. For BACKGROUND
scans, the Count and Index returned by cbGetStatus() and GetStatus() remain 0, and Status = RUNNING until the scan finishes.
The Count and Index are not updated until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus
() and GetStatus() are updated to the current Count and Index, and Status = IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to the size of the FIFO
(32,768 samples).

Page 103 of 700

USB-1608G Series
The USB-1608G Series includes the following devices:

n USB-1608G

n USB-1608GX

n USB-1608GX-2AO

The USB-1608G Series supports the following UL and UL for .NET features:

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ALoadQueue(), ATrig(), FileAInScan()

Options

BACKGROUND, BLOCKIO, BURSTMODE, CONTINUOUS, EXTCLOCK, EXTTRIGGER, HIGHRESRATE, NOCALIBRATEDATA,
RETRIGMODE, SCALEDATA, SINGLEIO

Packet size

Rate dependent. The default packet size is 256 samples. At higher rates, the packet size increases by a multiple of 256.

Mode

Single-ended and differential

HighChan

0 to 15 in single-ended mode

0 to 7 in differential mode

Count

Count must be an integer multiple of the number of channels in the scan.

Rate

500 kS/s max

Range

Pacing

Hardware pacing, internal clock supported.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

Digital triggering: TRIGPOSEDGE, TRIGNEGEDGE, TRIGHIGH, TRIGLOW

External digital (TTL) hardware triggering supported. Set the hardware trigger source with the TRIG input.

Analog output (USB-1608GX-2AO only)
Functions

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER

Range

BIP10VOLTS (±10 Volts)

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1VOLTS (±1 volts)

Page 104 of 700

HighChan

0 to 1

Count

Count must be an integer multiple of the number of channels in the scan.

Rate

500 kS/s per channel, maximum

Packet size

Rate dependent.

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AuxPort

PortType

AuxPort

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AuxPort (eight bits, bit-configurable)

DataValue

0 to 255

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut()

PortType

AuxPort

BitNum

0 to 7 on AuxPort

Counter I/O
Functions

UL: cbCIn(), cbCIn32(), cbCLoad(), cbCLoad32()

UL for .NET: CIn(), CIn32(), CLoad(), CLoad32()

Note: Counters on these boards are zero-based (the first counter number is "0").

CounterNum

0 to 1

Count

232 when reading the counter.

LoadValue

0 when loading the counter.

cbCLoad() and cbCLoad32()CLoad() and CLoad32() are only used to reset the counter to 0. No other values are valid.

The Visual Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using
cbCIn32() or CIn32() for values greater than 2,147,483,647.

Page 105 of 700

RegNum

LOADREG0, LOADREG1

Timer
Functions

UL: cbPulseOutStart(), cbPulseOutStop()

UL for .NET: PulseOutStart(), PulseOutStop()

TimerNum

0

Frequency

0.0149 Hz to 32 MHz

DutyCycle

0 to 1, non-inclusive

InitialDelay

0 sec to 67.11 sec

IdleState

IDLE_LOW, IDLE_HIGH

PulseCount

0 to 232 – 1 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Set to 0 to continuously generate pulses until PulseOutStop() is called.

Configuration
Functions

UL: cbSetConfig()

InfoType

BOARDINFO

ConfigItem

BIADTRIGCOUNT, BIDACTRIGCOUNT

Device number

0

String Configuration
Functions

UL: cbGetConfigString(), cbSetConfigString()

InfoType

BOARDINFO

ConfigItem

BINODEID

maxConfigLen

At least 64 for BINODEID

Event Notification
Functions

UL: cbEnableEvent() cbDisableEvent()

UL for .NET: EnableEvent() DisableEvent()

Event types

UL: ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_SCAN_ERROR

UL for .NET: OnDataAvailable, OnEndOfAiScan, OnScanError

The USB-1608GX-2AO also supports ON_END_OF_AO_SCAN/OnEndOfAoScan.

Page 106 of 700

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware Considerations
Channel gain queue

The channel-gain queue is limited to 16 elements. The channel gains may be any valid value. The channels can be listed in any
order, and can include duplicate channels for sampling at different ranges.

Retriggering

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with
cbSetConfig() to set the A/D trigger count.

When using RETRIGMODE, set the values for the Count argument (cbAInScan()/AInScan()) and the BIADTRIGCOUNT argument
(cbSetConfig()/SetAdRetrigCount()) to an integer multiple of the number of channels in the scan. That way, the entire buffer, or the
portion of the buffer defined by BIADTRIGCOUNT, will contain updated data.

Device identifier

You can enter up to 64 characters for the value of the device's text identifier using the ConfigItem option BINODEID with
cbSetConfigString().

Output scan restriction

You cannot access cbSetTrigger()/ SetTrigger() or call BINODEID while an analog output scan is in progress.

Page 107 of 700

USB-1608HS Series
The USB-1608HS Series includes the following devices:

n USB-1608HS

n USB-1608HS-2AO

The USB-1608HS Series supports the following UL and UL for .NET features.

Analog Input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, ATrig(), FileAInScan()

* The channel-gain queue is limited to eight elements. The channels specified in the queue must be contiguous and in increasing
order, except when wrapping around from channel 7 to channel 0. The gains may be any valid value.

Options

BACKGROUND, BLOCKIO, SINGLEIO, CONTINUOUS, EXTTRIGGER, CONVERTDATA, NOCALIBRATEDATA, RETRIGMODE, and
EXTCLOCK

Packet size

Rate dependent. The default packet size is 256 samples. At higher rates, the packet size increases by a multiple of 256.

Mode

Single-ended and differential

HighChan

0 to 7 in single-ended and differential mode

Rate

250 kHz per channel

Count

Count must be an integer multiple of the number of channels in the scan.

Range

Pacing

Hardware pacing, internal clock supported. External clock supported via the SYNC_IN pin.

Analog Output (USB-1608HS-2AO only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS

HighChan

0 to 1

Rate

70 kHz for one channel

47 kHz for two channels

Count

Count must be an integer multiple of the number of channels in the scan.

Range

BIP10VOLTS (±10 volts)

Packet size

512 samples

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1VOLTS (±1 volts)

Page 108 of 700

Data Value

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, internal clock supported.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

Analog triggering: TRIGABOVE, TRIGBELOW

Digital triggering: TRIGPOSEDGE, TRIGNEGEDGE, TRIGHIGH, TRIGLOW

External digital (TTL) hardware triggering supported. Set the hardware trigger source with the Trig_In input.

Threshold

0 to 65,535 (BIP10VOLTS)

Hardware actually has a 12-bit resolution, but the library uses a 16-bit value so that cbFromEngUnits() can be used to obtain the
trigger value.

Digital I/O
Port I/O

Functions

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum

AUXPORT

DataValue

0 to 255 for AUXPORT

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232 – 1 when reading the counter.

Page 109 of 700

LoadValue

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter to 0. No other values are valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards topic apply when using cbCIn() or CIn() for
values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Configuration
Functions

UL: cbGetConfig(), cbSetConfig(), cbGetConfigString(), cbSetConfigString()

ConfigItem

BIADTRIGCOUNT, BINODEID

Device number

0

maxConfigLen

At least 64 for BINODEID

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

UL: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

UL for .NET: OnScanError, OnDataAvailable, OnEndOfAiScan

The USB-1208HS-2AO also supports ON_END_OF_AO_SCAN/OnEndOfAoScan

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware Considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. If the requested speed cannot be sustained, an OVERRUN error will occur.

Continuous scans

When running cbAInScan()/AInScan() with the CONTINUOUS option, make the count an integer multiple of the number of channels
in the scan in order to keep the data aligned properly in the array.

Device identifier

You can enter up to 64 characters for the value of the device's text identifier using the ConfigItem option BINODEID with
cbSetConfigString().

Output scan restriction

You cannot access cbSetTrigger()/ SetTrigger() or call BINODEID while an analog output scan is in progress.

Analog triggering

When using cbAInScan()/AInScan() with EXTTRIGGER, the value entered to cbSetTrigger() threshold arguments for analog trigger
modes should be a 16 bit value. The resolution of the circuitry is actually 12 bits, but the library uses a 16 bit value so that
cbFromEngUnits() can be used to obtain the trigger value.

Retriggering

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with

Page 110 of 700

cbSetConfig() to set the A/D trigger count, and the ConfigItem option BIDACTRIGCOUNT to set the D/A trigger count.

When using RETRIGMODE, set the values for the Count argument (cbAInScan()/AInScan()) and the BIADTRIGCOUNT argument
(cbSetConfig()/SetAdRetrigCount()) to an integer multiple of the packet size (and the number of channels if using CONTINUOUS).
That way, the entire buffer, or the portion of the buffer defined by BIADTRIGCOUNT, will contain updated data.

Remote sensing (USB-1608HS-2AO)

You can enable remote sensing for each of the two analog outputs on the USB-1608HS-2AO with InstaCal.

The remote sensing feature compensates for the voltage drop error that occurs in applications where the USB-1608HS-2AO's
analog outputs are connected to its load through a long wire or cable type interconnect.

The remote sensing feature can compensate for I*R induced voltage losses up to 750 mV, and for any series resistance up to 75 Ω
between its remote sensing terminal pins and its output load.

n To configure the remote sensing connection, connect two separate output wires – one from the VDACn_F (force) output
terminal, and one from the VDACn_S (sense) output terminal – to the high side or positive input terminal of the field device
(load).

n If you are not using the remote sensing feature, simply connect a single output wire or cable from the VDACn_F (force)
output terminal to the load, and leave the VDACn_S (sense) terminal unconnected.

Refer to the USB-1608HS-2AO User's Guide for more information about remote sensing.

Page 111 of 700

USB-1616FS
The USB-1616FS supports the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

*The channel-gain queue is limited to 16 elements. The USB-1616FS accepts only unique contiguous channels in each element,
but the gains may be any valid value.

Options

BACKGROUND, BLOCKIO**, SINGLEIO**, BURSTIO***, CONTINUOUS, EXTTRIGGER, and EXTCLOCK

** The packet size is based on the Options setting. When set to BLOCKIO, the packet size is 62 samples. When set to SINGLEIO,
the packet size equals the number of channels being sampled.

*** BURSTIO can only be used with the number of samples (Count) set equal to the size of the FIFO or less. The USB-1616FS
FIFO holds 32,768 samples. Also, BURSTIO cannot be used with the CONTINUOUS option.

HighChan

0 to 15 in single-ended mode

Count

In BURSTIO mode, Count needs to be an integer multiple of the number of channels in the scan.

n For one-, two- , four-, eight-, and 16-channel scans, the maximum Count is 32,768 samples.

n For three- and six-channel scans, the maximum Count is 32,766 samples.

n For five-channel scans, the maximum Count is 32,765 samples.

n For seven-channel scans, the maximum Count is 32,767 samples.

n For 9-, 10-, 12-, 13-, 14-, and 15-channel scans, the maximum Count is 32,760 samples.

n For 11-channel scans, the maximum Count is 32,758 samples.

Rate

200 kHz maximum for BURSTIO mode (50 kHz for any one channel).

For all other modes, the maximum rate per channel depends on the number of channels being scanned.

When using cbAInScan() or AInScan(), the minimum sample rate is 1 Hz. In BURSTIO mode, the minimum sample rate is 20
Hz/channel.

No. of channels in
the scan

Maximum rate

1 or 2 50 kHz

3 36 kHz

4 30 kHz

5 25 kHz

6 22 kHz

7 19 kHz

8 17 kHz

9 15 kHz

10 14 kHz

11 12.5 kHz

12 12 kHz

13 11.25 kHz

14 10.5 kHz

15 10 kHz

16 9.5 kHz

Page 112 of 700

Range

Single-ended:

Pacing

Hardware pacing, internal clock supported.

External clock supported via the SYNC terminal.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE

TRIGNEGEDGE

External digital (TTL) hardware triggering supported. You set the hardware trigger source with the TRIG_IN input terminal.

Digital I/O
Configuration

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum

AUXPORT

DataValue

0 to 255 for AUXPORT

Bit I/O

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1VOLTS (±1 volts)

Page 113 of 700

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter for this board to 0. No other values are
valid.

The Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using cbCIn32
() or CIn32() for values greater than 2,147,483,647.

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event Types

ON_SCAN_ERROR (analog input), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular module by making its
LED blink.

Hardware considerations
Acquisition Rate

Since the maximum data acquisition rate depends on the system connected to the USB-1616FS, it is possible to "lose" data points
when scanning at higher rates. The Universal Library cannot always detect this data loss.

Most systems can sustain rates of 80 kS/s aggregate. If you need to sample at higher rates than this, consider using the BURSTIO
option explained below.

EXTCLOCK

You can set the SYNC terminal as a pacer input or a pacer output from InstaCal. By default, this terminal is set for pacer input. If
set for output, using the cbAInScan()/AInScan() option EXTCLOCK results in a BADOPTION error.

BURSTIO

Allows higher sampling rates up to the size of the FIFO. The USB-1616FS FIFO holds 32,768 samples. Data is collected into the USB
device's local FIFO. Data transfers to the PC don't occur until the scan completes. For BACKGROUND scans, the Count and Index
returned by cbGetStatus() and GetStatus() remain 0, and STATUS=RUNNING until the scan finishes. The Count and Index are not
updated until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus() and GetStatus() are
updated to the current Count and Index, and STATUS=IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to the size of the FIFO
(32,768 samples). Count settings must be an integer multiple of the number of channels in the scan (see Count above).

Continuous scans

When running cbAInScan()/AInScan() with the CONTINUOUS option, you should consider the packet size and the number of
channels being scanned. In order to keep the data aligned properly in the array, make the total number of samples an integer
multiple of the packet size and the number of channels.

When running cbAInScan()/AInScan() with the CONTINUOUS option, you must set the count to an integer multiple of the packet
size (62) and the number of channels in the scan.

Page 114 of 700

USB-1616HS Series
The USB-1616HS Series includes the following hardware:

n USB-1616HS

n USB-1616HS-2

n USB-1616HS-4

The USB-1616HS Series support the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), >cbAPretrig()*

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), APretrig()*

* Pretrigger capability is implemented in software. PretrigCount must be less than the TotalCount and cannot exceed 100000
samples. TotalCount must be greater than the PretrigCount. If a trigger occurs while the number of collected samples is less
than the PretrigCount, that trigger will be ignored. Requires a call to cbSetTrigger/SetTrigger for the analog trigger type.

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER*

* With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan

0 to 15 in single-ended mode (0 to 63 single-ended if the AI-EXP48 expansion board is installed.)

0 to 7 in differential mode. (0 to 31 differential if the AI-EXP48 expansion board is installed.)

Rate

Up to 1 MHz

Range

Analog output (USB-1616HS-4 and USB-1616HS-2 only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

NONSTREAMEDIO can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO holds 524288
samples.

HighChan

USB-1616HS-4: 0 to 3

USB-1616HS-2: 0 to 1

Rate

1 MHz

Range

Ignored - not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

BIP10VOLTS (±10 volts) BIPPT5VOLTS (±0.5 volts)

BIP5VOLTS (±5 volts) BIPPT2VOLTS (±0.2 volts)

BIP2VOLTS (±2 volts) BIPPT1VOLTS (±0.1 volts)

BIP1VOLTS (±1 volts)

Page 115 of 700

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions.

Configuration

Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

Port I/O

Functions

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

*FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to DIO PortNum in the Hardware
Considerations section for more information.

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, WORDXFER, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

n The EXTTRIGGER option can only be used with the cbDInScan() function. You can use the cbSetTrigger() function to program
the trigger for rising edge, falling edge, or the level of the digital trigger input (TTL).

n The WORDXFER option can only be used with FIRSTPORTA.

n The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with the cbDOutScan() function.

n The NONSTREAMEDIO option can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO
holds 524288 samples.

Rate

12 MHz

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DataValue

0 to 255

0 to 65,535 using the WORDXFER option with FIRSTPORTA

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 23

Counter Input
Functions

UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan, CInScan(), CClear()

Note: Counters on these boards are zero-based (the first counter number is "0").

Rate

6 MHz

CounterNum

0 to 3

Options

Page 116 of 700

BACKGROUND, CONTINUOUS, EXTTRIGGER

You can use the cbSetTrigger() function to program the trigger for rising edge, falling edge, or the level of the digital trigger
input (TTL).

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type in the Universal Library Description and Use section for
information on 16-bit values using unsigned integers.)

Timer Output
Functions

UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

TimerNum

0 to 1

Frequency

15.260 Hz to 1.0 MHz

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not supported for pre-trigger acquisitions (cbAPretrig
() function).

Analog triggering (TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the cbCInScan() function.

Threshold

Analog hardware triggering, 12-bit resolution: 0 to 4,095 (supported for cbAInScan() only)

Analog software triggering, 16-bit resolution: 0 to 65,535 (supported for cbAPretrig() only)

Temperature Input
Functions

UL: cbTIn(), cbTInScan(), cbGetTCValues()

UL for .NET: TIn(), TInScan(), GetTCValues()

Options

NOFILTER

Scale

CELSIUS, FAHRENHEIT, KELVIN

HighChan

0 to 7 (0 to 31 if the AI-EXP48 expansion board is installed.)

DAQ Input
Functions

UL: cbDaqInScan()

UL for .NET: DaqInScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER

ChanTypeArray

ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, CJC, TC, SETPOINTSTATUS

When mixing the ANALOG channel type with any other input types, the ANALOG channels should be first in the list.

Note: For information on associating CJC channels with TC channels, refer to the Associating CJC channels with TC channels
discussion in the Hardware considerations section below.

Page 117 of 700

ChanArray

ANALOG:

n 0 to 15 in single-ended mode

n 0 to 7 in differential mode (0 to 63 single-ended, 0 to 31 differential if the AI-EXP48 expansion board is installed.)

DIGITAL8: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DIGITAL16: FIRSTPORTA

CTR16: 0-3 counters

CTR32LOW: 0-3 counters

CTR32HIGH: 0-3 counters

CJC: 0 to 5 (0 to 11 if the AI-EXP48 is installed.)

TC: 0 to 7 (0 to 31 if the AI-EXP48 is installed.)

SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible setpoints.

ChanTypeArray flag value:

n SETPOINT_ENABLE: Enables a setpoint. Refer to the Setpoints discussion in the Hardware considerations section below for
more information.

Rate

Analog: Up to 1 MHz.

Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

GainArray

ANALOG only; ignore for other ChanTypeArray values.

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

BIP2VOLTS (±2 volts)

BIP1VOLTS (±1 volts)

BIPPT5VOLTS (±0.5 volts)

BIPPT2VOLTS (±0.2 volts)

BIPPT1VOLTS (±0.1 volts)

PretrigCount

100000 max

DAQ Triggering
Functions

UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

TrigSource

TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW, TRIG_DIGPATTERN, TRIG_COUNTER,
TRIG_SCANCOUNT

TrigSense

RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent

START_EVENT, STOP_EVENT

DAQ Setpoint
Functions

UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

SetpointFlagsArray

SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB, SF_OUTSIDE_LIMITS, SF_HYSTERESIS,

Page 118 of 700

SF_UPDATEON_TRUEONLY, SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray

SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1

Also available for USB-1616HS-2:

SO_DAC0, SO_DAC1

Also available for USB-1616HS-4:

SO_DAC0, SO_DAC1, SO_DAC2, SO_DAC3

LimitAArray

Any value valid for the associated input channel.

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray

Any value valid for the associated input channel and less than LimitA.

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array

For SetpointOutputArray = SO_NONE: Ignored

For SetpointOutputArray = SO_FIRSTPORTC: 0 to 65,535

For SetpointOutputArray = SO_TMR#: 0 (to disable the timer) or 15.26 to 1000000 (to set the output frequency)

For SetpointOutputArray = SO_DAC#: Voltage values between -10 and +10

OutputMask#Array

For SetpointOutputArray = SO_FIRSTPORTC: 0 to 65,535

For SetpointOutputArray = all other values: Ignored

SetpointCount

0 (to disable setpoints) to 16

DAQ Output (USB-1616HS-4 and USB-1616HS-2 only)
Functions

UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

ChanType

ANALOG, DIGITAL16

ChanArray

ANALOG:

n USB-1616HS-4: 0 to 3

n USB-1616HS-2: 0 to 1

DIGITAL16:

n FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate

ANALOG: Up to 1 MHz

DIGITAL16: Up to 12 MHz (system-dependent) if no analog channel is selected. Otherwise up to 1 MHz.

Range

BIP10VOLTS (±10 volts)

Hardware considerations
Associating CJC channels with TC channels

The TC channels must immediately follow their associated CJC channels in the channel array. For accurate thermocouple readings,
associate CJC channels with the TC channels as listed in the following table:

CJC channels TC channels

Page 119 of 700

The board must be configured for differential inputs when using thermocouples. TC inputs are supported by differential mode
configuration only.

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a BADCOUNT error is
returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling rates when using
BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use NONSTREAMEDIO mode, if
supported.

The minimum size buffer is 256 for cbAOutScan(). Values less than that result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning multiple channels and
one or more channels are connected to a high impedance source, you may get better results by increasing the settling time. Keep
in mind that increasing the settling time reduces the maximum acquisition rate. You can set the time between A/D conversions with
the ADC Settling Time option in InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray argument values. You set
the setpoint criteria with the cbDaqSetSetpoints()/DaqSetSetpoints(). The number of channels set with the SETPOINT_ENABLE flag
must match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The aggregate size of the data
output buffer must be less than or equal to the size of the internal data output FIFO in the device. This allows the data output buffer
to be loaded into the device's internal output FIFO. Once the sample updates are transferred or downloaded to the device, the
device is responsible for outputting the data. You can't make any changes to the output buffer once the output begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCK option to trigger a data output operation upon the start of the ADC clock.

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are treated as one 16-bit port.
These functions can only be used with FIRSTPORTA. You must configure both FIRSTPORTA and FIRSTPORTB for output using the
cbDConfigPort() function.

Synchronous scanning with multiple boards

You can operate up to four USB-1616HS Series boards synchronously by setting the direction of the A/D and D/A pacer pins (APR
or DPR) in InstaCal.

On the board used to pace each device, set the pacer pin that you want to use (APR or DPR) for Output. On the board(s) that you
want to synchronize with this board, set the pacer pin that you want to use (APR or DPR) for Input.

You set the direction using the InstaCal configuration dialog's APR Pin Direction and DPR Pin Direction settings.

Wire the pacer pin configured for output to each of the pacer input pins that you want to synchronize.

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/CConfigScan() Mode argument values
to set a specified counter to encoder mode, set the encoder measurement mode to X1, X2, or X4, and then set the count to be
latched either by the internal "start of scan" signal (default) or by the signal on the mapped channel.

You can optionally perform the following operations:

n Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When the mapped

CJC0 TC0

CJC1 TC1 and TC2

CJC2 TC3

CJC3 TC4

CJC4 TC5 and TC6

CJC5 TC7

When the AI-EXP48 board is installed:

CJC6 TC8 through TC11

CJC7 TC12 through TC15

CJC8 TC16 through TC19

CJC9 TC20 through TC23

CJC10 TC24 through TC27

CJC11 TC28 through TC31

Page 120 of 700

channel is low, the counter is disabled but holds the count value.

n Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

n Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) channel. By default, "clear on Z" is
disabled, and the counter is not cleared.

Asynchronous reads

The CConfigScan() method's Bit32 counter mode option only affects counter resolution for asynchronous calls (CIn() and CIn32()),
and only when the counter is configured for StopAtMax.

This mode is recommended for use only with CIn32(). Using the Bit32 option with CIn() is not very useful, since the value returned
by CIn() is only 16 bits. The effect is that the value returned by CIn() rolls over 65,535 times before stopping.

Page 121 of 700

USB-1616HS-BNC
The USB-1616HS-BNC support the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbAPretrig()*

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), APretrig()*

* Pretrigger capability is implemented in software. PretrigCount must be less than the TotalCount and cannot exceed 100000
samples. TotalCount must be greater than the PretrigCount. If a trigger occurs while the number of collected samples is less
than the PretrigCount, that trigger will be ignored. Requires a call to cbSetTrigger/SetTrigger for the analog trigger type.

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER*

* With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan

0 to 15 (only differential mode is available)

Rate

Up to 1 MHz

Range

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

NONSTREAMEDIO can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO holds 524288
samples.

HighChan

0 to 1

Rate

1 MHz

Range

Ignored - not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions.

Configuration

Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

BIP10VOLTS (±10 volts) BIPPT5VOLTS (±0.5 volts)

BIP5VOLTS (±5 volts) BIPPT2VOLTS (±0.2 volts)

BIP2VOLTS (±2 volts) BIPPT1VOLTS (±0.1 volts)

BIP1VOLTS (±1 volts)

Page 122 of 700

FIRSTPORTA, FIRSTPORTB

Port I/O

Functions

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

*FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to DIO PortNum in the Hardware
Considerations section for more information.

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, WORDXFER, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

n The EXTCLOCK option can only be used with cbDInScan()/DInScan().

n The EXTTRIGGER option can only be used with cbDInScan()/DInScan(). You can use cbSetTrigger() to program the trigger
for rising edge, falling edge, or the level of the digital trigger input (TTL).

n The WORDXFER option can only be used with FIRSTPORTA.

n The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with cbDOutScan()/DOutScan().

n The NONSTREAMEDIO option can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO
holds 524288 samples.

Rate

12 MHz

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 255

0 to 65,535 using the WORDXFER option with FIRSTPORTA

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 23

Counter Input
Functions

UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan, CInScan(), CClear()

Note: Counters on these boards are zero-based (the first counter number is "0").

Rate

6 MHz

CounterNum

0 to 3

Options

BACKGROUND, CONTINUOUS, EXTTRIGGER

You can use cbSetTrigger()/SetTrigger() to program the trigger for rising edge, falling edge, or the level of the digital trigger
input (TTL).

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type in the Universal Library Description and Use section for
information on 16-bit values using unsigned integers.)

Timer Output

Page 123 of 700

Functions

UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

TimerNum

0 to 1

Frequency

15.260 Hz to 1.0 MHz

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not supported for pre-trigger acquisitions (cbAPretrig
() function).

Analog triggering (TRIGABOVE, TRIGBELOW) is not supported for cbDInScan() and cbCInScan().

Threshold

Analog hardware triggering, 12-bit resolution: 0 to 4,095 (supported for cbAInScan()/AInScan only).

Analog software triggering, 16-bit resolution: 0 to 65,535 (supported for cbAPretrig()/APreTrig() only)

DAQ Input
Functions

UL: cbDaqInScan()

UL for .NET: DaqInScan()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER

ChanTypeArray

ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, CJC, TC, SETPOINTSTATUS

When mixing the ANALOG channel type with any other input types, the ANALOG channels should be first in the list.

ChanArray

ANALOG:

n 0 to 15 (only differential mode available)

DIGITAL8: FIRSTPORTA, FIRSTPORTB

DIGITAL16: FIRSTPORTA

CTR16: 0-3 counters

CTR32LOW: 0-3 counters

CTR32HIGH: 0-3 counters

CJC: 0 to 5 (0 to 11 if the AI-EXP48 is installed.)

TC: 0 to 7 (0 to 31 if the AI-EXP48 is installed.)

SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible setpoints.

ChanTypeArray flag value:

n SETPOINT_ENABLE: Enables a setpoint. Refer to the Setpoints discussion in the Hardware considerations section below for
more information.

Rate

Analog: Up to 1 MHz.

Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

GainArray

Page 124 of 700

ANALOG only; ignore for other ChanTypeArray values.

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

BIP2VOLTS (±2 volts)

BIP1VOLTS (±1 volts)

BIPPT5VOLTS (±0.5 volts)

BIPPT2VOLTS (±0.2 volts)

BIPPT1VOLTS (±0.1 volts)

PretrigCount

100000 max

DAQ Triggering
Functions

UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

TrigSource

TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW, TRIG_DIGPATTERN, TRIG_COUNTER,
TRIG_SCANCOUNT

TrigSense

RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent

START_EVENT, STOP_EVENT

DAQ Setpoint
Functions

UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

SetpointFlagsArray

SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB, SF_OUTSIDE_LIMITS, SF_HYSTERESIS,
SF_UPDATEON_TRUEONLY, SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray

SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1, SO_DAC0, SO_DAC1

LimitAArray

Any value valid for the associated input channel.

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray

Any value valid for the associated input channel and less than LimitA.

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array

For SetpointOutputArray = SO_NONE: Ignored

For SetpointOutputArray = SO_TMR#: 0 (to disable the timer) or 15.26 to 1000000 (to set the output frequency)

For SetpointOutputArray = SO_DAC#: Voltage values between -10 and +10

OutputMask#Array

Ignored

SetpointCount

0 (to disable setpoints) to 16

DAQ Output (USB-1616HS-4 and USB-1616HS-2 only)
Functions

UL: cbDaqOutScan()

Page 125 of 700

UL for .NET: DaqOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, NONSTREAMEDIO, SIMULTANEOUS

ChanType

ANALOG, DIGITAL16

ChanArray

ANALOG: 0 to 1

DIGITAL16: FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate

ANALOG: Up to 1 MHz

DIGITAL16: Up to 12 MHz (system-dependent) if no analog channel is selected. Otherwise up to 1 MHz.

Range

BIP10VOLTS (±10 volts)

Hardware considerations
Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a BADCOUNT error is
returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling rates when using
BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use NONSTREAMEDIO mode, if
supported.

The minimum size buffer is 256 for cbAOutScan()/AOutScan(). Values less than that result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning multiple channels and
one or more channels are connected to a high impedance source, you may get better results by increasing the settling time. Keep
in mind that increasing the settling time reduces the maximum acquisition rate. You can set the time between A/D conversions with
the ADC Settling Time option in InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray argument values. Set the
setpoint criteria with cbDaqSetSetpoints()/DaqSetSetpoints(). The number of channels set with the SETPOINT_ENABLE flag must
match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The aggregate size of the data
output buffer must be less than or equal to the size of the internal data output FIFO in the device. The FIFO holds 524288 samples.
This allows the data output buffer to be loaded into the device's internal output FIFO. Once the sample updates are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't make any changes to the output buffer once
the output begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCK option to trigger a data output operation upon the start of the ADC clock.

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are treated as one 16-bit port.
These functions can only be used with FIRSTPORTA. You must configure both FIRSTPORTA and FIRSTPORTB for output using
cbDConfigPort()/DConfigPort().

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/CConfigScan() Mode argument values
to set a specified counter to encoder mode, set the encoder measurement mode to X1, X2, or X4, and then set the count to be
latched either by the internal "start of scan" signal (default) or by the signal on the mapped channel.

You can optionally perform the following operations:

n Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When the mapped
channel is low, the counter is disabled but holds the count value.

n Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

n Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) channel. By default, "clear on Z" is
disabled, and the counter is not cleared.

Page 126 of 700

USB-204, USB-201
The USB-204 and USB-201 supports the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Options

BACKGROUND, BLOCKIO*, CONTINUOUS, EXTCLOCK, EXTTRIGGER, RETRIGMODE**, NOCALIBRATEDATA, SINGLEIO

*The USB-204 packet size is based on the Options setting:

BLOCKIO: 31

SINGLEIO: 1

**RETRIGMODE can only be used with cbAInScan()/AInScan().

HighChan

0 to 7 in single-ended mode

0 to 3 in differential mode

Count

In CONTINUOUS mode, Count must be an integer multiple of the packet size.

Rate

USB-204: 1 MS/s

USB-201: 100 kS/s

The throughput depends on the system being used. Most systems can achieve 40 kHz aggregate.

When using cbAInScan()/AInScan(), the minimum sample rate is 1 Hz.

Range

BIP10VOLTS (±10 volts)

Pacing

Hardware pacing, internal clock supported.

External clock supported via the PACER_IN pin.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE

TRIGNEGEDGE

Both products support external digital (TTL) hardware triggering. Use the DTRIG input (pin # 18 on the screw terminal) for the
external trigger signal.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration Functions

UL: cbDConfigPort()

UL for .NET:DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

Port I/O Functions

UL: cbDIn(), cbDOut()

Page 127 of 700

UL for .NET:DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 15 for on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn()/CIn() are valid for use with this counter, cbCIn32()/CIn32() may be more appropriate, since the values
returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad()/CLoad() and cbCLoad32()/CLoad32() are only used to reset the counter for this device to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards section apply when using cbCIn() or CIn()
for values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Event notification
Functions

UL: cbEnableEvent(),cbDisableEvent()

UL for .NET: EnableEvent(),DisableEvent()

Event types

ON_SCAN_ERROR (analog input and analog output), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer, use this function to
identify a particular device by making its LED blink.

Hardware considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. The Universal Library cannot always detect this data loss.

Most systems can sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1 kS/s aggregate in SINGLEIO mode.

Page 128 of 700

EXTCLOCK

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To configure the pin for
pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test or calibrate the
device with InstaCal, as the SYNC pin drives the output.

Repetitive trigger events

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with
cbSetConfig() to set the A/D trigger count, and the ConfigItem option BIDACTRIGCOUNT to set the D/A trigger count.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and 2,047). However, the
Universal Library maps this data to 12-bit values, so the range of data is no different from the differential configuration.
Consequently, the data returned contains only even numbers between 0 and 4,094 when the NOCALIBRATEDATA option is used.

Continuous scans

When running cbAInScan()/ AInScan() with the CONTINUOUS option, consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, set the total number of samples to be an integer multiple of the
packet size and the number of channels in the scan.

Channel-gain queue

When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to 16 elements.

The queue accepts any combination of valid channels and gains in each element.

Page 129 of 700

USB-2404-60, USB-2404-10
The USB-2404-60 and USB-2404-10 support the following UL and UL for .NET features:

Analog input
Functions

UL: cbAIn32(), cbVIn32(), cbAInScan(), cbALoadQueue()*

UL for .NET: AIn32(), VIn32(), AInScan(), ALoadQueue()*

*The queue can contain up to four elements of unique channel values. The gain elements are ignored.

Options

BACKGROUND, CONTINUOUS, BLOCKIO, NOCALIBRATEDATA, SCALEDATA

HighChan

0 to 3

Count

When using input scanning, the Count must be an integer multiple of the number of channels in the scan.

Rate

From 1.612 kS/s up to 50 kS/s per channel

Range

USB-2404-60: Ignored - not programmable; fixed at BIP60VOLTS (±60 volts)

USB-2404-10: Ignored - not programmable; fixed at BIP10VOLTS (±10 volts)

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

UL: ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_SCAN_ERROR

UL for .NET: OnDataAvailable, OnEndOfAiScan, OnScanError

Hardware considerations
Scan rate

When scanning at low rates, make sure you account for the granularity of the rate at low speeds by checking the returned rate
value.

If you enter a scan rate between 1 kS/s and <1.612 kS/s, the rate is converted to 1.612 kS/s.

Retrieving data from the Windows buffer

Since these are high resolution devices, use cbWinBufAlloc32()/WinBufAlloc32() to specify the buffer size when scanning data. To
retrieve data from the buffer, call cbWinBufToArray32()/WinBufToArray32().

Page 130 of 700

USB-2404-UI
The USB-2404-UI supports the following UL and UL for .NET features:

Analog input
Functions

UL: cbAIn32(), cbVIn32(), cbAInScan()

UL for .NET: AIn32(), VIn32(), AInScan()

Options

BACKGROUND, CONTINUOUS, BLOCKIO, HIGHRESRATE, SCALEDATA

HighChan

0 to 3

Count

When using input scanning, Count must be an integer multiple of the number of channels in the scan.

Rate

No channels configured in TC mode:

n High speed mode: 100 Hz

n Best 60 Hz rejection: 9.09 Hz

n Best 50 Hz rejection: 7.69 Hz

n High resolution: 2 Hz

One or more channels configured in TC mode:

n High speed mode: 50 Hz

n Best 60 Hz rejection: 8.33 Hz

n Best 50 Hz rejection: 7.14 Hz

n High resolution: 1.96 Hz

Range

The Range argument is ignored when channels are configured for other input modes.

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

UL: ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_SCAN_ERROR

UL for .NET: OnDataAvailable, OnEndOfAiScan, OnScanError

Miscellaneous
Functions

UL: cbTEDSRead()

UL for .NET: TEDSRead()

Reads data from a TEDS sensor into an array.

Voltage mode:

BIP60VOLTS (±60 volts)

BIP15VOLTS (±15 volts)

BIP4VOLTS (±4 volts)

BIP1VOLTS (±1 volts)

BIPPT125VOLTS (±0.125 volts)

Page 131 of 700

Hardware considerations
VIn32()

Only use cbVIn32()/VIn32() when the channel type is set to Voltage. Using this method with other channel types will return a
BadADChannel error.

HIGHRESRATE

Specify this scan option with cbAInScan()/AInScan to acquire data at a high resolution rate. When specified, the rate at which
samples are acquired is in "samples per 1000 seconds per channel".

Retrieving data from the Windows buffer

Since the USB-2404-UI is a high resolution device, use cbWinBufAlloc32()/WinBufAlloc32() to specify the buffer size when scanning
data. To retrieve data from the buffer, call cbWinBufToArray32()/WinBufToArray32().

Page 132 of 700

USB-2408 Series
The USB-2408 Series includes the following devices:

n USB-2408

n USB-2408-2AO

The USB-2408 Series supports the following UL and UL for .NET features.

Analog voltage input
Functions

UL: cbAIn32(), cbAInScan(), cbALoadQueue(), cbATrig(), cbVIn(), cbVIn32()

UL for .NET: AIn32(), AInScan(), ALoadQueue(), ATrig(), VIn(), VIn32()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, HIGHRESRATE, NOCALIBRATEDATA, SCALEDATA, SINGLEIO

HighChan

0 to 15

While the entire range of channels listed above is always available, one channel is effectively lost for each channel configured for
differential mode. Refer to Analog input mode in the Hardware Considerations section below for more information.

Rate

0 to 1,102 S/s with the data rate set at maximum (3,750 Hz).

The maximum scan rate depends upon the data rate set for the channel(s) in the scan. Refer to Maximum scan rate in the
Hardware considerations section below for more information.

When the Rate argument is set to 0, the scan will run at the maximum permissible rate according to the data rate set for each
channel.

Range

Analog voltage input functions used on any analog input channel configured for thermocouple inputs will either return a voltage
using the BIPPT078VOLTS (±0.078125 volts) scale or, when using cbAIn32()/AIn32(), will return an error. cbALoadQueue
()/ALoadQueue() will also return an error if a range other than BIPPT078VOLTS is applied to a thermocouple channel.

Temperature input
Functions

UL: cbTIn(), cbTInScan()*

UL for .NET: TIn(), TInScan()*

* Only channels that are configured as thermocouples will be converted to temperature. Other channels included in cbTInScan
()/TInScan() will be converted to voltage using the BIPPT078VOLTS (±0.078125 volts) range.

Scale

CELSIUS, FAHRENHEIT, KELVIN, NOSCALE*

* Refer to NOSCALE in the Hardware considerations section below for more information on this option. This parameter has no
effect on channels configured for voltage input.

HighChan

0 to 7

Analog voltage output (USB-2408-2A0 only)
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

Voltage mode

BIP10VOLTS (±10 volts) BIPPT625VOLTS (±0.625 volts)

BIP5VOLTS (±5 volts) BIPPT312VOLTS (±0.3125 volts)

BIP2PT5VOLTS (±2.5 volts) BIPPT156VOLTS (±0.15625 volts)

BIP1PT25VOLTS (±1.25 volts) BIPPT078VOLTS (±0.078125 volts)

Thermocouple mode

BIPPT078VOLTS (±0.078125 volts)

Page 133 of 700

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS

HighChan

0 to 1

Rate

1 kHz, aggregate

Range

BIP10VOLTS (±10 volts)

Packet size

32 samples

Data value

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, internal clock supported.

Digital I/O
Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA

DataValue

0 to 255

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 7

Counter input
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

0 to 1

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter for this board to 0. No other values are
valid.

The Visual Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using

Page 134 of 700

cbCIn32() or CIn32() for values greater than 2,147,483,647.

Configuration
Functions

UL: cbGetConfig(), cbSetConfig()

InfoType

BOARDINFO

ConfigItem

BIFACTORYID

String configuration
Functions

UL: cbGetConfigString(), cbSetConfigString()

InfoType

BOARDINFO

ConfigItem

BINODEID, BIFACTORYID*

* BIFACTORYID is read-only, and is not supported by cbSetConfigString()/SetConfigString().

maxConfigLen

At least 64 for BINODEID

Event notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event Types

UL: ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_SCAN_ERROR

UL for .NET: OnDataAvailable, OnEndOfAiScan, OnScanError

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware considerations
Analog input mode

The USB-2408 and USB-2408-2AO have 16 analog inputs that are individually software configurable as single-ended or differential.
Although all 16 channels are always available to the Universal Library, for each channel configured as differential you essentially
lose one single-ended channel. Reading channels 8 through 15 will return a single-ended result for those channels, but if the
associated channel is configured as differential, doing so would not be practical in most applications. For example, if channel 0 is
configured as differential, reading channel 8 is valid, but of limited practical usefulness, since the connection would be one-half of a
differential signal.

Scanning both voltage and thermocouple inputs

Voltage and TC inputs can be mixed in the scan operation. Voltage inputs can be either single-ended or differential; TC inputs must
be differential. The AInScan() operation creates an array of raw data in 24-bit counts. When scanning both voltage and TC inputs,
allocate the buffer with ScaledWinBuffAlloc(), and allocate the array as type Double. Call AInScan()'s ScaleData option to convert
the raw scan data to either voltage or temperature. Call ScaledWinBufToArray() to copy the double-precision values from the
buffer to the array.

NOSCALE

Specify the NOSCALE option to retrieve raw data from the device. When NOSCALE is specified, calibrated data is returned, although
a cold junction compensation (CJC) correction factor is not applied to the returned values.

Maximum scan rate

Page 135 of 700

The actual maximum scan rate depends upon the data rate set for the channel(s) in the scan. For n channels whose data rates are
f1 , f2 ... fn, the maximum scan rate fmax can be calculated from the following equation:

1/fmax = (640 μsec + 1/f1) + (640 μsec + 1/f2) + (640 μsec + 1/fn)

Refer to the Specifications chapter in the hardware user's guide for the maximum throughput rate calculated for each selectable
A/D data rate per number of input channels.

Scanning multiple channels at low data rates

When scanning multiple channels at low data rates, a BADRATE error may be returned if the Rate parameter is set too high for the
number of channels in the scan. For example, when scanning multiple channels with the data rate set to 2.5 Hz, the maximum
number of input channels using an integer scan rate is two, since the Universal Library doesn't accept non-integer rates.

To resolve this limitation, set the Rate parameter to 0. The Library will calculate the fastest allowable rate using the maximum scan
rate equation, and run the scan at the calculated rate. The value returned to the Rate parameter will be the calculated value
rounded to the nearest integer. Note that the Rate parameter may return 0, even though the fastest allowable rate was used for the
conversion.

Refer to the Specifications chapter in the hardware user's guide for the maximum scan rate calculated for each selectable A/D data
rate per number of input channels.

HIGHRESRATE

Specify the HIGHRESRATE scan option with cbAInScan()/AInScan to acquire data at a high resolution rate. When specified, the rate
at which samples are acquired is in "samples per 1000 seconds per channel".

Channel count

For output scans, the count must be set to an integer multiple of the number of channels or a BADCOUNT error is returned.

Digital I/O channels

The state of each digital line can be read whether it is being used for output or for input. Each digital channel is an open-drain, and
can either be driven low or allowed to float. If the digital line is intended to be used as an input, make sure that line is not driven
low. A digital line is driven low by writing a logical "1" to the bit associated with the line. Implied in this is that the output function
"inverts", so if all lines are driven low by writing a value of 255 to the port, the value read back will be 0.

Device identifier

You can enter up to 64 characters for the value of the device's text identifier using the ConfigItem option BINODEID with
cbSetConfigString().

Page 136 of 700

USB-2416 Series
The USB-2416 Series includes the following devices:

n USB-2416

n USB-2416-4AO

The USB-2416 Series support the following UL and UL for .NET features.

Analog voltage input
Functions

UL: cbAIn32(), cbAInScan(), cbALoadQueue(), cbVIn(), cbVIn32()

UL for .NET: AIn32(), AInScan(), ALoadQueue(), VIn(), VIn32()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, HIGHRESRATE, NOCALIBRATEDATA, SCALEDATA, SINGLEIO

HighChan

0 to 31*

0 to 63* when the AI-EXP32 expansion board is installed.

* While the entire range of channels listed above is always available, one channel is effectively lost for each channel configured
for differential mode. Refer to Analog input mode in the Hardware Considerations section below for more information.

Rate

0 to 1,102 S/s with the data rate set at maximum (3,750 Hz).

The maximum scan rate depends upon the data rate set for the channel(s) in the scan. Refer to Maximum scan rate in the
Hardware considerations section below for more information.

When the Rate argument is set to 0, the scan will run at the maximum permissible rate according to the data rate set for each
channel.

Range

Analog voltage input functions used on any analog input channel configured for thermocouple inputs will either return a voltage
using the BIPPT078VOLTS (±0.078125 volts) scale or, in the case of cbAIn32()/AIn32(), will return an error. cbALoadQueue
()/ALoadQueue() will also return an error if a range other than BIPPT078VOLTS is applied to a thermocouple channel.

Temperature input
Functions

UL: cbTIn(), cbTInScan()*

UL for .NET: TIn(), TInScan()*

* Only channels that are configured as thermocouples will be converted to temperature. Other channels included in cbTInScan
()/TInScan() will be converted to voltage using the BIPPT078VOLTS (±0.078125 volts) range.

Scale

CELSIUS, FAHRENHEIT, KELVIN, NOSCALE*

* Refer to NOSCALE in the Hardware considerations section below for more information on this option. This parameter has no
effect on channels configured for voltage input.

HighChan

0 to 15 (0 to 31 if the AI-EXP32 expansion board is installed.)

Analog voltage output (USB-2416-4AO only)
Functions

Voltage mode

BIP20VOLTS (±20 volts) BIPPT625VOLTS (±0.625 volts)

BIP10VOLTS (±10 volts) BIPPT312VOLTS (±0.3125 volts)

BIP5VOLTS (±5 volts) BIPPT156VOLTS (±0.15625 volts)

BIP2PT5VOLTS (±2.5 volts) BIPPT078VOLTS (±0.078125 volts)

BIP1PT25VOLTS (±1.25 volts)

Thermocouple mode

BIPPT078VOLTS (±0.078125 volts)

Page 137 of 700

Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS

HighChan

0 to 3

Rate

1 kHz, aggregate

Range

Ignored; fixed at BIP10VOLTS (±10 volts)

Packet size

32 samples

Data value

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, internal clock supported.

Digital I/O
Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA (FIRSTPORTA, FIRSTPORTB and FIRSTPORTC when the AI-EXP32 expansion board is installed.)

DataValue

0 to 255

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 7 (0-23 when the AI-EXP32 expansion board is installed.)

Counter input
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

0 to 1

Count

232-1 when reading the counter.

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter for this board to 0. No other values are
valid.

Page 138 of 700

The Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using cbCIn32
() or CIn32() for values greater than 2,147,483,647.

Configuration
Functions

UL: cbGetConfig(), cbSetConfig()

InfoType

BOARDINFO

String configuration
Functions

UL: cbGetConfigString(), cbSetConfigString()

InfoType

BOARDINFO

ConfigItem

BINODEID, BIFACTORYID*

* BIFACTORYID is read-only, and is not supported by cbSetConfigString()/SetConfigString().

maxConfigLen

At least 64 for BINODEID

Event notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event Types

UL: ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_SCAN_ERROR

UL for .NET: OnDataAvailable, OnEndOfAiScan, OnScanError

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware considerations
Analog input mode

The USB-2416 Series has 32 analog inputs that are individually software configurable as single-ended or differential. Although all 32
channels are always available to the Universal Library, for each channel configured as differential you essentially lose one single-
ended channel. Reading channels 16 through 31 will return a single-ended result for those channels, but if the associated channel is
configured as differential, doing so would not be practical in most applications. For example, if channel 0 is configured as
differential, reading channel 16 is valid, but of limited practical usefulness, since the connection would be one-half of a differential
signal. Additional channels can be added through connection to the AI-EXP32 expansion board.

TC inputs are supported by differential configuration only.

Scanning both voltage and thermocouple inputs

Voltage and TC inputs can be mixed in the scan operation. Voltage inputs can be either single-ended or differential; TC inputs must
be differential. The AInScan() operation creates an array of raw data in 24-bit counts. When scanning both voltage and TC inputs,
allocate the buffer with ScaledWinBuffAlloc(), and allocate the array as type Double. Call AInScan()'s ScaleData option to convert
the raw scan data to either voltage or temperature. Call ScaledWinBufToArray() to copy the double-precision values from the
buffer to the array.

NOSCALE

Specify the NOSCALE option to retrieve raw data from the device. When NOSCALE is specified, calibrated data is returned, although
a cold junction compensation (CJC) correction factor is not applied to the returned values.

Maximum scan rate

Page 139 of 700

The actual maximum scan rate depends upon the data rate set for the channel(s) in the scan. Refer to the Specifications chapter in
the hardware User's Guide for the maximum scan rate calculated for each selectable A/D data rate per number of input channels.
For n channels whose data rates are f1 , f2 ... fn, the maximum scan rate fmax can be calculated from the following equation:

1/fmax = (640 μsec + 1/f1) + (640 μsec + 1/f2) + (640 μsec + 1/fn)

Refer to the Specifications chapter in the hardware User's Guide for the maximum scan rate calculated for each selectable A/D data
rate per number of input channels.

Scanning multiple channels at low data rates

When scanning multiple channels at low data rates, a BADRATE error may be returned if the Rate parameter is set too high for the
number of channels in the scan. For example, when scanning multiple channels with the data rate set to 2.5 Hz, the maximum
number of input channels using an integer scan rate is two, since the Universal Library doesn't accept non-integer rates.

To resolve this limitation, set the Rate parameter to 0. The Library will calculate the fastest allowable rate using the maximum scan
rate equation, and run the scan at the calculated rate. The value returned to the Rate parameter will be the calculated value
rounded to the nearest integer. Note that the Rate parameter may return 0, even though the fastest allowable rate was used for the
conversion.

Refer to the Specifications chapter in the hardware User's Guide for the maximum scan rate calculated for each selectable A/D data
rate per number of input channels.

HIGHRESRATE

Specify the HIGHRESRATE scan option with cbAInScan()/AInScan to acquire data at a high resolution rate. When specified, the rate
at which samples are acquired is in "samples per 1000 seconds per channel".

Channel count

For output scans, the count must be set to an integer multiple of the number of channels or a BADCOUNT error is returned.

Digital I/O channels

The state of each digital line can be read whether it is being used for output or for input. Each digital channel is an open-drain, and
can either be driven low or allowed to float. If the digital line is intended to be used as an input, make sure that line is not driven
low. A digital line is driven low by writing a logical "1" to the bit associated with the line. Implied in this is that the output function
"inverts", so if all lines are driven low by writing a value of 255 to the port, the value read back will be 0.

Device identifier

You can enter up to 64 characters for the value of the device's text identifier using the ConfigItem option BINODEID with
cbSetConfigString().

Page 140 of 700

USB-2500 Series
The USB-2500 Series includes the following hardware:

n USB-2523

n USB-2527

n USB-2533

n USB-2537

The USB-2500 Series supports the following UL and UL for .NET features.

Analog Input
UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbAPretrig()*, cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ALoadQueue(), APretrig()*, ATrig(), FileAInScan()

*Pretrigger capability is implemented in software. PretrigCount must be less than the TotalCount and cannot exceed 100,000
samples. If a trigger occurs while the number of collected samples is less than the PretrigCount, that trigger will be ignored.
Requires a call to cbSetTrigger/ SetTrigger for the analog trigger type.

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan

USB-2537, USB-2533: 0 to 63 in single-ended mode, 0 to 31 in differential mode

USB-2527, USB-2523: 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate

Up to 1 MHz

Range

Analog Output (USB-2537 and USB-2527 only)
UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, NONSTREAMEDIO, SIMULTANEOUS

NONSTREAMEDIO can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO holds 524,288
samples.

HighChan

0 to 3

Rate

1 MHz

Range

Ignored - Not programmable; fixed at BIP10VOLTS (±10 volts)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions.

BIP10VOLTS (±10 volts) BIPPT5VOLTS (±0.5 volts)

BIP5VOLTS (±5 volts) BIPPT2VOLTS (±0.2 volts)

BIP2VOLTS (±2 volts) BIPPT1VOLTS (±0.1 volts)

BIP1VOLTS (±1 volts)

Page 141 of 700

Configuration

Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

Port I/O

Functions

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

*FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to DIO PortNum in the Hardware
Considerations section for more information.

Options

ADCCLOCK, ADCCLOCKTRIG, BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, NONSTREAMEDIO, HIGHRESRATE,
WORDXFER

n The EXTTRIGGER option can only be used with the cbDInScan() function. You can use the cbSetTrigger() function to program
the trigger for rising edge, falling edge, or the level of the digital trigger input (TTL).

n The WORDXFER option can only be used with FIRSTPORTA.

n The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with the cbDOutScan() function.

n The NONSTREAMEDIO option can only be used with the number of samples set equal to the size of the FIFO or less. The FIFO
holds 524288 samples.

Rate

12 MHz

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DataValue

0 to 255

0 to 65,535 using the WORDXFER option with FIRSTPORTA

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 23

Counter Input
UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan, CInScan(), CClear()

Note: Counters on these devices are zero-based (the first counter number is "0").

Rate

6 MHz

CounterNum

0 to 3

Options

BACKGROUND, CONTINUOUS, EXTTRIGGER, HIGHRESRATE

You can use the cbSetTrigger() function to program the trigger for rising edge, falling edge, or the level of the digital trigger
input (TTL).

Page 142 of 700

LoadValue

0 to 65,535

The Visual Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using
cbCIn32() or CIn32() for values greater than 2,147,483,647.

Timer Output
UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

TimerNum

0 to 1

Frequency

15.260 Hz to 1.0 MHz

Triggering
UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not supported for pre-trigger acquisitions (cbAPretrig
() function).

Analog triggering (TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the cbCInScan() function.

Threshold

Analog hardware triggering, 12-bit resolution: 0 to 4,095 (supported for cbAInScan() only)

Analog software triggering, 16-bit resolution: 0 to 65,535 (supported for cbAPretrig() only)

Temperature Input
UL: cbTIn(), cbTInScan(), cbGetTCValues()

UL for .NET: TIn(), TInScan(), GetTCValues()

Options

NOFILTER

Scale

CELSIUS, FAHRENHEIT, KELVIN

HighChan

0 to 3

DAQ Input
UL: cbDaqInScan()

UL for .NET: DaqInScan()

Options

BACKGROUND, BLOCKIO, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

ChanTypeArray

ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, CJC, TC, SETPOINTSTATUS

When mixing ANALOG channel types with any other input types, the ANALOG channels should be the first in the list.

Note: For information on associating CJC channels with TC channels, refer to Hardware considerations below.

ChanArray

ANALOG:

n USB-2537, USB-2533: 0 to 63 in single-ended mode, 0 to 31 in differential mode

n USB-2527, USB-2523: 0 to 15 in single-ended mode, 0 to 7 in differential mode

DIGITAL8: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DIGITAL16: FIRSTPORTA

Page 143 of 700

CTR16: 0 to 3 counters

CTR32LOW: 0 to 3 counters

CTR32HIGH: 0 to 3 counters

CJC: 0 to 2

TC: 0 to 3

SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible setpoints.

ChanTypeArray flag value:

n SETPOINT_ENABLE: Enables a setpoint. Refer to "Setpoints" in Hardware Considerations below for more information.

Rate

Analog: Up to 1 MHz.

Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1 MHz.

GainArray

ANALOG only; ignore for other ChanTypeArray values.

BIP10VOLTS (±10 volts)

BIP5VOLTS (±5 volts)

BIP2VOLTS (±2 volts)

BIP1VOLTS (±1 volt)

BIPPT5VOLTS (±0.5 volt)

BIPPT2VOLTS (±0.2 volt)

BIPPT1VOLTS (±0.1 volt)

PretrigCount

100,000 max

DAQ Triggering
UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

TrigSource

TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW, TRIG_DIGPATTERN, TRIG_COUNTER,
TRIG_SCANCOUNT

TrigSense

RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent

START_EVENT, STOP_EVENT

DAQ Setpoint
UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

SetpointFlagsArray

SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB, SF_OUTSIDE_LIMITS, SF_HYSTERESIS,
SF_UPDATEON_TRUEONLY, SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray

SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1

Also available for USB-2537 and USB-2527:

SO_DAC0, SO_DAC1, SO_DAC2, SO_DAC3

LimitAArray

Any value valid for the associated input channel.

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray

Page 144 of 700

Any value valid for the associated input channel and less than LimitA.

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array

For SetpointOutputArray = SO_NONE: Ignored

For SetpointOutputArray = SO_FIRSTPORTC: 0 to 65,535

For SetpointOutputArray = SO_TMR#: 0 (to disable the timer) or 15.26 to 1,000,000 (to set the output frequency)

For SetpointOutputArray = SO_DAC#: Voltage values between –10 and +10

OutputMask#Array

For SetpointOutputArray = SO_FIRSTPORTC: 0 to 65,535

For SetpointOutputArray = all other values: Ignored

SetpointCount

0 (to disable setpoints) to 16

DAQ Output (USB-2537 and USB-2527 only)
UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO, ADCCLOCKTRIG, ADCCLOCK

ChanType

ANALOG, DIGITAL16

ChanArray

ANALOG: 0 to 3

DIGITAL16: FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate

ANALOG: Up to 1 MHz

DIGITAL16: Up to 12 MHz (system-dependent) if no analog channel is selected. Otherwise up to 1 MHz.

Range

Ignored

Hardware considerations
Associating CJC channels with TC channels

The TC channels must immediately follow their associated CJC channels in the channel array. For accurate thermocouple readings,
associate CJC0 with TC0, CJC1 with TC1 and TC2, and CJC2 with TC3.

The board must be configured for differential inputs when using thermocouples.

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a BADCOUNT error is
returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling rates when using
BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use NONSTREAMEDIO mode, if
supported.

The minimum size buffer is 256 for cbAOutScan(), cbDInScan(), and cbDOutScan(). Values less than 256 result in a
BADBUFFERSIZE error.

HIGHRESRATE

Specify the HIGHRESRATE scan option to acquire data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1,000 seconds per channel".

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning multiple channels and
one or more channels are connected to a high impedance source, you may get better results by increasing the settling time. Keep
in mind that increasing the settling time reduces the maximum acquisition rate. You can set the time between A/D conversions with
the ADC Settling Time option in InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

Page 145 of 700

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray argument values. You set
the setpoint criteria with cbDaqSetSetpoints()/DaqSetSetpoints(). The number of channels set with the SETPOINT_ENABLE flag must
match the number of setpoints set by the SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The aggregate size of the data
output buffer must be less than or equal to the size of the internal data output FIFO in the device. The FIFO holds 524288 samples.
This allows the data output buffer to be loaded into the device's internal output FIFO. Once the sample updates are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't change the output buffer once the output
begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCK option to trigger a data output operation upon the start of the ADC clock.

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are treated as one 16-bit port.
These functions can only be used with FIRSTPORTA. You must configure both FIRSTPORTA and FIRSTPORTB for output using the
cbDConfigPort() function.

Synchronous scanning with multiple boards

You can operate up to four USB-2500 Series boards synchronously by setting the direction of the A/D and D/A pacer pins (XAPCR
or XDPCR) in InstaCal.

On the board used to pace each device, set the pacer pin that you want to use (XAPCR or XDPCR) for Output. On the board(s) that
you want to synchronize with this board, set the pacer pin that you want to use (XAPCR or XDPCR) for Input.

Set the direction using the XAPCR Pin Direction and XDPCR Pin Direction settings on the InstaCal configuration dialog. If you
have an older version of InstaCal, these settings might be labeled "ADC Clock Output" (set to Enabled to configure XAPCR for
output) or "DAC Clock Output" (set to Enabled to configure XDPCR for output).

Wire the pacer pin configured for output to each of the pacer input pins that you want to synchronize.

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/CConfigScan() Mode argument values
to set a specified counter to encoder mode, set the encoder measurement mode to X1, X2, or X4, and then set the count to be
latched either by the internal "start of scan" signal (default) or by the signal on the mapped channel.

You can optionally perform the following operations:

n Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When the mapped
channel is low, the counter is disabled but holds the count value.

n Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

n Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) channel. By default, "clear on Z" is
disabled, and the counter is not cleared.

Asynchronous reads

The CConfigScan() method's Bit32 counter mode option only affects counter resolution for asynchronous calls (CIn() and CIn32()),
and only when the counter is configured for StopAtMax.

This mode is recommended for use only with CIn32(). Using the Bit32 option with CIn() is not very useful, since the value returned
by CIn() is only 16 bits. The effect is that the value returned by CIn() rolls over 65,535 times before stopping.

Page 146 of 700

USB-7202
The USB-7202 supports the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

*The channel-gain queue is limited to eight elements. The channels specified in the queue must be contiguous and in increasing
order, except when wrapping around from channel 7 to channel 0. The gains may be any valid value.

Options

BACKGROUND, BLOCKIO*, SINGLEIO*, BURSTIO**, CONTINUOUS, EXTTRIGGER, CONVERTDATA, NOCALIBRATEDATA,
EXTCLOCK, HIGHRESRATE

* The packet size is based on the Options setting: When set to BLOCKIO, the packet size is 31 samples. When set to SINGLEIO,
the packet size equals the number of channels being sampled.

** BURSTIO can only be used with the number of samples (Count) set equal to the size of the FIFO or less. The USB-7202 FIFO
holds 32,768 samples. BURSTIO cannot be used with the CONTINUOUS option.

Mode

Single-ended

HighChan

0 to 7 in single-ended mode

Count

In BURSTIO mode, Count must be an integer multiple of the number of channels in the scan:

n For one-, two-, four-, and eight-channel scans, the maximum Count is 32,768 samples.

n For three- and six-channel scans, the maximum Count is 32,766 samples.

n For five-channel scans, the maximum Count is 32,765 samples.

n For seven-channel scans, the maximum Count is 32,767 samples.

Rate

200 kilohertz (kHz) maximum for BURSTIO mode (50 kHz for any one channel).

The maximum rate is 100 kHz for all other modes (50 kHz for any one channel).

When using cbAInScan() or AInScan(), the minimum sample rate is 1 Hz. In BURSTIO mode, the minimum sample rate is 20
Hz/channel.

Range

Pacing

Hardware pacing, internal clock supported. External clock supported via the SYNC pin.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

Digital triggering: TRIGPOSEDGE, TRIGNEGEDGE

External digital (TTL) hardware triggering supported. Set the hardware trigger source with the Trig_In input.

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1VOLTS (±1 volts)

Page 147 of 700

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

Functions

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum

AUXPORT (eight bits, bit-configurable)

DataValue

0 to 255 for AUXPORT

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

The counter on this device is zero-based.

CounterNum

1

Count

232–1 when reading the counter.

LoadValue

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter to 0. No other values are valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards topic apply when using cbCIn() or CIn() for
values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG0

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Page 148 of 700

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink. When you have several USB devices connected to the
computer, use this function to identify a particular device by making its LED blink.

Hardware Considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. If the requested speed cannot be sustained, an OVERRUN error will occur.

Continuous scans

When running cbAInScan()/ AInScan() with the CONTINUOUS option, consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, make the total number of samples an integer multiple of the
packet size and the number of channels.

EXTCLOCK

You can set the SYNC pin as a pacer input or a pacer output from InstaCal. By default, this pin is set for pacer input. If set for
output when using the cbAInScan()/AInScan() option, EXTCLOCK results in a BADOPTION error.

BURSTIO

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The USB-7202 device's FIFO holds
32,768 samples. Data is collected into the device's local FIFO. Data transfers to the PC don't occur until the scan completes. For
BACKGROUND scans, the Count and Index returned by cbGetStatus() and GetStatus() remain 0, and Status = RUNNING until the
scan finishes. The Count and Index are not updated until the scan is completed. When the scan is complete and the data is
retrieved, cbGetStatus() and GetStatus() are updated to the current Count and Index, and Status = IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to the size of the FIFO
(32,768 samples). Count settings must be an integer multiple of the number of channels in the scan.

Page 149 of 700

USB-7204
The USB-7204 supports the following UL and UL for .NET features.

Analog input
Functions

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Options

BACKGROUND, BLOCKIO*, CONTINUOUS, EXTCLOCK, EXTTRIGGER, RETRIGMODE**, NOCALIBRATEDATA, SINGLEIO,
HIGHRESRATE

*The packet size is based on the Options setting:

BLOCKIO: 31

SINGLEIO: 1

**RETRIGMODE can only be used with cbAInScan()/AInScan().

HighChan

0 to 7 in single-ended mode

0 to 3 in differential mode

Count

In CONTINUOUS mode, Count must be an integer multiple of the packet size.

Rate

50 kHz maximum for BLOCKIO mode.

The throughput depends on the system being used. Most systems can achieve 40 kHz aggregate.

When using cbAInScan()/AInScan(), the minimum sample rate is 1 Hz.

Range

Single-ended:

Differential:

Pacing

Hardware pacing, internal clock supported.

External clock supported via the SYNC pin.

Triggering
Functions

UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGPOSEDGE

TRIGNEGEDGE

External digital (TTL) hardware triggering is supported. Use the TRIG_IN input (pin # 18 on the screw terminal) for the external
trigger signal.

BIP10VOLTS (±10 volts)

BIP20VOLTS (±20 volts) BIP2PT5VOLTS (±2.5 volts)

BIP10VOLTS (±10 volts) BIP2VOLTS (±2 volts)

BIP5VOLTS (±5 volts) BIP1PT25VOLTS (±1.25 volts)

BIP4VOLTS (±4 volts) BIP1VOLTS (±1 volts)

Page 150 of 700

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS

The number of samples (Count) in a CONTINUOUS scan must be an integer multiple of the packet size (32).

HighChan

0 to 1

Count

Count must be an integer multiple of the number of channels in the scan.

In a CONTINUOUS scan, Count must be an integer multiple of the packet size (32).

Rate

Up to 10 kHz maximum for a single channel

Up to 5 kHz maximum for two channels

Range

Ignored - not programmable; fixed at UNI4VOLTS (0 to 4 V, nominal. Actual range is 0 to 4.096 V.)

DataValue

0 to 4,095

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration Functions

UL: cbDConfigPort()

UL for .NET:DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

Port I/O Functions

UL: cbDIn(), cbDOut()

UL for .NET:DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 15 for on FIRSTPORTA

Page 151 of 700

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn()/CIn() are valid for use with this counter, cbCIn32()/CIn32() may be more appropriate, since the values
returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

The counter on this device is zero-based.

CounterNum

1

Count

232–1 when reading the counter.

0 when loading the counter.

cbCLoad()/CLoad() and cbCLoad32()/CLoad32() are only used to reset the counter for this device to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards section apply when using cbCIn() or CIn()
for values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG0

Event notification
Functions

UL: cbEnableEvent(),cbDisableEvent()

UL for .NET: EnableEvent(),DisableEvent()

Event types

ON_SCAN_ERROR (analog input and analog output), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN, ON_END_OF_AO_SCAN

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer, use this function to
identify a particular device by making its LED blink.

Hardware considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to "lose" data points when
scanning at higher rates. The Universal Library cannot always detect this data loss.

Most systems can sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1 kS/s aggregate in SINGLEIO mode.

EXTCLOCK

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To configure the pin for
pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test or calibrate the
device with InstaCal, as the SYNC pin drives the output.

Repetitive trigger events

Use RETRIGMODE with cbAInScan() to set up repetitive trigger events. Use the ConfigItem option BIADTRIGCOUNT with
cbSetConfig() to set the A/D trigger count, and the ConfigItem option BIDACTRIGCOUNT to set the D/A trigger count.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and 2,047). However, the
Universal Library maps this data to 12-bit values, so the range of data is no different from the differential configuration.
Consequently, the data returned contains only even numbers between 0 and 4,094 when the NOCALIBRATEDATA option is used.

Page 152 of 700

Continuous scans

When running cbAInScan()/ AInScan() with the CONTINUOUS option, consider the packet size and the number of channels being
scanned. In order to keep the data aligned properly in the array, set the total number of samples to be an integer multiple of the
packet size and the number of channels in the scan.

Concurrent operations

The USB-7204 supports these concurrent operations:

Channel-gain queue

When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to 16 elements.

The queue accepts any combination of valid channels and gains in each element.

Analog output

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated simultaneously.

UL function/method Can be run with:

cbAOutScan() / AOutScan()
(BACKGROUND mode)

n cbDOut() / DOut()

n cbCLoad() / CLoad()

n cbCLoad32() / CLoad32()

cbAInScan() / AInScan()
(BACKGROUND mode)

n cbAOut() / AOut()

n cbDIn() / DIn()

n cbDBitIn() / DBitIn()

n cbDOut() / DOut()

n cbDBitOut() / DBitOut()

n cbDConfigPort() / DConfigPort()

n cbCIn() / CIn()

n cbCIn32() / CIn32()

n cbCLoad() / CLoad()

n cbCLoad32() / CLoad32()

Page 153 of 700

Analog Output Hardware
All devices with analog outputs support the cbAOut()/AOut(), cbVOut()/VOut(), and cbAOutScan()/AOutScan() functions.

The cbAOutScan()/AOutScan() functions are designed primarily for devices which support hardware paced analog output, but it is
also useful when simultaneous update of all channels is desired. If the hardware is configured for simultaneous update, this function
loads each DAC channel with the appropriate value before issuing the update command.

Page 154 of 700

CIO- and PCIM-DDA06 Series
The CIO- and PCIM-DDA06 Series includes the following hardware:

n CIO-DDA06

n CIO-DDA06/16

n CIO-DDA06/Jr

n CIO-DDA06/Jr/16

n PCIM-DDA06/16

The CIO- and PCIM-DDA06 Series supports the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS (CIO-DDA06 Series only)

HighChan

0 to 5

Count

HighChan - LowChan + 1 max

Rate

Ignored

Range

Ignored - not programmable

CIO-DDA06/Jr and CIO-DDA06/Jr/16:

Fixed at BIP5VOLTS (±5 volts)

CIO-DDA06/16 and PCIM-DDA06/16: fixed at one of four switch-selectable ranges:

CIO-DDA06/12: fixed at one of eight switch-selectable ranges:

DataValue

0 to 4,095

For /16 hardware, the following argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2VOLTS (0 to 2.5 volts)

BIP1PT67VOLTS (±1.67 volt) UNI1VOLTS (0 to 1.67 volt)

Page 155 of 700

DataValue

0 to 255 for FIRSTPORTA or FIRSTPORTB

0 to 15 for FIRSTPORTC

BitNum

0 to 23 for FIRSTPORTA

Hardware considerations
Pacing analog output

Software only

Initializing the "zero power-up" state

When using the CIO-DDA06 "zero power-up state" hardware option, use cbAOutScan()/ AOutScan() to set the desired output value
and enable the DAC outputs.

Page 156 of 700

CIO-DAC Series (excluding HS) and PC104-DAC06
The CIO-DAC Series (excluding HS) includes the following hardware:

n CIO-DAC02, CIO-DAC02/16

n CIO-DAC08, CIO-DAC08/16, CIO-DAC08-I

n CIO-DAC16, CIO-DAC16/16, CIO-DAC16-I

This topic also includes the PC104-DAC06.

The CIO-DAC Series (excluding HS) and PC104-DAC06 support the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

HighChan

DAC02: 0 to 1

DAC06: 0 to 5

DAC08: 0 to 7

DAC16: 0 to 15

Rate

Ignored

Count

HighChan - LowChan + 1 max

Range

Ignored - not programmable. The range for all devices in this series is fixed at one of four jumper/switch-selectable ranges:

In addition to these four ranges, the CIO-DAC16, CIO-DAC08, and CIO-DAC02/16 allow switch-selectable ranges:

The CIO-DAC02, CIO-DAC08-I, and CIO-DAC16-I allow:

DataValue

0 to 4,095

For the /16 series, the following argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Hardware considerations
Pacing analog output

Software only

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

MA4TO20 (4 to 20 mA)

Page 157 of 700

CIO-DAC04/12-HS
The CIO-DAC04/12-HS supports the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

HighChan

0 to 3

Rate

500 kilohertz (kHz)

Range

Ignored - not programmable; fixed at one of six switch-selectable ranges:

DataValue

0 to 4,095

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

PortNum

AUXPORT*

DataValue

0 to 255

BitNum

0 to 7

* AUXPORT is not configurable for these boards.

Hardware considerations
Pacing analog output

n Hardware pacing, external or internal clock supported.

n The external clock is hardwired to the DAC pacer. If an internal clock is to be used, do not connect a signal to the External
Pacer input.

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

Page 158 of 700

cSBX-DDA04
The cSBX-DDA04 supports the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

Rate

300,000

Pacing

Hardware pacing, external or internal clock supported.

Digital I/O
Functions

UL for .NET: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDOutScan(), cbDInScan()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DOutScan(), DInScan()

PortNum

AUXPORT*

* AUXPORT is not configurable for this board.

DataValue

0 to 255 using cbDIn() or cbDInScan()

0 to 16383

BitNum

0 to 7 using cbDBitIn()

0 to 13 using cbDBitOut()

Rate

500 kHz (refer to "Hardware considerations" below)

Pacing

Hardware pacing supported

Hardware considerations
Interleaving analog and digital output data

The cSBX-DDA04 board allows interleaving of analog and digital output data. To support interleaving, a control bit indicates the
data type. The control bit is the MSB of each 16-bit word of analog or digital data. The MSB = 0 for analog data and the MSB = 1 for
digital data.

The data is passed to the board and then directed to the correct output type by hardware on the board which detects and acts on
the MSB control bit.

n To use this interleaving capability with the Universal Library, set HighChan and LowChan to NOTUSED, and indicate the data
type and channel in the most significant four bits of the data values in the buffer.

n To use this interleaving capability with the Universal Library for .NET, set HighChan and LowChan to NotUsed, and indicate the
data type and channel in the most significant four bits of the data values in the buffer.

Page 159 of 700

PCI-DAC6702, PCI-DAC6703
The PCI-DAC6702 and PCI-DAC6703 support the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

HighChan

PCI-DAC6702: 7

PCI-DAC6703: 15

Count

HighChan - LowChan + 1 max

Rate

Ignored

Range

Ignored - Not programmable; fixed at BIP10VOLTS (± 10.1 V)

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort(), cbDConfigBit()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort(), DConfigBit()

PortNum

AUXPORT is bitwise configurable for these boards, and must be configured using cbDConfigBit() or cbDConfigPort() before use
as output.

DataValue

0 to 255

BitNum

0 to 7

Configuration
Functions

UL: cbGetConfig(), cbSetConfig()

UL for .NET: GetDACStartup(), GetDACUpdateMode(), SetDACStartup(), SetDACUpdateMode()

ConfigItem

BIDACSTARTUP, BIDACUPDATEMODE, BIDACUPDATECMD

Hardware considerations
Pacing analog output

Software only

Page 160 of 700

PCI-DDA02, DDA04, and DDA08 Series
The PCI-DDA02, DDA04, and DDA08 Series includes the following hardware:

n PCI-DDA02/12, PCI-DDA02/16

n PCI-DDA04/12, PCI-DDA04/16

n PCI-DDA08/12, PCI-DDA08/16

The PCI-DDA02, DDA04, and DDA08 Series support the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS

HighChan

DDA02:0 to 1

DDA04:0 to 3

DDA08:0 to 7

Count

HighChan - LowChan + 1 max

Rate

Ignored

Range

DataValue

0 to 4,095

For /16 hardware, the following argument values are also valid:

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Pacing

Software only

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue

0 to 15 for PORTCL and PORTCH

0 to 255 for PORTA or PORTB

BitNum

0 to 47 using FIRSTPORTA

Hardware considerations

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

BIP2PT5VOLTS (±2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)

Page 161 of 700

Hardware considerations
Pacing analog output

Software only

Page 162 of 700

PCM-DAC Series and PC-CARD-DAC08
The PCM-DAC Series includes the following hardware:

n PCM-DAC02

n PCM-DAC08

This topic also includes the PC-CARD-DAC08.

The PCM-DAC Series and PC-CARD-DAC08 support the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

PCM-DAC02: Ignored

PCM-DAC08 and PC-CARD-DAC08: SIMULTANEOUS

HighChan

DAC02: 0 to 1

DAC08: 0 to 7

Rate

Ignored

Count

HighChan - LowChan + 1 max

Range

PCM-DAC08 and PC-CARD-DAC08: Ignored - Not programmable; fixed at BIP5VOLTS (±5 volts)

PCM-DAC02:

DataValue

0 to 4,095

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB

DataValue

0 to 15 using FIRSTPORTA or FIRSTPORTB

BitNum

0 to 7 using FIRSTPORTA

Hardware considerations
Pacing analog output

Software only

Digital configuration

Supports two configurable 4-bit ports — FIRSTPORTA and FIRSTPORTB. Each can be independently configured as either inputs or
outputs via cbDConfigPort() or DConfigPort().

BIP10VOLTS (±10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (±5 volts) UNI5VOLTS (0 to 5 volts)

Page 163 of 700

USB-3100 Series
The USB-3100 Seriesincludes the following hardware:

n USB-3101, USB-3102, USB-3103, USB-3104, USB-3105, USB-3106

n USB-3110, USB-3112, USB-3114

The USB-3100 Series supports the following UL and UL for .NET features.

Analog output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut(), AOutScan()

Options

SIMULTANEOUS (cbAOutScan() / AOutScan() only)

HighChan

USB-3101, USB-3102, and USB-3110: 0 to 3

USB-3103, USB-3104, and USB-3112: 0 to 7

USB-3105, USB-3106, and USB-3114: 0 to 15

Count

HighChan - LowChan + 1 max

Rate

Ignored

Range

Ignored (except in the case of cbVOut), since it's not programmable; configurable for BIP10VOLTS (±10 volts), or UNI10VOLTS
(0 to 10 volts), or MA0TO20 (0 to 20 mA) via InstaCal.

USB-3102, USB-3104, USB-3106: Also configurable for MA0TO20 (0 to 20mA) via InstaCal.

DataValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

0 to 255 for AUXPORT

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

Page 164 of 700

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232-1 when reading the counter.

LoadValue

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the counter for this board to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards section apply when using cbCIn() or CIn()
for values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular device by making its
USB LED blink.

Hardware considerations
Scan options

The SIMULTANEOUS scan option can only be used with cbAOutScan() / AOutScan().

Simultaneous mode

Set the direction of the SYNCLD pin (pin 49) with the Simultaneous Mode option in InstaCal to be either Master (output) or Slave
(input).

n Specify the SIMULTANEOUS scan option and set the Simultaneous Mode option to "Master" to output the internal D/A LOAD
signal on the SYNCLD pin.

n Specify the SIMULTANEOUS scan option and set the SIMULTANEOUS Mode option to "Slave" to configure the SYNCLD pin to
receive the D/A LOAD signal from an external source. Output channels are updated simultaneously when the SYNCLD
receives the signal.

In slave mode, analog outputs may either be updated immediately or when a positive edge is seen on the SYNCLD pin (this is
under software control.) The SYNCLD pin must be at a low logic level for DAC outputs to update immediately. If an external
source is pulling the pin high, no update will occur.

When you do not specify SIMULTANEOUS, the analog outputs are updated in sequential order, and the SYNCLD pin is ignored.

Page 165 of 700

External current limiting may be required for high drive devices (USB-3110, USB-3112, USB-3114)

The voltage outputs on the USB-3110, USB-3112, and USB-3114 incorporate high-drive current output capability. The high drive
current outputs allow each of the voltage outputs to sink/source up to 40 mA (maximum) of load current.

The voltage outputs should not be kept in a short-circuit condition for longer than the specified 100 ms. For those applications that
may potentially exceed the 40 mA maximum current limit or the 100 ms short-circuit condition, external current limiting must be
used to prevent potential damage to the USB-3110.

Simultaneous update of voltage and current outputs (USB-3102, USB-3104, USB-3106)

Each voltage output channel on the USB-3102, USB-3104, USB-3106 has an associated current output channel. The voltage and
current outputs are grouped as channel pairs. Each D/A converter output controls a voltage and current channel pair
simultaneously. When you write to a voltage output, its associated current output is also updated.

Each voltage/current channel pair can be updated individually or simultaneously. Leave each pair of unused voltage and current
outputs disconnected.

Page 166 of 700

USB-3101FS
The USB-3101FS supports the following UL and UL for .NET features:

Analog Output
Functions

UL: cbAOut(), cbVOut(), cbAOutScan()

UL for .NET: AOut(), VOut() AOutScan()

Options

BACKGROUND, CONTINUOUS, NOCALIBRATEDATA, SCALEDATA, SIMULTANEOUS

Count

When using output scanning, Count must be an integer multiple of the number of channels in the scan.

HighChan

0 to 3

Rate

100 kS/s per channel, maximum

Range

Ignored, (except in the case of cbVOut) since it's not programmable; fixed at BIP10VOLTS (±10 volts)

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

UL: ON_END_OF_AO_SCAN, ON_SCAN_ERROR

UL for .NET: OnEndOfAoScan, OnScanError

Page 167 of 700

COM422 Series Hardware
No library functions are supported for these devices, but you can use InstaCal to configure the serial protocol in conjunction with
the Set422.exe utility program. All other serial communications are handled by Windows standard serial communications handlers.

Page 168 of 700

COM485 Series Hardware
COM485 Series boards support the Universal Library function cbRS485() and the Universal Library for .NET function RS485() for
controlling the transmit and receive enable register. All other serial communications are handled by Windows standard serial
communications handlers.

Page 169 of 700

Counter Hardware

Visual Basic signed integers
When reading or writing ports that are 16 or more bits wide, be aware of the following issue using signed integers, which is required
when using Visual Basic:

On some devices, such as the CIO-CTR10 count register or AUXPORT digital ports, the ports are 16-bits wide or more. When
accessing the data at these ports, the digital values are arranged as a single 16-bit word or a 32-bit double word.

When using signed integers, values above 0111 1111 1111 1111 (32,767 decimal) can be confusing. The next increment, 1000
0000 0000 0000 has a decimal value of –32,768. When using signed integers, this is the value that is returned from a 16-bit counter
at half of maximum count. The value for full count (just before the counter turns over) is –1. Keep this in mind if you are using
Visual Basic, since Visual Basic does not supply unsigned integers (values from 0 to 65,535) or unsigned longs (values from 0 to
4,294,967,295). Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.

The Universal Library provides functions for initialization and configuration of counter chips, and can configure a counter for any of
the counter operations.

However, counter configuration does not include counter-use, such as event counting and pulse width. Counter-use is accomplished
by programs which use the counter functions. The Universal Library provides the cbCFreqIn() function for counter use, while the
Universal Library for .NET provides the CFreqIn() method. Other functions and methods may be added for counter use to later
revisions.

Counter chip data sheets
To use a counter for any but the simplest counting function, you must read, understand and employ the information contained in
the chip manufacturer's data sheet. Technical support of the Universal Library does not include providing, interpreting or explaining
the counter chip data sheet.

To fully understand and maximize the performance of counter/timer hardware and the related function calls, review the following
related data sheet(s):

Counter chip variables
Universal Library counter initialization and configuration functions include names for bit patterns, such as ALEGATE, which stands for
Active Low Enabled Gate N. In any case where Universal Library has a name for a bit pattern, it is allowed to substitute the bit
pattern as a numeric. This will work, but your programs will be harder to read and debug.

Chip
name

Data sheet location

82C54 82C54.pdf located in the Documents subdirectory where the UL is installed
(C:/Program files/Measurement Computing/DAQ by default).

AM9513 9513A.pdf located in the Documents subdirectory where the UL is installed

Z8536 The Z8536 document is included with the product designed with this chip.

LS7266 ls7266r1.pdf located in the Documents subdirectory where the UL is
installed.

Page 170 of 700

http://www.measurementcomputing.com/PDFmanuals/82C54.pdf
http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf
http://www.measurementcomputing.com/PDFmanuals/LS7266R1.pdf
http://www.adobe.com/products/acrobat/readstep2.html

CTR Series
The CTR Series includes the following hardware:

n PCI-CTR05

n PCI-CTR10

n PCI-CTR20HD

n CIO-CTR05

n CIO-CTR10

n CIO-CTR20HD

n CIO-CTR10HD

n PC104-CTR10HD

The CTR Series supports the following UL and UL for .NET features.

Counter I/O
Functions

UL: cbC9513Config(), cbC9513Init(), cbCStoreOnInt(), cbCFreqIn(), cbCIn(), cbCLoad()

UL for .NET: C9513Config(), C9513Init(), CStoreOnInt(), CFreqIn(), CIn(), CLoad()

CounterNum

1 to 5 (All boards in this series)

CTR10 and CTR10HD also support counters 6 through 10

CTR20HD also support counters 11 through 20

RegNum

LOADREG1 – 5, HOLDREG1 – 5, ALARM1CHIP1, ALARM2CHIP1

CTR10 also supports LOADREG6 – 10, HOLDREG6 – 10, ALARM1CHIP2, ALARM2CHIP2

CTR20HD also supports LOADREG6 – 20, HOLDREG6 – 20, ALARM1CHIP2 – ALARM1CHIP4, ALARM2CHIP2 – ALARM2CHIP4

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

ChipNum

1 (All boards in this series)

CTR10 and CTR10HD also support chip 2

CTR20HD also support chips 3 and 4

FOUT Source

CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the sources on that particular chip. For example, to
set the source to the input for counter 6, use CTRINPUT1 (the first counter on the second 9513 chip).

CountSource

TCPREVCTR, CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the sources on that particular chip. For example, to
set the source to the input for counter 6, use CTRINPUT1 (the first counter on the second 9513 chip). Likewise for the
TCPREVCTR value: when applied to the first counter on a chip (counter 6, for example) the "previous counter" is counter 5 on
that chip (for this example, counter 10).

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

AUXPORT*

DataValue

Page 171 of 700

CTR05: 0 to 255

CTR10: 0 to 65,535 (refer to Visual Basic signed integers in the Introduction: Counter Boards topic for more information.)

BitNum

CTR05: 0 to 7

CTR10: 0 to 15

* AUXPORT is not configurable for these boards.

Event Notification
PCI-CTR05, PCI-CTR10 and PCI-CTR20HD only.

Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_EXTERNAL_INTERRUPT/OnExternalInterrupt

Hardware considerations
Clock Input Frequency (PCI boards only)

The clock source for each of the four counters is configurable with InstaCal:

PCI-CTR05: 1 MHz, 5 MHz

PCI-CTR10: 1 MHz, 3.33 MHz, 5 MHz

PCI-CTR20HD: 1 MHz, 1.67 MHz, 3.33 MHz, 5 MHz, or External

Event notification

ON_EXTERNAL_INTERRUPT cannot be used in conjunction with cbCStoreOnInt() or CStoreOnInt().

CTR Series boards that support event notification only support external rising edge interrupts.

Page 172 of 700

PCI-INT32, CIO-INT32
The PCI-INT32 and CIO-INT32 support the following UL and UL for .NET features.

Counter I/O
Functions

UL: cbC8536Config(), cbC8536Init(), cbCIn(), cbCLoad()

UL for .NET: C8536Config(), C8536Init(), CIn(), CLoad()

CounterNum

1 to 6

ChipNum

1 or 2

RegNum

LOADREG1 through LOADREG6

LoadValue

Values up to 65,535 (216 – 1) may be used. (Refer to Visual Basic signed integers in the "Introduction: Counter Boards" topic for
more information.)

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(),DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL

SECONDPORTA, SECONDPORTB and SECONDPORTCL

DataValue

0 to 255 using PORTA or PORTB

0 to 15 using PORTCL

BitNum

0 to 39 using FIRSTPORTA

Hardware considerations
Argument value vs. configuration

These boards have two 8536 chips, which have both counter and digital I/O and interrupt vectoring capabilities. The numbers stated
for digital I/O apply when both chips are configured for the maximum number of digital devices. The numbers stated for counter
I/O apply when both chips are configured for the maximum number of counter devices.

Page 173 of 700

PPIO-CTR06

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 6

Digital I/O
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

AUXPORT*

Datavalue

0 to 15, or 0 to 255, depending on jumper setting

BitNum

0 to 3, or 0 to 7, depending on jumper setting

* AUXPORT is not configurable for this board.

Page 174 of 700

QUAD02 Series and QUAD04 Series
The QUAD02 Series includes the following hardware:

n PCM-QUAD02

n CIO-QUAD02

The QUAD04 Series includes the following hardware:

n PCI-QUAD04

n CIO-QUAD04

The QUAD02 Series and QUAD04 Series support the following UL and UL for .NET features.

Counter I/O
Functions

UL: cbC7266Config(), cbCIn(), cbCIn32(), cbCLoad(), cbCLoad32(), cbCStatus()

UL for .NET: C7266Config(), CIn(), CIn32(), CLoad(), CLoad32(), CStatus()

CounterNum

PCM-QUAD02, CIO-QUAD02: 1 to 2

CIO-QUAD04, PCI-QUAD04: 1 to 4

RegNum

UL: COUNT1, COUNT2, PRESET1, PRESET2, PRESCALER1, PRESCALER2

UL for .NET: QuadCount1, QuadCount2, QuadPreset1, QuadPreset2, QuadPreScaler1, QuadPreScaler2

CIO-QUAD04, PCI-QUAD04 also support:

UL: COUNT3, COUNT4, PRESET3, PRESET4, PRESCALER3, PRESCALER4

UL for .NET: QuadCount3, QuadCount4, QuadPreset3, QuadPreset4, QuadPreScaler3, QuadPreScaler4

LoadValue

When using cbCLoad32() or CLoad32() to load the COUNT# or PRESET# registers, values up to 16.78 million (224 – 1) may be

loaded. Values using cbCLoad() and CLoad() are limited to 65,535 (216 – 1). (Refer to the Basic signed integers discussion in the
"Introduction: Counter Boards" topic). When loading the PRESCALER# register, values may be from 0 to 255.

Digital Filter Clock frequency = 10 megahertz (MHz) / LoadValue + 1.

Hardware Considerations
Loading and reading 24-bit values

The QUAD series boards feature a 24-bit counter. You can use the cbCIn()/CIn() and cbCLoad()/CLoad() functions for counts that
are less than 16 bits (65,535), or use the cbCIn32()/CIn32() and cbCLoad32()/CLoad32() functions for any number supported by
the LS7266 counter (24 bits = 16777216).

Cascading counters (PCI-QUAD04 only)

The PCI-QUAD04 can be set up for cascading counters. By setting the appropriate registers, the following configurations are
possible:

n Four 24-bit counters, or

n Two 48-bit counters, or

n One 24-bit and one 72-bit counters, or

n One 96-bit counter

The OUTPUT pins of a counter are directed to the next counter by setting FLG1 to CARRY/BORROW, and FLG2 to UP/DOWN. Bits 3
and 4 of the IOR Register control are set to 1,0 to accomplish this.

You can set these bits by using the functions cbC7266Config(BoardNum, CounterNum, Quadrature, CountingMode, DataEncoding,
IndexMode, InvertIndex, FlagPins, and GateEnable). When using the Universal Library for .NET, use the C7266Config() method.

The constant CARRYBORROW_UPDOWN (value of 3) is used for the FlagPins parameter.

Page 175 of 700

The IOR register cannot be read. However, you can read the values of the BADR2+9 register. The value for Base 2 can be
determined by looking at the resources used by the board. The 8-bit region is BADR2. The BADR+9 register contains values for
PhxA and PhxB, for x = 1 to 4 to identify counters. The diagram below indicates the routing of the FLG pins depending on the value
of PhxA and PhxB. The actual values of the BADR2+9 register are shown below:

Counter4 setting

Setting Counter4 to CARRYBORROW-UPDOWN is NOT VALID.

Register BADR2 + 9 D0-D6

 PH2A PH2B PH3A PH3B PH4A PH4B1/PH4B0 Value

Case1:

(4) 24-bit counters
(1/2/3/4)

0 0 0 0 0 0,0 0.0

Case2:

(2) 48-bit counters (1-
2/3-4)

1 1 0 0 1 1,0 53

Case3:

(1) 24-bit counter and
(1) 72-bit counter
(1/2-3-4)

0 0 1 1 1 0,1 3C

Case4:

(1) 96-bit counter (1-
2-3-4)

1 1 1 1 1 0,1 3F

Defaults to 0x00 (no inter-counter connections).

Examples

Case 1: (4) 24-bit counters (1/2/3/4)

cbC7266Config(0,1,0,0,2,0,0,1,0)

cbC7266Config(0,2,0,0,2,0,0,1,0)

cbC7266Config(0,3,0,0,2,0,0,1,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 2: (2) 48-bit counters (1-2/3-4)

cbC7266Config(0,1,0,0,2,0,0,3,0)

cbC7266Config(0,2,0,0,2,0,0,1,0)

cbC7266Config(0,3,0,0,2,0,0,3,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 3: (1) 24-bit counter and (1) 72-bit counter (1/2-3-4)

cbC7266Config(0,1,0,0,2,0,0,1,0)

cbC7266Config(0,2,0,0,2,0,0,3,0)

cbC7266Config(0,3,0,0,2,0,0,3,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 4: (1) 96-bit counter (1-2-3-4)

cbC7266Config(0,1,0,0,2,0,0,3,0)

cbC7266Config(0,2,0,0,2,0,0,3,0)

cbC7266Config(0,3,0,0,2,0,0,3,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

The actual value of the BADR+9 register is not set until the cbCLoad()/CLoad() command
is called.

Page 176 of 700

USB-QUAD08
The USB-QUAD08 supports the following UL and UL for .NET features.

Counter I/O
Functions

UL: cbCIn(), cbCIn32(), cbCIn64(), cbCLoad(), cbCLoad32(), cbCLoad64(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CIn64(), CLoad(), CLoad32(), CLoad64(), CConfigScan(), CInScan(), CClear()

Note: Counters on this device are zero-based (the first counter number is "0").

CounterNum

0 to 7

RegNum

MAXLIMITREG0 to MAXLIMITREG7

Options

BACKGROUND, CONTINUOUS, CTR32BIT, CTR48BIT, EXTCLOCK, EXTTRIGGER, HIGHRESRATE

LoadValue

When using cbCLoad64() to load the MAXLIMIT register, values up to 248 – 1 may be loaded. Values using cbCLoad32() and

CLoad32() are limited to 4,294,967,295 (232 – 1). Values using cbCLoad() and CLoad() are limited to 65,535 (216 – 1). Refer to
the Visual Basic signed integers discussion in the "Introduction: Counter Boards" topic for more information.

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT*

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT*

DataValue

0 to 255

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

BitNum

0 to 7

Timers
UL: cbPulseOutStart(), cbPulseOutStop()

UL for .NET: PulseOutStart(), PulseOutStop()

TimerNum

0 and 1

Frequency

0.01123 Hz to 5 MHz

Page 177 of 700

DutyCycle

0 to 1, non-inclusive

PulseCount, Initial Delay, IdleState

Ignored

Triggering
UL: cbSetTrigger()

UL for .NET: SetTrigger()

TrigType

TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

Hardware Considerations
Loading and reading 16, 32, and 48-bit values

The USB-QUAD08 counters can be configured as 16-, 32-, or 48-bit.

For most situations, the 32-bit functions (cbCLoad32()/CLoad32() and cbCIn32()/CIn32()) are preferred for reading and writing the
counter. While each of these functions are valid regardless of the configuration, keep in mind that the upper bits will be truncated
when the data value is larger than the Count argument can represent. Refer to 32-bit values using a signed integer data type for
information on 32-bit values using unsigned integers.

The following functions can handle count values that are less than 216 (65,536) without truncating:

n cbCIn()/CIn()

n cbCLoad()/CLoad()

The following functions can handle count values that are less than 232 (4,294,967,296) without truncating:

n cbCIn32()/CIn32()

n cbCLoad32()/CLoad32()

The following functions can handle count values that are less than 248 (281,474,976,710,656) without truncating:

n cbCIn64()/CIn64()

n cbCLoad64()/CLoad64()

Mapped channel

The cbCConfigScan() MappedChannel argument and the CConfigScan() mapCounter parameter are ignored for the USB-QUAD08.
Use the device's Index input to gate, latch, decrement, or clear/reload a counter.

Scanning

Synchronous reads of data can be accomplished using the cbCInScan()/CInScan() functions. However, keep in mind that the count
value is set to 0 at the initiation of a scan. For this reason, the use of the Terminal Count outputs in conjuction with synchronous
reads should be avoided for the USB-QUAD08. Instead, use the asynchronous functions cbCIn32()/CIn32() or the variations to
read the counter without disruption of the Terminal Count pulse train.

Edge detection

The cbCConfigScan() EdgeDetection argument and the CConfigScan() edgeDetection parameter is used to detect a rising or falling
edge on the counter specified by the CounterNum argument.

For the USB-QUAD08, the standard arguments (CTR_RISING_EDGE/CTR_FALLING_EDGE) apply to the Phase A input. The polarity
for the Phase B and Index inputs can also be set by using the bit fields as described below:

n 000 (CTR_RISING_EDGE): Phase A, Phase B, Index input

n 001 (CTR_FALLING_EDGE): Phase A input

n 010 (CTR_FALLING_EDGE): Phase B input

n 100 (CTR_FALLING_EDGE): Index input

These values can be combined using a bitwise Or operation.

HIGHRESRATE

Specify the cbCInScan/CInScan() HIGHRESRATE scan option to acquire data at a high resolution rate. When specified, the rate at
which samples are acquired is in "samples per 1000 seconds per channel".

Counter resolution

The counter resolution is set by default to 48-bits. Use the CInScan() method's Ctr16Bit, Ctr32Bit, and Ctr48Bit scan options to

Page 178 of 700

change the counter resolution.

Asynchronous reads

The CConfigScan() method's Bit48 and EncoderModeBit48 counter mode options only affect counter resolution for asynchronous
calls (CIn(), CIn32(), and CIn64()).

The Bit48 and EncoderModeBit48 modes are recommended for use only with CIn64(). Using these mode options with CIn() and
CIn32() are not very useful, since the value returned by CIn() is only 16 bits, and the value returned by CIn32() is only 32 bits.
The effect is that the value returned by CIn() rolls over at 65,535, and the value returned by CIn32() rolls over at 4,294,967,295.

Page 179 of 700

USB-4300 Series
The USB-4300 Series includes the following hardware:

n USB-4301

n USB-4302

n USB-4303

n USB-4304

The USB-4300 Series supports the following UL and UL for .NET features.

Counter I/O
Functions

UL: cbC9513Config(), cbC9513Init(), cbCStoreOnInt(), cbCFreqIn(), cbCIn(), cbCIn32(), cbCLoad(), cbCLoad32()

UL for .NET: C9513Config(), C9513Init(), CStoreOnInt(), CFreqIn(), CIn(), CIn32(), CLoad() CLoad32()

CounterNum

USB-4301 and USB-4302: 1 through 5

USB-4303 and USB-4304: 1 through 5, and 6 through 10

RegNum

USB-4301 and USB-4302:

LOADREG1 – 5, HOLDREG1 – 5, ALARM1CHIP1, ALARM2CHIP1

USB-4303 and USB-4304:

LOADREG1 – 10, HOLDREG1 – 10, ALARM1CHIP1, ALARM1CHIP2, ALARM2CHIP1, ALARM2CHIP2

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

ChipNum

USB-4301: 1

USB-4302: 1

USB-4303: 1, 2

USB-4304: 1, 2

FOUT Source

CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the sources on that particular chip. For example, to
set the source to the input for counter 6, use CTRINPUT1 (the first counter on the second 9513 chip).

CountSource

n TCPREVCTR

n CTRINPUT1 – 5

n GATE1 – 5

n FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the sources on that particular chip. For example, to
set the source to the input for counter 6, use CTRINPUT1 (the first counter on the second 9513 chip). Likewise for the
TCPREVCTR value: when applied to the first counter on a chip (for counter 6, the "previous counter" is counter 5 on that chip
(for this example, counter 10).

Digital I/O
Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT*

Page 180 of 700

DataValue

0 to 255

* AUXPORT is not configurable for these boards

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

BitNum

0 to 7

* AUXPORT is not configurable for these boards.

Event Notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

EventType

ON_EXTERNAL_INTERRUPT

EventParameter

LATCH_DI, LATCH_DO

LATCH_DI can only be used with cbDIn() and cbDBitIn(). LATCH_DO can only be used with cbDOut() and cbDBitOut().

Hardware considerations
Clock input frequency

The clock speed is configurable with InstaCal for 1 MHz, 1.67 MHz, 3.33 MHz, or 5 MHz.

Event notification

ON_EXTERNAL_INTERRUPT cannot be used with cbCStoreOnInt() or CStoreOnInt().

Interrupt Input pin

You can configure the Interrupt Input pin (INT) with InstaCal to trigger off rising or falling edge inputs. You can program this pin to
perform the following tasks:

n Send an event notification to the computer. The transfer rate is system-dependent.

n Latch digital input data.

n Latch digital output data.

n Save the current value of a counter. You can configure this option for each counter individually.

Digital bit latching

Digital input bit latching is supported by cbDIn() and cbDBitIn(). Digital output bit latching is supported by cbDOut() and cbDBitOut
().

n Use the EventParam option LATCH_DI with cbDIn() and cbDBitIn() to return the data that was latched in at the most recent
interrupt edge. The current value of the digital inputs (0 or 1) is read and stored. The stored value is updated when an active
edge occurs on the Interrupt Input pin (INT).

There is a latency period between when an active interrupt edge occurs on the INT pin and when the action triggered by that
interrupt occurs. This latency can be as long as 100 µs, but typically varies from about 9 µs to about 40 µs between
interrupts.

n Use the EventParam option LATCH_DO with cbDOut() and cbDBitOut() to latch out the data most recently written to the
device. The digital outputs are not set to the value written until an active edge occurs on the Interrupt Input pin (INT).

Page 181 of 700

Digital Input Hardware
To maximize the performance of the digital input function calls, refer to the 82C55 data sheet. This document is also available in
the Documents subdirectory where the UL is installed (C:\Program files\Measurement Computing\DAQ by default). You can also
refer to the 8536 data sheet, although this document is not installed with the Universal Library.

Page 182 of 700

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf
http://www.adobe.com/products/acrobat/readstep2.html

CIO-DI Series and PC104-DI48
The CIO-DI Series includes the following hardware:

n CIO-DI48

n CIO-DI96

n CIO-DI192

This topic also includes the PC104-DI48.

The CIO-DI Series and PC104-DI48 support the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDIn(), cbDBitIn()

UL for .NET: DIn(), DBitIn()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

For DI48, DI96 and DI192, the following argument values are also valid:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

For DI96 and DI192, the following argument values are also valid:

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

For DI192, the following argument values are also valid:

FIFTHPORTA through EIGHTHPORTCH

DataValue

0 to 255 for PORTA or PORTB,

0 to 15 for PORTCL or PORTCH

BitNum

0 to 23 for FIRSTPORTA

For DI48, DI96 and DI192, the following argument value is also valid:

24 to 47 using FIRSTPORTA

For DI96 and DI192, the following argument values are also valid:

48 to 95 using FIRSTPORTA

For DI192, the following argument value is also valid:

96 to 191

Page 183 of 700

CIO-DISO48
The CIO-DISO48 supports the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDIn(), cbDBitIn()

UL for .NET: DIn(), DBitIn()

PortNum

FIRSTPORTA, SECONDPORTA, THIRDPORTA, FOURTHPORTA, FIFTHPORTA, SIXTHPORTA

DataValue

0 to 255

BitNum

0 to 47 using FIRSTPORTA

Page 184 of 700

Digital Input/Output Hardware

Basic signed integers

When reading or writing ports that are 16-bits wide, be aware of the following issue using signed integers, as you are forced to do
when using Basic:

n With some devices, the AUXPORT digital ports are set up as one 16-bit port. When using cbDOut() or DOut(), the digital
values are written as a single 16-bit word. Using signed integers, writing values above 0111 1111 1111 1111 (32,767
decimal) can be confusing. The next increment, 1000 0000 0000 0000 has a decimal value of –32,768. Using signed integers,
this is the value that you would use for turning on the MSB only. The value for all bits on is –1. Keep this in mind if you are
using Basic, since Basic does not supply unsigned integers (values from 0 to 65,536).

To maximize the performance of the digital I/O function calls, refer to the 82C55 data sheet. This document is also available in the
Documents subdirectory where the UL is installed (C:\Program files\Measurement Computing\DAQ by default). You can also refer
to the 8536 data sheet, although this document is not installed with the Universal Library.

Digital ports and corresponding bit numbers (82C55-based hardware and emulations)

The following table lists the port numbers and corresponding bit numbers that are set by the digital I/O functions for hardware
designed with the 82C55 chip or 82C55 emulation.

cbDConfigPort() port
reference

cbDIn(), cbDOut() port
reference

Values cbDBitIn(), cbDBitOut() port
reference

Bit Number

FIRSTPORTA FIRSTPORTA 0-
255

FIRSTPORTA 0 to 7

FIRSTPORTB FIRSTPORTB 0-
255

FIRSTPORTA 8 to 15

FIRSTPORTCL FIRSTPORTCL 0-15 FIRSTPORTA 16 to 19

FIRSTPORTCH FIRSTPORTCH 0-15 FIRSTPORTA 20 to 23

SECONDPORTA SECONDPORTA 0-
255

FIRSTPORTA 24 to 31

SECONDPORTB SECONDPORTB 0-
255

FIRSTPORTA 32 to 39

SECONDPORTCL SECONDPORTCL 0-15 FIRSTPORTA 40 to 43

SECONDPORTCH SECONDPORTCH 0-15 FIRSTPORTA 44 to 47

THIRDPORTA THIRDPORTA 0-
255

FIRSTPORTA 48 to 55

THIRDPORTB THIRDPORTB 0-
255

FIRSTPORTA 56 to 63

THIRDPORTCL THIRDPORTCL 0-15 FIRSTPORTA 64 to 67

THIRDPORTCH THIRDPORTCH 0-15 FIRSTPORTA 68 to 71

FOURTHPORTA FOURTHPORTA 0-
255

FIRSTPORTA 72 to 79

FOURTHPORTB FOURTHPORTB 0-
255

FIRSTPORTA 80 to 87

FOURTHPORTCL FOURTHPORTCL 0-15 FIRSTPORTA 88 to 91

FOURTHPORTCH FOURTHPORTCH 0-15 FIRSTPORTA 92 to 95

FIFTHPORTA FIFTHPORTA 0-
255

FIRSTPORTA 96 to 103

FIFTHPORTB FIFTHPORTB 0-
255

FIRSTPORTA 104 to
111

FIFTHPORTCL FIFTHPORTCL 0-15 FIRSTPORTA 112 to
115

FIFTHPORTCH FIFTHPORTCH 0-15 FIRSTPORTA 116 to
119

SIXTHPORTA SIXTHPORTA 0-
255

FIRSTPORTA 120 to
127

Page 185 of 700

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf
http://www.adobe.com/products/acrobat/readstep2.html

Notes

n For devices that support AUXPORT, in general only bit numbers 0 to 7 apply. Refer to board-specific information for details on
the number of bits your hardware supports.

n For devices that support synchronous I/O scanning, such as the USB-2500 Series, PORTC is configured as one 8-bit port
(PORTCH and PORTCL are not supported). Refer to board-specific information for details on which ports are supported by
your hardware.

SIXTHPORTB SIXTHPORTB 0-
255

FIRSTPORTA 128 to
135

SIXTHPORTCL SIXTHPORTCL 0-15 FIRSTPORTA 136 to
139

SIXTHPORTCH SIXTHPORTCH 0-15 FIRSTPORTA 140 to
143

SEVENTHPORTA SEVENTHPORTA 0-
255

FIRSTPORTA 144 to
151

SEVENTHPORTB SEVENTHPORTB 0-
255

FIRSTPORTA 152 to
159

SEVENTHPORTCL SEVENTHPORTCL 0-15 FIRSTPORTA 160 to
163

SEVENTHPORTCH SEVENTHPORTCH 0-15 FIRSTPORTA 164 to
167

EIGHTHPORTA EIGHTHPORTA 0-
255

FIRSTPORTA 168 to
175

EIGHTHPORTB EIGHTHPORTB 0-
255

FIRSTPORTA 176 to
183

EIGHTHPORTCL EIGHTHPORTCL 0-15 FIRSTPORTA 184 to
187

EIGHTHPORTCH EIGHTHPORTCH 0-15 FIRSTPORTA 188 to
191

Page 186 of 700

AC5 Series
The AC5 Series includes the following hardware:

n CIO-DUAL-AC5

n PCI-DUAL-AC5

n PCI-QUAD-AC5

n PC104-AC5

The AC5 Series supports the following UL and UL for .NET features.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 255 using FIRSTPORTA or FIRSTPORTB

0 to 15 using FIRSTPORTCL or FIRSTPORTCH

BitNum

0 to 23 using FIRSTPORTA

PortNum

DUAL-AC5 and QUAD-AC5 boards also support:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue

0 to 255 using SECONDPORTA or SECONDPORTB

0 to 15 using SECONDPORTCL or SECONDPORTCH

BitNum

0 to 47 using FIRSTPORTA

PortNum

QUAD-AC5 boards also support:

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

DataValue

0 to 255 using THIRDPORTA or THIRDPORTB

0 to 15 using THIRDPORTCL or THIRDPORTCH

BitNum

0 to 95 using FIRSTPORTA

Page 187 of 700

CIO-PDMA16, CIO-PDMA32
The CIO-PDMA16, CIO-PDMA32 support the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDInScan(), cbDOutScan(), cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DInScan(), DOutScan(), DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

PortNum

AUXPORT, FIRSTPORTA, FIRSTPORTB

DataValue

0 to 7 using AUXPORT (only cbDOut()/DOut() are supported)

0 to 255 using FIRSTPORTA and FIRSTPORTB

0 to 65,535 using WORDXFER FIRSTPORTA

BitNum

0 to 2 using AUXPORT (only cbDBitOut()/DBitOut() are supported)

0 to 15 using FIRSTPORTA

Rate

CIO-PDMA16: 125 kWords

CIO-PDMA32: 750 kWords

Options

BACKGROUND, CONTINUOUS, EXTCLOCK, WORDXFER

Hardware considerations
Digital I/O pacing

Hardware pacing, external or internal clock supported.

Page 188 of 700

DIO Series (Excluding USB)
The DIO Series (Excluding USB) includes the following hardware:

n CIO-DIO24, CIO-DIO24H, CIO-DIO48, CIO-DIO48H, CIO-DIO96, CIO-DIO192

n PCI-DIO24, PCI-DIO24H, PCI-DIO48H, PCI-DIO96, PCI-DIO96H, PCI-DIO24/LP, PCI-DIO24/S

n CPCI-DIO24H, CPCI-DIO48H, CPCI-DIO96H

n PPIO-DIO24

n PC-CARD-DIO48

n PC104-DIO48

Notes: Additional topics are available that document DIO hardware not listed above. If your DIO hardware is not listed above,
refer to the following list:

n USB-DIO24/37, USB-DIO24H/37, USB-1024LS, and USB-1024HLS: refer to the topic "USB-1024 Series and USB-DIO24
Series".

n USB-DIO96H and USB-DIO96H/50: refer to the topic "USB-DIO96H (formerly USB-1096HFS)".

n CIO-DIO24/CTR3, PCI-DIO24H/CTR3, PCM-D24/CTR3, and PC-CARD-D24/CTR3: refer to the topic "DIO24/CTR3 Series and
D24/CTR3 Series".

n PCI-DIO48/CTR15: refer to the topic "PCI-DIO48/CTR15".

n PCIe-DIO24 and PCIe-DIO96H: refer to the topic "PCIe-DIO24 and PCIe-DIO96H".

The DIO Series (Excluding USB) supports the following UL and UL for .NET features.

Digital I/O
Hardware in this series either have an 82C55 chip or are based on 82C55, mode 0 emulation. Click here to display a table of the
port numbers and corresponding bit numbers that are set by the digital I/O functions for hardware designed with the 82C55 chip
or 82C55 emulation.

Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DIO48, DIO48H, DIO96, and DIO192 also support:

n SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DIO96 and DIO192 also support:

n THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

n FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

DIO192 also supports:

n FIFTHPORTA through EIGHTHPORTCH

DataValue

0 to 255 using PORTA or PORTB

0 to 15 using PORTCL or PORTCH

BitNum

0 to 23 using FIRSTPORTA

For DIO48, DIO48H, DIO96, and DIO192, the following values are also valid:

n 24 to 47 using FIRSTPORTA

For DIO96, and DIO192, the following argument values are also valid:

n 48 to 95 using FIRSTPORTA

For DIO192, the following argument values are also valid:

n 96 to 191

Page 189 of 700

Event Notification
CIO- and PCI- DIO24 and DIO24H, PCI-DIO24/LP and PCI-DIO24/S only.

Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event Types

ON_EXTERNAL_INTERRUPT/OnExternalInterrupt

Hardware Considerations
Event notification

DIO Series boards that support event notification only support external rising edge interrupts.

Notes
Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions and methods.

Page 190 of 700

DIO24/CTR3 Series and D24/CTR3 Series
The DIO24/CTR3 Series and D24/CTR3 Series includes the following hardware:

n PCI-DIO24H/CTR3

n CIO-DIO24/CTR3

n PC-CARD-D24/CTR3

n PCM-D24/CTR3

The DIO24/CTR3 Series and D24/CTR3 Series supports the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 255 using FIRSTPORTA or FIRSTPORTB

0 to 15 using FIRSTPORTCL or FIRSTPORTCH

BitNum

0 to 23 using FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 3

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Event notification
CIO-DIO24/CTR3 and PC-CARD-D24/CTR3 only.

Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

ON_EXTERNAL_INTERRUPT/OnExternalInterrupt

Hardware considerations
Counter configuration

Counter source functions are programmable using InstaCal.

Page 191 of 700

PCI-DIO48/CTR15
The PCI-DIO48/CTR15 board supports the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTC, FIRSTPORTCH

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue

0 to 255 using PORTA or PORTB

0 to 15 using PORTCL or PORTCH

BitNum

0 to 47 using FIRSTPORTA

Counter I/O
Functions

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

CounterNum

1 to 15

Config

HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE, HARDWARESTROBE

LoadValue

0 to 65,535 (Refer to 16-bit values using a signed integer data type for information on 16-bit values using unsigned integers.)

Event notification
Functions

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types

ON_EXTERNAL_INTERRUPT/OnExternalInterrupt

Page 192 of 700

PCIe-DIO24 and PCIe-DIO96H
The PCIe-DIO24 and PCIe-DIO96H support the following UL and UL for .NET features.

Digital I/O
Based on 82C55, mode 0 emulation. Click here to display a table of the port numbers and corresponding bit numbers that are
set by the digital I/O functions for hardware designed with the 82C55 chip or 82C55 emulation.

Configuration

Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

The PCIe-DIO96H also supports:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

The PCIe-DIO96H also supports:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

DataValue

PCIe-DIO24:

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

PCIe-DIO96H:

0 to 15 for FIRSTPORTCL, SECONDPORTCL, THIRDPORTCL, FOURTHPORTCL, FIRSTPORTCH, SECONDPORTCH,
THIRDPORTCH, FOURTHPORTCH

0 to 255 for FIRSTPORTA, SECONDPORTA, THIRDPORTA, FOURTHPORTA, FIRSTPORTB, SECONDPORTB, THIRDPORTB,
FOURTHPORTB

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

PCIe-DIO24: 0 to 23 using FIRSTPORTA

PCIe-DIO96H: 0 to 95 using FIRSTPORTA

Page 193 of 700

Hardware considerations
Pull-up/down resistor configuration

Each digital port has an associated resistor. You set the up/down configuration of each port's resistor with InstaCal. Configuration
options are stored in non-volatile memory in EEPROM, and are loaded on power up.

Notes
Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions and methods.

Page 194 of 700

PDISO8 Series and PDISO16 Series
The PDISO8 Series includes the following hardware:

n CIO-PDISO8

n PCI-PDISO8

n PC104-PDISO8

n USB-PDISO8

n USB-PDISO8/40

The PDISO16 Series includes the following hardware:

n E-PDISO16

n PCI-PDISO16

n CIO-PDISO16

The PDISO8 and PDISO16 Series supports the following UL and UL for .NET features.

Digital I/O

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

PDISO8: 0 to 255 for AUXPORT

PDISO16: 0 to 65,535 for AUXPORT (Refer to 16-bit values using a signed integer data type for information on 16-bit values
using unsigned integers.)

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

PDISO8: 0 to 7 on AUXPORT

PDISO16: 0 to 15 on AUXPORT

Miscellaneous

USB-PDISO8, USB-PDISO8/40, and E-PDISO16 only.

Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on the USB module to blink, and the LINK LED on the Ethernet module to blink.

When you have several modules connected to the computer, use this function to identify a particular module by making its LED
blink.

Hardware Considerations
Establishing and requesting control of an E-PDISO16

Through InstaCal, you can configure the system to automatically attempt to establish control over the E-PDISO16 when an
application starts up. To do this, check the "Try to acquire ownership on application startup" option on InstaCal's Ethernet
Settings tab. Note that only one computer should have this option selected; otherwise, two or more computers might compete for
control over the E-PDISO16. To manually request control over the E-PDISO16, press the Request Ownership button on the
Ethernet Settings tab.

Page 195 of 700

Only one computer can establish control over an E-PDISO16 at a time. Additional computers that contact the device can only query
the state of the device and its ports. The name of the computer with control over the E-PDISO16 appears in the Device Owner
property on the Ethernet Settings tab.

Sending a request for control of an E-PDISO16

If another computer already has control over E-PDISO16 when you connect to it, you can send a message to the controlling
computer. Do the following.

1. From InstaCal's main window, double-click on the E-PDISO16.

2. From the Ethernet Settings tab, click on the Request Ownership button.

3. On the Request Ownership dialog, enter your message (up to 256 characters). Press Ctrl-Enter to go to a new line.

4. You can set how long the message is displayed on the computer that controls the E-PDISO16 from the Maximum Wait drop-
down list box.

5. Click on the Send button to send the message.

Receiving a request for control of an E-PDISO16

If your computer controls an E-PDISO16 and you receive a message from another person requesting control of the device, the
message shows on your screen for the time set in the Maximum Wait drop-down list.

n Yes: Click on Yes to give up ownership/control over the network device.

The computer automatically disconnects from the network connection, and control over the device transfers to the computer
that sent the message. The Device Owner property in InstaCal updates with the name of the computer that gained control
of the device.

n No: Click on No when you do not agree to give up ownership or control over the network device.

When you click on a button, the message box and selected response displays on the computer that sent the message.

Receiving a message

When a computer sends a message to the computer controlling the device, the message displays on the monitor of the controlling
computer for the time specified by the Time-out value.

The message box has two buttons used to respond to the message. When you receive a message, enter a response in the message
box and click on one of the following buttons.

n Yes: Click on Yes to give up ownership/control over the network device.

Page 196 of 700

The computer automatically disconnects from the network connection, and control over the device transfers to the computer
that sent the message. The Device Owner property in InstaCal updates with the name of the computer that gained control
of the device.

n No: Click on No when you do not agree to give up ownership or control over the network device.

When you click on a button, the message box and selected response displays on the computer that sent the message.

Page 197 of 700

Switch & Sense 8/8
The Switch & Sense 8/8 supports the following UL and UL for .NET features.

Digital I/O
Port I/O functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

0 to 255 for AUXPORT

Bit I/O functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several modules connected to the computer, use these functions to identify a particular module by making its
LED blink.

Page 198 of 700

USB-1024 Series and USB-DIO24 Series
The USB-1024 Series includes the following hardware:

n USB-1024LS

n USB-1024HLS

The USB-DIO24 Series includes the following hardware:

n USB-DIO24/37

n USB-DIO24H/37

The USB-1024 and USB-DIO24 Series supports the following UL and UL for .NET features.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

Port I/O functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 23 on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

0 to 232–1 when reading the counter.

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the counter for this board to 0. No other values are
valid.

The Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using cbCIn32

Page 199 of 700

() or CIn32() for values greater than 2,147,483,647.

RegNum

LOADREG1

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular device by making its
LED blink.

Notes
Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions and methods.

Page 200 of 700

USB-DIO96H (formerly USB-1096HFS) and USB-DIO96H/50
The USB-DIO96H (formerly USB-1096HFS) and USB-DIO96H/50 support the following UL and UL for .NET features.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Configuration

Functions

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

DataValue

0 to 15 for FIRSTPORTCL, SECONDPORTCL, THIRDPORTCL, FOURTHPORTCL, FIRSTPORTCH, SECONDPORTCH, THIRDPORTCH,
FOURTHPORTCH

0 to 255 for FIRSTPORTA, SECONDPORTA, THIRDPORTA, FOURTHPORTA, FIRSTPORTB, SECONDPORTB, THIRDPORTB,
FOURTHPORTB

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

0 to 95 on FIRSTPORTA

Counter I/O
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Page 201 of 700

Count

0 to 232–1 when reading the counter.

The Basic signed integers guidelines apply when using cbCIn() or CIn() for values greater than 32,767 and when using cbCIn32
() or CIn32() for values greater than 2,147,483,647.

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32() are only used to reset the counter for this board to 0. No other values are
valid.

RegNum

LOADREG1

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED to blink.

When you have several boards connected to the computer, use this function/method to identify a specific board by making its
LED blink.

Notes
Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library digital I/O functions and methods.

Page 202 of 700

USB-SSR Series
The USB-SSR Series includes the following hardware:

n USB-SSR08

n USB-SSR24

The USB-SSR Series supports the following UL and UL for .NET features.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

USB-SSR08: FIRSTPORTCL, FIRSTPORTCH

USB-SSR24: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

USB-SSR08: 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

USB-SSR24: 0 to 255 for FIRSTPORTA or FIRSTPORTB, 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

USB-SSR08: 16 to 23 on FIRSTPORTA

USB-SSR24: 0 to 23 on FIRSTPORTA

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a USB device to blink.

When you have several modules connected to the computer, use these functions to identify a particular module by making its
LED blink.

Hardware considerations
Do not change the state of switches while a program is running

The USB-SSR Series devices have three onboard switches (labeled S1, S2, and S3) that are used to control the I/O direction, logic
polarity, and pull-up/down state of output relays.

Do not change the state of any switches on a USB-SSR Series device while a program is running. The Universal Library stores the
current state of each switch, and changing a switch setting while a program is running can cause unpredictable results.

Controlling relays on the USB-SSR08

USB-SSR Series hardware is bidirectional, so you first need to set the I/O direction of each relay module group using the onboard
switch S1.

The USB-SSR08 has two 4-bit ports (FIRSTPORTCL or FIRSTPORTCH). Each port controls four relays.

n To read four relays at a time, call DIn(), and specify either FIRSTPORTCL or FIRSTPORTCH.

To read just one of the input modules, call DBitIn(), specify FIRSTPORTA and a bit number of 16 to 23.

Page 203 of 700

n To control four relays at a time, call DOut(), specify either FIRSTPORTCL or FIRSTPORTCH, and send a data value between 0
and 15. To control all eight relays, make two consecutive DOut() calls.

To control just one of the eight relays, call DBitOut(), specify FIRSTPORTA, and send a data value of either 0 or 1 and a bit
number of 16 to 23. Bits 16 through 23 map to relays 1 through 8 on the USB-SSR08.

The relays are controlled in this way to allow code migration without changes when switching from the older SSR-RACK08 board to
the USB-SSR08.

Page 204 of 700

Digital Output Hardware
To maximize the performance of the digital output function calls, refer to the 82C55 data sheet. This document is also available in
the Documents subdirectory where the UL is installed (C:\Program files\Measurement Computing\DAQ by default). You can also
refer to the 8536 data sheet, although this document is not installed with the Universal Library.

Page 205 of 700

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf
http://www.adobe.com/products/acrobat/readstep2.html

CIO-DO Series and PC104-DO48
The CIO-DO Series includes the following hardware:

n CIO-DO48H

n CIO-DO96H

n CIO-DO192H

n CIO-DO24DD

n CIO-DO48DD

This topic also includes:

n PC104-DO48H

CIO-DO Series and PC104-DO48 support the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDOut(), cbDBitOut()

UL for .NET: DOut(), DBitOut()

PortNum

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

For DO48H, DO48DD, DO96H and DO192H, the following argument values are also valid:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

For DO96H and DO192H, the following argument values are also valid:

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

For DO192H, the following argument values are also valid:

FIFTHPORTA through EIGHTHPORTCH

DataValue

0 to 255 using PORTA or PORTB

0 to 15 using PORTCL or PORTCH

BitNum

0 to 23 using FIRSTPORTA

For DO48H, DO48DD, DO96H and DO192H the following argument values are also valid:

24 to 47 using FIRSTPORTA

For DO96HandDO192H, the following argument values are also valid:

48 to 95 using FIRSTPORTA

For DO192H, the following argument values are also valid:

96 to 191

Page 206 of 700

CIO-RELAY Series
The CIO-RELAY Series includes the following hardware:

n CIO-RELAY08

n CIO-RELAY16

n CIO-RELAY16/M

n CIO-RELAY24

n CIO-RELAY32

The CIO-RELAY Series supports the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDOut(), cbDBitOut()

UL for .NET: DOut(), DBitOut()

PortNum

FIRSTPORTA

For CIO-RELAY16 & 16/M, the following argument value is also valid:

FIRSTPORTB

For CIO-RELAY24, the following argument value is also valid:

SECONDPORTA

For CIO-RELAY32, the following argument value is also valid:

SECONDPORTB

DataValue

0 to 255

BitNum

0 to 7 using FIRSTPORTA

For CIO-RELAY16 and CIO-RELAY16/M, the following argument values are also valid:

0 to 15 using FIRSTPORTA

For CIO-RELAY24, the following argument values are also valid:

0 to 23 using FIRSTPORTA

For CIO-RELAY32, the following argument values are also valid:

0 to 31 using FIRSTPORTA

Page 207 of 700

USB-ERB Series
The USB-ERB Series includes the following hardware:

n USB-ERB08

n USB-ERB24

The USB-ERB Series supports the following UL and UL for .NET features.

Digital I/O
Click here to display a table of the port numbers and corresponding bit numbers that are set by the digital I/O functions for
hardware designed with the 82C55 chip or 82C55 emulation.

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

USB-ERB08: FIRSTPORTCL, FIRSTPORTCH

USB-ERB24: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue

USB-ERB08:0 to 15 for FIRSTPORTCL or FIRSTPORTCH

USB-ERB24: 0 to 255 for FIRSTPORTA or FIRSTPORTB, 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

FIRSTPORTA

BitNum

USB-ERB08: 16 to 23 on FIRSTPORTA

USB-ERB24: 0 to 23 on FIRSTPORTA

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several modules connected to the computer, use these functions to identify a particular module by making its
LED blink.

Hardware considerations
Invert/non-invert switch (S1)

Do not change the state of the invert/non-invert switch (labeled S1) on a USB-ERB Series device while a program is running. The
Universal Library stores the current state of this switch, and changing the switch setting while a program is running can cause
unpredictable results.

 Page 208 of 700

Controlling relays on the USB-ERB08

USB-ERB Series hardware are output-only boards (no inputs), so setting the port direction is not required. The USB-ERB08 has two
4-bit ports (FIRSTPORTCL or FIRSTPORTCH). Each port controls four relays.

n To control four relays at a time, call DOut(), specify either FIRSTPORTCL or FIRSTPORTCH, and send a data value between 0
and 15. To control all 8 relays, make two consecutive DOut() calls.

n To control just one of the eight relays, call DBitOut(), specify FIRSTPORTA, and send a data value of either 0 or 1 and a bit
number of 16 to 23. Bits 16 through 23 map to relays 1 through 8 on the USB-ERB08.

The relays are controlled in this way to allow code migration without changes when switching from the older CIO-ERB08 board to
the USB-ERB08.

Page 209 of 700

Expansion Hardware
Auto-detected expansion boards are automatically added to the InstaCal configuration when InstaCal is launched. The device
properties are automatically adjusted to reflect the expansion properties. Auto-detected expansion boards are not shown as a
separate device in the InstaCal device tree.

Manually configured expansion boards, such as the CIO-EXP series, are added to the InstaCal configuration by selecting the
compatible board on the main InstaCal form, and selecting the Add Exp Board… option from the Install menu. Manually
configured expansion boards are shown in the InstaCal device tree as a branch attached to the device to which it was added.

Page 210 of 700

AI-EXP32
The AI-EXP32 expansion board is used in combination with compatible parent boards, such as a USB-2416 Series board.

The AI-EXP32 supports all of the analog input and temperature input capabilities of the parent board, but expands the channel
count as follows:

Analog input
HighChan

32 to 63 in single-ended mode, 16 to 31 in differential mode.

Temperature input
HighChan

8 to 31

Hardware considerations
The parent board must be configured for differential inputs when using thermocouples.

Page 211 of 700

AI-EXP48
The AI-EXP48 expansion board is used in combination with compatible parent boards, such as a USB-1616HS Series board.

The AI-EXP48 supports all of the analog input and temperature input capabilities of the parent board, but expands the channel
count as follows:

Analog input
HighChan

16 to 63 in single-ended mode, 8 to 31 in differential mode.

Temperature input
HighChan

8 to 31

DAQ input
ChanArray

ANALOG: 0 to 63 in single-ended mode, 0 to 31 in differential mode

CJC: 6 to 11

TC: 8 to 31

Hardware considerations
Associating CJC channels with TC channels

The TC channels must immediately follow their associated CJC channels in the channel array. For accurate thermocouple readings,
associate CJC channels with the TC channels as listed in the following table:

The parent board must be configured for differential inputs when using thermocouples.

TC inputs are supported by differential mode configuration only.

CJC channels TC channels

CJC6 TC8 through TC11

CJC7 TC12 through TC15

CJC8 TC16 through TC19

CJC9 TC20 through TC23

CJC10 TC24 through TC27

CJC11 TC28 through TC31

Page 212 of 700

CIO-EXP Series
The CIO-EXP Series includes the following hardware:

n CIO-EXP16

n CIO-EXP32

n CIO-EXP-BRIDGE

n CIO-EXP-GP

n CIO-EXP-RTD

The CIO-EXP Series supports the following UL and UL for .NET features.

Temperature input
Functions

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Scale

CELSIUS, FAHRENHEIT, KELVIN

HighChan

From 16 up to 255 for 16-channel boards, and from 64 up to 303 for 64-channel boards. The value depends on the number of
boards connected and the application.

Hardware considerations
CIO-EXP boards are used only in combination with an A/D board. Channel numbers for accessing the expansion boards begin at 16
for 8-channel and 16-channel boards, and 64 for 64-channel boards. To calculate the channel number (Chan) for access to CIO-
EXP channels, use the following formula:

Chan = (ADChan * 16) + (16 + MuxChan)

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the expansion board. An
EXP32 has two banks, so the channel numbers for one EXP32 connected to an A/D board would range from 16 to 47.

If all A/D channels are not used for CIO-EXP output, direct input to the A/D board is still available at these channels (using channel
numbers below 16).

When CIO-EXP boards are used for temperature input, set the gain of the A/D board to a specific range:

n When using A/D boards with programmable gain, the range is set by the Universal Library.

n When using boards with switch-selectable gains, set the gain to a range that is dependent on the temperature sensor in use.

Generally, thermocouple measurements require the A/D board to be set to 5 V bipolar, if available, or 10 V bipolar if not.
RTD sensors require a setting of 10 V unipolar, if available. These checks are made when you configure the system for
temperature measurement using InstaCal.

Page 213 of 700

MEGA-FIFO
The MEGA-FIFO supports the following UL and UL for .NET features.

Memory I/O

Only used in combination with a board which has DT-Connect.

Functions

UL: cbMemSetDTMode(), cbMemReset(), cbMemRead(), cbMemWrite(), cbMemReadPretrig()

UL for .NET: MemSetDTMode(), MemReset(), MemRead(), MemWrite(), MemReadPretrig()

Some of these functions are integrated into the cbAInScan() function and AInScan() method. For example, if you use MEGA-FIFO
with an A/D board and select the EXTMEMORY option, you would not have to call the cbMemSetDTMode() and cbMemWrite()
functions or the MemSetDTMode() and MemWrite() methods.

EXTMEMORY option

Continuous mode cannot be used with the EXTMEMORY/ExtMemory option.

Page 214 of 700

MetraBus Hardware
To use any MetraBus I/O board, a MetraBus interface board, such as the ISA-MDB64, PCI-MDB64 or a CPCI-MDB64, is required for
the Universal Library functions to operate correctly. The interface board and a MetraBus cable provide the interface between the PC
bus (ISA-, PC104-, PCI-, or CPCI) and the MetraBus I/O Boards.

The MetraBus system is includes at least one controller board that communicates with real-world interface boards via a data bus
(ribbon cable). The implication is that there will always be two or more boards in the system.

Page 215 of 700

MDB64 Series
The MDB64 Series includes the following hardware:

n ISA-MDB64

n PCI-MDB64

n PC104-MDB64

This series makes up the controller portion of the MetraBus system. The Universal Library contains no functions to communicate
specifically with this board. The functions in the library are directed to the devices on the bus instead.

For example, if this board was installed in InstaCal as board 0, and an MII-32 was installed as board 1, the communication would
be directed to board 1. To read digital bits from this configuration, the function would be cbDBitIn()/DBitIn(), and the value of the
BoardNum argument would be 1.

Page 216 of 700

MEM Series Relay
All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to interface to the host
computer system.

The MEM Series Relay boards include the following hardware:

n MEM-32

n MEM-8

The MEM Series Relay boards supports the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDIn(), cbDBitIn(), cbDOut(), cbDBitOut()

UL for .NET: DIn(), DBitIn(), DOut(), DBitOut()

PortNum

FIRSTPORTA

For MEM-32, the following argument values are also valid:

n FIRSTPORTB

n SECONDPORTA, SECONDPORTB

DataValue

0 to 255 for PORTA or PORTB

BitNum

0 to 7 for FIRSTPORTA

For MEM-32, the following argument values are also valid:

n 0 to 31 for FIRSTPORTA

Hardware Considerations
Reading back the output state of a MEM Series relay

Although the MEM Series Relay is a digital output-only board, the state of the outputs can be read back using the UL functions cbDIn
() and cbDBitIn(), or the UL for .NET methods DIn() and DBitIn().

Page 217 of 700

MIO and MII Digital I/O
All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to interface to the host
computer system.

The MIO and MII Digital I/O boards include the following hardware:

n MII-32

n MIO-32

The MIO and MII Digital I/O boards support the following UL and UL for .NET features.

Digital In (MII-32 only)
Functions

UL: cbDIn(), cbDBitIn()

UL for .NET: DIn(), DBitIn()

PortNum

FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue

0 to 255 for PORTA or PORTB

BitNum

0 to 31 for FIRSTPORTA

Digital Out (MIO-32 only)
Functions

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

PortNum

FIRSTPORTA, FIRSTPORTB

SECONDPORTA, SECONDPORTB

DataValue

0 to 255 for PORTA or PORTB

BitNum

0 to 31 for FIRSTPORTA

Hardware considerations
Functions/methods for reading back the MIO-32 output state

Although the MIO-32 is a digital output-only board, the state of the outputs can be read back using the UL functions cbDIn() and
cbDBitIn(), or the UL for .NET methods DBitIn() and DIn().

Page 218 of 700

MSSR-24
All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to interface to the host
computer system.

The MSSR-24 supports the following UL and UL for .NET features.

Digital I/O
Functions

UL: cbDIn(), cbDBitIn(), cbDOut(), cbDBitOut()

UL for .NET: DIn(), DBitIn(), DOut(), DBitOut()

PortNum

FIRSTPORTA, FIRSTPORTB

SECONDPORTA

DataValue

0 to 255

BitNum

0 to 24 using FIRSTPORTA

Page 219 of 700

Temperature Input Hardware
This section provides details on using temperature input devices in conjunction with the Universal Library and Universal Library
for .NET.

For information on the CIO-EXP series, refer to CIO-EXP Series in the Expansion Hardware section.

Page 220 of 700

CIO-DAS-TEMP
The CIO-DAS-TEMP supports the following UL and UL for .NET features.

Temperature input
Functions

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Options

NOFILTER

Scale

CELSIUS, FAHRENHEIT, KELVIN

HighChan

31

Hardware considerations
Pacing Input

The rate of measurement is fixed at approximately 25 samples per second.

Selecting thermocouples

J, K, E, T, R, S or B type thermocouples may be selected using InstaCal.

Page 221 of 700

CIO-DAS-TC, PCI-DAS-TC
The CIO-DAS-TC and PCI-DAS-TC support the following UL and UL for .NET features.

Temperature input
Functions

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Options

FILTER, NOFILTER

Scale

CELSIUS, FAHRENHEIT, KELVIN, VOLTS

HighChan

15

Hardware considerations
Pacing input

The rate of measurement is fixed at approximately 25 samples per second.

Selecting thermocouples

J, K, E, T, R, S or B type thermocouples may be selected using InstaCal.

Open thermocouples

When using cbTInScan() or TInScan() with the DAS-TC, an open thermocouple error (OPENCONNECTION) on any of the channels
will cause all data to be returned as -9999.0. This is a hardware limitation. If your application requires isolating channels with
defective thermocouples attached and returning valid data for the remainder of the channels, use the cbTIn() function or TIn()
method instead.

To read the voltage input of the thermocouple, select VOLTS for the Scale parameter in cbTIn() and cbTInScan() or TIn() and
TInScan().

Page 222 of 700

USB-5200 Series
The USB-5200 Series includes the following devices:

n USB-5201

n USB-5203

The USB-5200 Series supports the following UL and UL for .NET features.

Temperature input
Functions

UL: cbTIn(), cbTInScan()

UL for .NET:TIn(), TInScan()

Options

N/A

Scale

CELSIUS, FAHRENHEIT, KELVIN, NOSCALE*

*Refer to NOSCALE in the Hardware considerations section below for more information on this option.

HighChan

0 to 7

Digital I/O
Configuration

Functions

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

0 to 255 for AUXPORT

Bit I/O

Functions

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Data Logging
UL: cbLogConvertFile(), cbLogGetAIChannelCount(), cbLogGetAIInfo(), cbLogGetCJCInfo(), cbLogGetDIOInfo(), cbLogGetFileInfo
(), cbLogGetFileName(), cbLogGetPreferences(), cbLogGetSampleInfo(), cbLogReadAIChannels(), cbLogReadCJCChannels(),
cbLogReadDIOChannels(), cbLogReadTimeTags(), cbLogSetPreferences()

Page 223 of 700

UL for .NET: ConvertFile(), GetAIChannelCount(), GetAIInfo(), GetCJCInfo(), GetDIOInfo(), GetFileInfo(), GetFileName(),
GetPreferences(), GetSampleInfo(), ReadAIChannels(), ReadCJCChannels(), ReadDIOChannels(), ReadTimeTags(),
SetPreferences()

The cbLogGetCJCInfo() function and the GetCJCInfo() method return the number of CJC temperature channels logged in the
binary file ("0" or "2".)

The cbLogGetDIOInfo() function and the GetDIOInfo() method return the number of digital I/O channels logged in the binary file
("0" to "8".)

Delimiter

Comma, Semicolon, Space, Tab

LoggingUnits

Temperature, Raw

Units

Celsius, Fahrenheit, Kelvin

TimeFormat

TwelveHour, TwentyFourHour

TimeZone

Local, GMT

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several modules connected to the computer, use these functions to identify a particular device by making its LED
blink.

Hardware considerations
Logging and storing measurement data

Temperature measurements can be stored on a CompactFlash memory card (64 MB CF card included with hardware). Each sample
is stored on the card as a binary file. You set up the following logging options through InstaCal:

n the temperature input channel(s) to log

n the channel format – raw data or temperature

n the start mode to begin a logging session

n the interval in seconds between samples

n the alarm conditions used to trigger the DIO bits

InstaCal provides further options for copying, converting, and deleting the binary files. You can access log data stored on the
memory card with a CompactFlash reader, or by transferring the files from InstaCal to a computer for processing and conversion
using the USB bus.

Note: A card reader is not required to access log data on a device installed with firmware 3.0 and later. A device with this firmware
version appears in Windows Explorer as a removable drive from which you can directly access the log data.

External power required for data logging

Due to processing limitations, data logging to the memory card is not allowed when the device is connected to an active USB bus on
the computer. When operating as a data logger, disconnect the USB cable from the computer, and connect the external power
supply shipped with the device.

Note: When using a self-powered hub, make sure it is attached to the PC USB port before connecting it to a USB-5200 Series
device. If a powered hub is connected to the device first, it may be detected by the device as a power supply and go into logging
mode.

Configuring the DIO channels to generate alarms

USB-5200 Series devices provide eight independent temperature alarms. Each alarm controls an associated digital I/O channel as
an alarm output. The input to each alarm is one of the temperature input channels. Use InstaCal to set up the temperature
conditions used to activate an alarm, and the output state of the channel when activated (active high or low).

Digital channels that are configured as alarms will power up in an output state. When an alarm is activated, the associated DIO
channel is driven to the output state defined by the alarm configuration.

The alarms function both in data logging mode and while attached to the USB port on a computer. The alarm configurations are
stored in non-volatile memory on the device and are loaded on power up.

Page 224 of 700

Pacing temperature readings

The internal update rate for temperature measurement is a fixed value for these devices. If the UL reads the device faster than the
internal update rate, temperature readings "repeat." For example, if using cbTIn()/TIn() in a loop to measure a rapidly changing
temperature, readings do not change for several iterations of the loop, then "jump" when the update occurs internally.

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, ignore the data for channels that do not have sensors attached. It is best
to use cbTIn()/TIn() for these configurations, since you can select the channels to read. If you use cbTInScan()/TInScan(),
however, data for all channels over the entire range of channels are returned. Since some channels are not populated in this
configuration, you should filter out the data for channels without sensors.

NOSCALE

Specify the NOSCALE option to retrieve raw data in volts or resistance from the device. When NOSCALE is specified, calibrated data
is returned, although a cold junction compensation (CJC) correction factor is not applied to the returned values.

Saving configuration settings

InstaCal allows you to save device configuration settings to a file, or to load a configuration from a previously saved file.

n Each USB-5203 channel can be configured to measure temperature data collected by one of five categories of temperature
sensors: thermistors, thermocouples (one of eight types), RTDs, semiconductors, and Disabled.

n Each USB-5201 channel can be configured to measure temperature data collected by one of eight thermocouple types.

Recommended warm-up time

Allow the device to warm-up for 30 minutes before taking measurements. This warm-up time minimizes thermal drift and achieves
the specified rated accuracy of measurements.

For RTD and thermistor measurements, this warm-up time is also required to stabilize the internal current reference.

Calibration

Any time you change the sensor category for the USB-5203, calibration is automatically performed by InstaCal. If the device is not
warmed up when this occurs, calibrate the device again after the specified warm-up time.

Error codes

n The UL returns -9999 when a value is out of range or an open connection is detected.

n The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered up and calibration
factors are being loaded.

Page 225 of 700

USB-TEMP Series, USB-TC Series
The USB-TEMP Series includes the following hardware:

n USB-TEMP

n USB-TEMP-AI

The USB-TC Series includes the following hardware:

n USB-TC

n USB-TC-AI

The USB-TEMP Series and the USB-TC Series support the following UL and UL for .NET features.

Temperature input
Functions

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Options

N/A

Scale

CELSIUS, FAHRENHEIT, KELVIN, NOSCALE*

*Refer to NOSCALE in the Hardware considerations section below for more information on this option.

HighChan

USB-TEMP and USB-TC: 0 to 7

USB-TEMP-AI and USB-TC-AI: 0 to 3

Voltage input (USB-TEMP-AI and USB-TC-AI)
Functions

UL: cbVIn()

UL for .NET: VIn()

Options

N/A

HighChan

0 to 3

Range

This board uses the Range set in InstaCal, so the Range argument to this function is ignored.

Digital I/O
Configuration

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

Page 226 of 700

0 to 255 for AUXPORT

Bit I/O

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Counter I/O (USB-TEMP-AI and USB-TC-AI)
Functions

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more appropriate, since the
values returned may be greater than the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the counter.

CounterNum

1

Count

232–1 when reading the counter.

0 when loading the counter.

cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the counter for this board to 0. No other values are
valid.

The Basic signed integers guidelines in the Introduction: Digital Input Output Boards section apply when using cbCIn() or CIn()
for values greater than 32,767 and when using cbCIn32() or CIn32() for values greater than 2,147,483,647.

RegNum

1

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several devices connected to the computer, use this function/method to identify a particular device by making its
LED blink.

Hardware considerations
Pacing temperature readings

The internal update rate for measurements is a fixed value for these devices. If the UL reads the device faster than the internal
update rate, readings "repeat." For example, if using cbTIn()/TIn() in a loop to measure a rapidly changing temperature, readings
do not change for several iterations of the loop, then "jump" when the update occurs internally

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not have sensors
attached. It is best to use cbTIn()/TIn() for these configurations, since you can select which channels to read. If you use cbTInScan
()/TInScan(), however, data for all channels over the entire range of channels are returned. Since some channels are not
populated in this configuration, you should filter out the data for channels without sensors.

NOSCALE

Specify the NOSCALE option to retrieve raw data in volts or resistance from the device. When NOSCALE is specified, calibrated data
is returned, although a cold junction compensation (CJC) correction factor is not applied to the returned values.

Saving configuration settings

InstaCal allows you to save configuration settings to a file or load a configuration from a previously saved file.

n Each USB-TEMP and USB-TEMP-AI channel can be configured to measure temperature data collected by one of five
categories of temperature sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled.

Page 227 of 700

categories of temperature sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled.

n Each USB-TC and USB-TC-AI channel can be configured to measure temperature data collected by one of eight types of
thermocouples.

n Each USB-TEMP-AI and USB-TC-AI voltage input channel can be configured for single-ended or differential mode and for one
of four ranges - ±10 V, ±5 V, ±2.5 V, or ±1.25 V.

Recommended warm-up time

Allow the device to warm-up for 30 minutes before taking measurements. This warm-up time minimizes thermal drift and achieves
the specified rated accuracy of measurements.

For RTD or thermistor measurements, this warm-up time is also required to stabilize the internal current reference.

Calibration

Any time the sensor category is changed in the configuration, a calibration is automatically performed by InstaCal. If the device
has not been warmed up when this occurs, you should re-calibrate after the specified warm-up time.

Error codes

n The UL returns -9999 when a value is out of range or an open connection is detected.

n The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered up and calibration
factors are being loaded.

Page 228 of 700

WEB-TEMP, WEB-TC
The WEB-TEMP and WEB-TC support the following UL and UL for .NET features.

Temperature input
Functions

n UL: cbTIn(), cbTInScan()

n UL for .NET: TIn(), TInScan()

Scale

CELSIUS, FAHRENHEIT, KELVIN, NOSCALE*

*Refer to NOSCALE in the Hardware considerations section below for more information on this option.

HighChan

0 to 7

Digital I/O
Configuration

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

0 to 255 on AUXPORT

Bit I/O

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Configuration
Functions

UL: cbGetConfig(), cbSetConfig(), cbGetConfigString(), cbSetConfigString()

ConfigItem

BINODEID, BINETIOTIMEOUT, BIHIDELOGINDLG

Device Number

0

maxConfigLen

up to 48

Page 229 of 700

Miscellaneous
Functions

UL: cbDeviceLogin(), cbDeviceLogout(), cbFlashLED()

UL for .NET: DeviceLogin(), DeviceLogout(), FlashLED()

Call cbFlashLED()/FlashLED() to flash the POWER/COMM LED on a WEB device. This is useful if you have multiple devices
connected and you want to identify a particular device.

Hardware considerations
Web based

If the user name and password have changed from the default, log in with the new user name and password to change
configuration settings. Only one user can be logged in at a time. The log in session times out after five minutes of inactivity. Log in
is not required to view the current configuration in InstaCal.

Hardware options are configurable on the web browser or with InstaCal. If hardware options are changed on the web browser while
InstaCal is open, restart or refresh InstaCal to update its configuration pages with the settings stored on the device. Network
parameters and some configuration settings for resistance measurement are configurable with InstaCal only.

Configuration options are stored in non-volatile memory in EEPROM, and are loaded on power up.

Network parameters

The following network parameters are configurable with InstaCal. Configurable network options are enabled when you start
InstaCal if the default user name and password are assigned. If a custom user name and password are assigned, the configurable
network options are enabled after you log in.

n Identifier: Text that identifies the WEB device. This value is optional, and is not set by default. You can enter up to 48
alpha-numeric characters. To set this value in code, use the UL ConfigItem option BINODEID with cbSetConfigString().

n DHCP: Enables automatic configuration of the IP address for a WEB device by a DHCP Server. When a DHCP-enabled server
is available, an IP address is automatically assigned to the device when it is detected on the network. This value is set to
Enabled by default. Disable this option when the server is not DHCP-enabled, or when you want to enter a static IP address.

n IP: The IP address that is currently stored on the device is displayed in the Current Settings frame on the InstaCal Board
Configuration dialog. By default, this address is set automatically when a DHCP server is available. If you are setting a
static IP address manually, enter it in the IP text box on the Default Settings frame. Every device connected to the network
must have a unique IP address. This value is set to 192.168.0.101 by default.

n Subnet: The Subnet Mask that is currently stored on the device is displayed in the Current Settings frame on the InstaCal
Board Configuration dialog. The Subnet Mask is the part of the IP address that denotes the local Subnet. By default, the
Subnet Mask is set automatically when a DHCP server is available. If you are setting a static IP address manually, enter the
Subnet Mask in the Subnet text box on the Default Settings frame.

This value is set to 255.255.255.0 by default. The first three groups of numbers indicate the network number to which the
device is connected, and the last group indicates the node number within the network that identifies the device.

n Gateway: The Gateway IP address that is currently stored on the device is displayed in the Current Settings frame on the
InstaCal Board Configuration dialog. By default, the Gateway IP address is set automatically when a DHCP server is
available. If you are setting a static IP address manually, enter the Gateway in the Gateway text box on the Default
Settings frame. This value is set to 192.168.0.1 by default. The Gateway parameter is used for communication between
devices on different networks.

n Server: Enables or disables the device web page server. This value is set to Enabled by default. When enabled, you can
view the device web page with a web browser. When disabled, you can only access the device with InstaCal or the Universal
Library. Disable when you want to restrict access to the device web page. Changes to this setting take affect the next time
you power up the device.

n Change Login button: Opens a dialog to change the user name and password used to log in to a device session. Once
changed, log in is required to change configurable options on the device. The user name and password are not stored on the
host computer, and must be entered each time you start the application. Refer to Logging in to a device session below for
more information.

n Login button: This button is enabled when login is required.

The InstaCal configuration page also lists the unique 64-bit physical (MAC) address assigned to the device. You cannot change this
address.

Page 230 of 700

Logging in to a device session

You must be logged in to a device session in order to change the configuration settings of a device or change the state of the digital
outputs. A user name and password are required to log in if they are not set to the default values. For security, it is recommended
that you change the login values from the defaults. The log in session times out after five minutes of inactivity.

The default user name is set to webtemp for the WEB-TEMP, and webtc for the WEB-TC. The default password is mccdaq for both
devices. You can change these values in InstaCal with the Change Login button after you are logged in to a device session. Each
value can be up to eight alphanumeric characters.

Using InstaCal, when the user name and password have been changed from the default values, the configuration page opens with
configurable items disabled and the Login button enabled. Click the Login button and then enter the values. The INVALIDLOGIN
error is returned if the login information is not valid. The SESSIONINUSE error is returned if you attempt to log in when a session is
currently open by another user. Only one user can be logged in to a session at a time.

Similarly, applications written with the Universal Library will perform a background log in when required if the login parameters are
set to the default values. If custom values have been set, you have the option to allow the default login dialog to pop up when
required or to disable the default dialog and handle login in your code.

To disable the default login dialog when using the Universal Library, you can select the "Show Login dialog prompt" option in
InstaCal, or for a more permanent result, disable the default dialog using cbSetConfig() with the BIHIDELOGINDLG ConfigItem
argument within your application code.

Factory default reset

To restore the network parameters (including the user name and password) to the factory default settings, press and hold the
device reset button for three seconds. You do not have to be logged in to restore the default network settings.

Manually adding devices to InstaCal

If a device is not yet connected to the local network, or if it is connected remotely to a different LAN, InstaCal will be unable to
detect it. If autodetection fails, you can manually add the device to InstaCal using the Web tab on the Board Selection List
dialog, and specify the IP address and port to use in the broadcast.

The default IP address and port add a placeholder to the configuration of a WEB device detected on the network. The default IP
address broadcasts to all devices detected on the local subnet. The default port lists the default port number that is used to
interface with the UL.

Any instance of the device type responding to the broadcast will attach to the placeholder. You can specify the device to attach to
the placeholder by clicking the MAC check box and entering the device type and instance ID. Enter C0 to locate a WEB-TC, or C2 to
locate a WEB-TEMP. Enter any value from 0x00000 to 0x2FFFE (except 0x1FFFF) for the instance ID. The first three octets of a
MAC address indicate the vendor ID and cannot be changed.

Configuring the DIO channels to generate alarms

The WEB-TEMP and WEB-TC provide eight independent temperature alarms. Each alarm controls an associated digital I/O channel
as an alarm output. The input to each alarm is one of the temperature input channels. You set up the temperature conditions to
activate an alarm, and the output state of the digital channel (active high or low) when activated. You can view the alarm status on
the web browser.

Digital channels that are configured as alarms will power up in an output state. When an alarm is activated, the associated DIO
channel is driven to the output state defined by the alarm configuration. The alarm configurations are stored in non-volatile
memory on the device and are loaded on power up. Alarm settings can be configured using the device web browser or InstaCal.

Pacing temperature readings

The internal update rate for temperature measurement is a fixed value for these devices. If the UL reads the device faster than the
internal update rate, temperature readings "repeat." For example, if using cbTIn() in a loop to measure a rapidly changing
temperature, readings do not change for several iterations of the loop, then "jump" when the update occurs internally.

Using single sensors with cbTInScan() (WEB-TEMP only)

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not have sensors
attached. It is best to use cbTIn() for these configurations, since you can select which channels to read. If you use cbTInScan(),
however, data for all channels over the entire range of channels are returned. Since some channels are not populated in this
configuration, filter out the data for channels without sensors.

NOSCALE

Specify the NOSCALE option to retrieve raw data in volts or resistance from the device. When NOSCALE is specified, calibrated data
is returned, although a cold junction compensation (CJC) correction factor is not applied to the returned values.

Channel names

You can specify a custom name for each of the device channels with InstaCal. Enter up to 10 alpha-numeric characters in the
Name text box on each channel configuration page.

Saving configuration settings

InstaCal allows you to save hardware configuration settings to a file, or load a configuration from a previously saved file.

Each WEB-TEMP channel can be configured to measure temperature data collected by one of five categories of temperature
sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled. Each WEB-TC channel can be configured to measure
temperature data collected by one of eight types of thermocouples.

Recommended warm-up time

Page 231 of 700

Allow the device to warm-up for 30 minutes before taking measurements. This warm-up time minimizes thermal drift and achieves
the specified rated accuracy of measurements. For RTD or thermistor measurements, this warm-up time is also required to stabilize
the internal current reference.

Calibration

You can manually calibrate a WEB device using InstaCal or the web interface.

Any time the sensor category is changed in the configuration for the WEB-TEMP, a calibration is automatically performed. If the
device is not warmed up when this occurs, re-calibrate after the specified warm-up time.

Timeout errors

In some cases, there can be delays in obtaining the data from the WEB device, causing a NOREMOTEACK error to be generated.
This can be caused by other users making configuration changes on the device, or by slow or busy network connections.

You can use the ConfigItem option BINETIOTIMEOUT with cbSetConfig() to set the time (in mS) to wait for a device to acknowledge
a command or query made via the network connection.

Page 232 of 700

WLS Series
The WLS Series includes the following hardware:

n WLS-IFC

n WLS-TEMP

n WLS-TC

These devices support the following UL and UL for .NET features.

Temperature input (WLS-TEMP and WLS-TC)
Functions

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Scale

CELSIUS, FAHRENHEIT, KELVIN, NOSCALE*

*Refer to NOSCALE in the Hardware considerations section below for more information on this option.

HighChan

0 to 7

Digital I/O (WLS-TEMP and WLS-TC)
Configuration

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum

AUXPORT

PortType

AUXPORT

Port I/O Functions

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum

AUXPORT

DataValue

0 to 255 on AUXPORT

Bit I/O

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType

AUXPORT

BitNum

0 to 7 on AUXPORT

Configuration
Functions

UL: cbGetConfig(), cbSetConfig(), cbGetConfigString(), cbSetConfigString()

UL for .NET: GetDeviceNotes(), SetDeviceNotes(), GetDeviceId(), SetDeviceId(), GetPANID(), SetPANID(), GetRFChannel(),
SetRFChannel(), GetRSS()

ConfigItem

BIRFCHANNEL, BIPANID, BINODEID, BIDEVNOTES

The following argument value is also valid for the WLS-TEMP and WLS-TC when they are operating as remote devices:

Page 233 of 700

BIRSS

Miscellaneous
Functions

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several devices connected to the computer, use this function/method to identify a particular device by making its
LED blink.

Hardware considerations
You can operate the WLS-TEMP and WLS-TC as remote devices that communicate with the computer through a USB-to-wireless
interface device, such as the WLS-IFC. The interface device can communicate with multiple remote WLS Series devices over a
wireless link.

Network parameters (wireless operation)

Use InstaCal to configure the network parameters required for wireless communication. Configuration options are stored in non-
volatile memory in EEPROM, and are loaded on power up.

Network parameters can only be modified when the device is connected locally to the computer through the USB port. After
configuring the network settings for a remote device, unplug from the computer and move the device to its remote location.

The following network parameters are programmable with InstaCal:

n Identifier: Text that identifies the WLS Series device. This value is optional, and is not set by default. You can enter up to 20
alpha-numeric characters.

You can set the text identifier value using the ConfigItem option BINODEID with cbSetConfigString() or SetDeviceId() while
the device is connected locally to the computer through the USB port, or when the device is operating remotely.

n PAN: The personal area network ID assigned to the device. This value is set to 1000 hex by default (4096 decimal). Most
users do not need to change this value. However, you may want to change the PAN value in the following situations:

n You have multiple WLS Series devices and do not want to allow communication between all of them. Set the PAN ID to the
same value on each device that you want to communicate.

n If other WLS Series devices are operating in the vicinity, you can avoid accidental changes to your device settings by
changing the default PAN value.

To change the PAN ID, enter a 16-bit hexadecimal value between 0 and FFFE. (Hexadecimal values consist of numbers
between 0 and 9 and letters between A and F. In this case, up to four characters could be entered.)

You can set the PAN value using the ConfigItem option BIPANID with cbSetConfig() when the device is connected locally to
the computer through the USB port.

n RF channel: The IEEE 802.15.4 RF (radio frequency) channel number used to transmit/receive data over the wireless link.
Select a channel number between 12 and 23.

The table below lists each channel available along with its corresponding transmission frequency.

You can set the RF channel using the ConfigItem option BIRFCHANNEL with cbSetConfig() while the device is connected
locally to the computer through the USB port.

n AES Key: The value used to encrypt a message (optional). Click the AES Key button and enter up to 16 alpha-numeric
characters to enable encryption. This value is write-only; it cannot be read back.

Only devices with matching parameter settings for PAN ID, RF channel, and AES encryption (if set) can communicate with
each other.

n Device Notes: Use the Device Notes tab to enter up to 239 ASCII characters of additional text – for example, what the
device is measuring, and which device it is communicating with. You should also enter the AES key on this tab, since that
value cannot be read back by the device. You can set the text to store in the device memory using the ConfigItem option

RF
Channel

Transmission
Frequency
(GHz)

RF
Channel

Transmission
Frequency (GHz)

12 2.410 18 2.440

13 2.415 19 2.445

14 2.420 20 2.450

15 2.425 21 2.455

16 2.430 22 2.460

17 2.435 23 2.465

Page 234 of 700

BIDEVNOTES with cbSetConfigString().

The InstaCal configuration page also lists the unique 64-bit address assigned to the device. You cannot change this address.

Received Signal Strength (wireless operations)

When a WLS Series device is operating remotely, The InstaCal configuration page includes a bar graph. The bar graph indicates the
strength of the signal received by the remote device from the wireless interface module, and the fade margin of signals received by
a device (refer to the following table.)

The number of bars corresponds to the number of LEDs that are lit on the remote device. The bar graph display updates every two
seconds on the InstaCal form.

If the signal is not strong enough for communication between the interface device and the remote device, no bars or LEDs show,
and a NOREMOTEACK error is returned. If this occurs, try moving or re-orienting the device to increase the strength of the signal.

You can retrieve the value in dBm of the signal strength received by a remote device using the ConfigItem option BIRSS with
cbGetConfig().

External power required for wireless operations

An external power supply is required to power remote devices. For wireless operations, connect the device USB cable to the AC-to-
USB power adapter that shipped with the device.

Always connect an external hub to its power supply

If you are using a hybrid hub – one that can operate in either self-powered or bus-powered mode – always connect it to its external
power supply.

If you use a hub of this type without connecting to external power, communication errors may occur that could result in corrupt
configuration information on the wireless device. You can restore the factory default configuration settings with InstaCal.

Factory default reset

To restore factory default configuration settings, click on the Reset Defaults button on the InstaCal configuration page. The device
must be locally connected to the computer USB port to restore default settings.

Configuring the DIO channels to generate alarms (WLS-TEMP and WLS-TC)

The WLS-TEMP and WLS-TC both provide eight independent temperature alarms. Each alarm controls an associated digital I/O
channel as an alarm output. The input to each alarm is one of the temperature input channels. Use InstaCal to set up the
temperature conditions to activate an alarm, and the output state of the channel (active high or low) when activated.

Digital channels that are configured as alarms will power up in an output state. When an alarm is activated, the associated DIO
channel is driven to the output state defined by the alarm configuration. The alarms function both in wireless mode and while
attached to the USB port on a computer. The alarm configurations are stored in non-volatile memory on the device and are loaded
on power up.

Alarm settings can be configured when the device is connected locally to the computer through the USB port, or when the device is
operated remotely through a wireless interface.

Pacing temperature readings

The internal update rate for temperature measurement is a fixed-value for these devices. If the UL reads the device faster than the
internal update rate, temperature readings "repeat." For example, if using cbTIn()/TIn() in a loop to measure a rapidly changing
temperature, readings do not change for several iterations of the loop, then "jump" when the update occurs internally.

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not have sensors
attached. It is best to use cbTIn()/TIn() for these configurations, since you can select which channels to read. If you use cbTInScan
()/TInScan(), however, data for all channels over the entire range of channels are returned. Since some channels are not
populated in this configuration, you should filter out the data for channels without sensors.

NOSCALE

Specify the NOSCALE option to retrieve raw data in volts or resistance from the device. When NOSCALE is specified, calibrated data
is returned, although a cold junction compensation (CJC) correction factor is not applied to the returned values.

Saving configuration settings (WLS-TEMP and WLS-TC)

InstaCal allows you to save WLS-TEMP and WLS-TC configuration settings to a file or load a configuration from a previously saved
file.

Each WLS-TEMP channel can be configured to measure temperature data collected by one of five categories of temperature

Active bars Fade
margin

RSS (dBm)

0 - Weak signal < 10 dBm –82 dBm > rss

1 - Moderate signal ≥ 10 dBm –72 dBm > rss ≥ –82
dBm

2 - Strong signal ≥ 20 dBm –62 dBm > rss ≥ –72
dBm

3 - Very strong
signal

≥ 30 dBm rss > –62 dBm

Page 235 of 700

sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled.

Each WLS-TC channel can be configured to measure temperature data collected by one of eight types of thermocouples.

Recommended warm-up time

Allow the WLS-TEMP and WLS-TC to warm-up for 30 minutes before taking measurements. This warm-up time minimizes thermal
drift and achieves the specified rated accuracy of measurements.

For RTD or thermistor measurements, this warm-up time is also required to stabilize the internal current reference.

Calibration

Any time the sensor category is changed in the configuration for the WLS-TEMP, a calibration is automatically performed by
InstaCal. If the device has not been warmed up when this occurs, you should re-calibrate after the specified warm-up time.

Error codes

The UL returns -9999 when a value is out of range or an open connection is detected.

The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered up and calibration factors
are being loaded.

With wireless operations, the UL returns NOREMOTEACK when the signal is not strong enough for communication between the
interface device and the remote device.

Page 236 of 700

Measurement Computing Device IDs
The following table lists the device ID associated with each Measurement Computing hardware type. This information is returned by
the BoardName and BoardNum arguments. Devices are listed alphabetically in the table.

Board name Device ID (in decimal)

CIO-COM422 20481

CIO-COM485 20482

CIO-CTR05 2049

CIO-CTR10 2050

CIO-CTR10-HD 2051

CIO-CTR20-HD 2052

CIO-DAC02 1537

CIO-DAC02/16 1796

CIO-DAC04/12-HS 2564

CIO-DAC04/16-HS 19

CIO-DAC08 1538

CIO-DAC08/16 1797

CIO-DAC08I 1541

CIO-DAC16 1539

CIO-DAC16/16 1798

CIO-DAC16I 1540

CIO-DAS08 3073

CIO-DAS08/AOH 3077

CIO-DAS08/AOL 3076

CIO-DAS08/AOM 3079

CIO-DAS08/Jr 3080

CIO-DAS08Jr/16 3082

CIO-DAS08PGH 3075

CIO-DAS08PGL 3074

CIO-DAS08/PGM 3078

CIO-DAS1401/12 3588

CIO-DAS1402/12 3589

CIO-DAS1402/16 3590

CIO-DAS16 257

CIO-DAS16/330 260

CIO-DAS16/330i 261

CIO-DAS16/F 258

CIO-DAS16/Jr 259

CIO-DAS16/Jr16 265

CIO-DAS16/M1 262

CIO-DAS16/M1/16 9

CIO-DAS1601/12 3585

CIO-DAS1602/12 3586

CIO-DAS1602/16 3587

CIO-DAS48PGA 3329

CIO-DAS6402/12 8

CIO-DAS6402/16 10

CIO-DAS800 24577

CIO-DAS801 24578

CIO-DAS802 24579

CIO-DAS802/16 24580

CIO-DAS-TC 46

CIO-DAS-TEMP 4353

CIO-DDA06/12 1793

CIO-DDA06/16 1794

Page 237 of 700

CIO-DDA06/Jr 1795

CIO-DDA06Jr/16 1799

CIO-DI192 1037

CIO-DI48 1033

CIO-DI96 1035

CIO-DIO192 1029

CIO-DIO24 1025

CIO-DIO24/CTR3 1030

CIO-DIO24H 1026

CIO-DIO48 1027

CIO-DIO48H 1031

CIO-DIO96 1028

CIO-DISO48 8193

CIO-DO192H 1038

CIO-DO24DD 1039

CIO-DO48DD 1040

CIO-DO48H 1034

CIO-DO96H 1036

CIO-DUAL422 20483

CIO-DUAL-AC5 1032

CIO-EXP16 769

CIO-EXP32 770

CIO-EXP-BRIDGE 773

CIO-EXP-GP 771

CIO-EXP-RTD 772

CIO-INT32 12289

CIO-PDISO16 2306

CIO-PDISO8 2305

CIO-PDMA16 1281

CIO-PDMA32 18

CIO-QUAD02 47

CIO-QUAD04 48

CIO-RELAY08 4098

CIO-RELAY16 4097

CIO-RELAY16/M 4099

CIO-RELAY16M 17

CIO-RELAY24 42

CIO-RELAY32 43

CIO-SSH16 513

CPCI-DIO24H 85

CPCI-DIO48H 91

CPCI-DIO96H 90

CPCI-GPIB 14

DEMO-BOARD 45

E-PDISO16 137

ISA-MDB64 70

MAI-16 80

MEGA-FIFO 3841

MEM-8 73

MEM-32 74

MII-32 71

miniLAB 1008 117

MIO-32 72

MSSR-24 78

PC104-AC5 88

PC104-CTR10-HD 2053

Page 238 of 700

PC104-CTR10-HD 2053

PC104-DAC06 1543

PC104-DAS08 3081

PC104-DAS16Jr/12 263

PC104-DAS16Jr/16 264

PC104-DI48 1042

PC104-DIO48 1041

PC104-DO48H 1043

PC104-MDB64 79

PC104-PDISO8 2307

PC-CARD-D24/CTR3 61

PC-CARD-DAC08 92

PC-CARD-DAS16/12 58

PC-CARD-DAS16/12-AO 59

PC-CARD-DAS16/16 56

PC-CARD-DAS16/16-AO 57

PC-CARD-DAS16/330 60

PC-CARD-DIO48 62

PCI-2511 165

PCI-2513 166

PCI-2515 167

PCI-2517 168

PCI-COM232 63

PCI-COM232/2 64

PCI-COM232/4 65

PCI-COM422 66

PCI-COM422/2 67

PCI-COM485 68

PCI-COM485/2 69

PCI-CTR05 24

PCI-CTR10 110

PCI-CTR20HD 116

PCI-DAC04/12HS 38

PCI-DAC04/16HS 39

PCI-DAC6702 112

PCI-DAC6703 113

PCI-DAS08 41

PCI-DAS1000 76

PCI-DAS1001 26

PCI-DAS1002 27

PCI-DAS1200 15

PCI-DAS1200Jr 25

PCI-DAS16/M1 31

PCI-DAS1602/12 16

PCI-DAS1602/16 1

PCI-DAS1602JR/16 28

PCI-DAS3202/16 87

PCI-DAS4020/12 82

PCI-DAS6013 120

PCI-DAS6014 121

PCI-DAS6023 93

PCI-DAS6025 94

PCI-DAS6030 95

PCI-DAS6031 96

PCI-DAS6032 97

PCI-DAS6033 98

Page 239 of 700

PCI-DAS6034 99

PCI-DAS6035 100

PCI-DAS6036 111

PCI-DAS6040 101

PCI-DAS6052 102

PCI-DAS6070 103

PCI-DAS6071 104

PCI-DAS64 50

PCI-DAS64/M1/16 53

PCI-DAS64/M2/16 54

PCI-DAS64/M3/16 55

PCI-DAS6402/12 30

PCI-DAS6402/16 29

PCI-DAS-TC 52

PCI-DDA02/12 32

PCI-DDA02/16 35

PCI-DDA04/12 33

PCI-DDA04/16 36

PCI-DDA08/12 34

PCI-DDA08/16 37

PCI-DIO24 40

PCI-DIO24/LP 119

PCI-DIO24/S 126

PCI-DIO24H 20

PCI-DIO24H/CTR3 21

PCI-DIO48H 11

PCI-DIO48H/CTR15 22

PCI-DIO96 84

PCI-DIO96H 23

PCI-DUAL-AC5 51

PCI-INT32 44

PCI-MDB64 75

PCI-PDISO16 13

PCI-PDISO8 12

PCI-QUAD04 77

PCI-QUAD-AC5 89

PCIe-DAS1602/16 277

PCIe-DIO24 219

PCIe-DIO96H 218

PCIM-DAS1602/16 86

PCIM-DAS16JR/16 123

PCIM-DDA06/16 83

PCM-COM422 16388

PCM-COM485 16389

PCM-D24/CTR3 16386

PCM-DAC02 16387

PCM-DAC08 16401

PCM-DAS08 16385

PCM-DAS16D/12 16390

PCM-DAS16D/12AO 16395

PCM-DAS16D/16 16392

PCM-DAS16S/12 16391

PCM-DAS16S/16 16393

PCM-DAS16S/330 16394

PCM-QUAD02 49

USB-1024LS, PMD-1024LS 118

Page 240 of 700

USB-1024LS, PMD-1024LS 118

PPIO-AI08 2818

PPIO-CTR06 2819

PPIO-DIO24H 2817

Switch & Sense 8/8 132

USB-201 275

USB-204 276

USB-1024HLS,

PMD-1024HLS
127

USB-1096HFS 131

USB-1208FS,

PMD-1208FS
130

USB-1208FS-Plus 232

USB-1208LS,

PMD-1208LS
122

USB-1208HS 196

USB-1208HS-2AO 197

USB-1208HS-4AO 198

USB-1408FS 161

USB-1408FS-Plus 233

USB-1602HS 213

USB-1602HS-2AO 214

USB-1604HS 215

USB-1604HS-2AO 216

USB-1608FS,

PMD-1608FS
125

USB-1608FS-Plus 234

USB-1608G 272

USB-1608GX 273

USB-1608GX-2AO 274

USB-1608HS 189

USB-1608HS-2AO 153

USB-1616FS 129

USB-1616HS 203

USB-1616HS-2 204

USB-1616HS-4 205

USB-1616HS-BNC 217

USB-2404-10 222

USB-2404-60 223

USB-2404-UI 225

USB-2408 253

USB-2408-2AO 254

USB-2416 208

USB-2416-4AO 209

USB-2523 177

USB-2527 178

USB-2533 179

USB-2537 180

USB-3101 154

USB-3101FS 224

USB-3102 155

USB-3103 156

USB-3104 157

USB-3105 158

USB-3106 159

USB-3110 162

USB-3112 163

Page 241 of 700

USB-3114 164

USB-4301 174

USB-4302 184

USB-4303 185

USB-4304 186

USB-5201

(<Rev. 3 fw)
152

USB-5201

(Rev. 3 fw and later)
175

USB-5203

(<Rev. 3 fw)
151

USB-5203

(Rev. 3 fw and later)
176

USB-7202 242

USB-7204 240

USB-DIO24/37 147

USB-DIO24H/37 148

USB-DIO96H 146

USB-DIO96H/50 149

USB-ERB08 139

USB-ERB24 138

USB-PDISO8 140

USB-PDISO8/50 150

USB-QUAD08 202

USB-SSR08 134

USB-SSR24 133

USB-TC 144

USB-TC-AI 187

USB-TEMP 141

USB-TEMP-AI 188

WEB-TC 192

WEB-TEMP 194

WLS-IFC 181

WLS-TC 182

WLS-TEMP 183

Page 242 of 700

Introduction
The topics listed below provide a brief explanation of each UL function and UL for .NET method, and provides you with a general
idea of what you can do with the Universal Library and the Universal Library for .NET.

Universal Library functions and Universal Library for .NET methods:

n Analog I/O Functions and Analog I/O Methods

n Configuration Functions and Configuration Methods

n Counter Functions and Counter Methods

n DataLogger Functions and DataLogger Methods

n Digital I/O Functions and Digital I/O Methods

n Error Handling Functions and Error Handling Methods and Properties

n Memory Board Functions and Memory Board Methods

n Revision Control Functions and Revision Control Methods

n Streamer File Functions and Streamer File Methods

n Synchronous I/O Functions and Synchronous I/O Methods

n Temperature Input Functions and Temperature Input Methods

n Windows Memory Management Functions and Windows Memory Management Methods

n Miscellaneous Functions and Miscellaneous Methods

Important
We highly recommend that you review and run one of the many example programs included with the Universal Library installation.
These programs often provide the ideal description of the various functions, as well as providing a starting point from which you
can use to write your own programs.

Multi-threading

Only one application program that calls the Measurement Computing driver can be running at a time.

For example, when you are running a program created with the Universal Library, you cannot change any hardware configuration
settings with the InstaCal program until you first stop the UL program. This is because InstaCal stores hardware configuration
settings in a file (cb.cfg) which is read by the Universal Library when you run an application. To change device settings, stop the UL
application and run InstaCal.

Page 243 of 700

Analog I/O Functions
The analog I/O functions perform analog input and output and convert analog data.

Most analog I/O functions include options that may not be compatible with your hardware. To determine which of these functions
are compatible, refer to the board-specific information contained in the Universal Library User's Guide.

n cbAIn() - Takes a single reading from an analog input channel (A/D), and returns a 16-bit integer value.

n cbAIn32() - Takes a single reading from an analog input channel (A/D), and returns a 32-bit unsigned integer value.

n cbAInScan() - Repeatedly scans a range of analog input (A/D) channels. You can specify the channel range, the number of
samples, the sampling rate, and the A/D range. The data that is collected is stored in memory for later transfer to an array.

n cbALoadQueue() - Loads a series of chan/gain pairs into A/D board's queue. These chan/gains are used with all subsequent
analog input functions.

n cbAOut() - Outputs a single value to an analog output (D/A).

n cbAOutScan() - Repeatedly scans a range of analog output (D/A) channels. You can specify the channel range, the number of
samples, the update rate, and the D/A range. The data values from consecutive elements of a memory buffer are sent to
each D/A channel in the scan.

n cbAPretrig() - Repeatedly scans a range of analog input (A/D) channels waiting for a trigger signal. When a trigger occurs, it
returns the specified number of samples before the trigger occurred, and fills the remainder of the buffer with post-trigger
samples. You can specify the channel range, the sampling rate, the A/D range, and the number of pre-trigger samples. All of
the data that is collected is stored in memory for later transfer to an array.

n cbATrig() - Reads the analog input and waits until it goes above or below a specified threshold. When the trigger condition is
met, the current sample is returned.

n cbAConvertData() - Converts analog data from data plus channel tags to separate data and channel tags when using 12-bit
devices that support channel tags.

n cbACalibrateData() - Calibrates analog data after an acquisition using the NOCALIBRATEDATA option is complete.

n cbAConvertPretrigData() - Used to properly arrange data and separate channel tags (if necessary) after a pre-trigger
acquisition is complete, when data was acquired without using the CONVERTDATA option.

n cbVIn() - Reads an A/D input channel, and returns a single precision float voltage value.

n cbVIn32() - Reads an A/D input channel, and returns a double precision float voltage value.

n cbVOut() - Sets the value of a D/A output.

Page 244 of 700

Configuration Functions
The configuration information for all boards is stored in the configuration file CB.CFG. This information is loaded from CB.CFG by all
programs that use the library. The Library includes the following functions to retrieve or change configuration options:

n cbGetConfig() - Returns the current value for a specified configuration option.

n cbGetConfigString() - Retrieves configuration or device information as a null-terminated string.

n cbSetConfig() - Sets the current value for a specified configuration option.

n cbSetConfigString() - Sets the configuration or device information as a null-terminated string.

n cbGetSignal() - Retrieves the configured auxiliary or DAQ Sync connection and polarity for the specified timing and control
signal. This function is intended for advanced users.

n cbSelectSignal() - Configures timing and control signals to use specific auxiliary or DAQ Sync connections as a source or
destination. This function is intended for advanced users.

n cbSetTrigger() - Sets up trigger parameters used with the EXTTRIGGER option for cbAInScan().

Page 245 of 700

Counter Functions
Counter functions load, read, and configure counters. There are several types of counters used in Measurement Computing
devices. Some of the counter commands only apply to one type of counter.

n cbC7266Config() - Sets the basic operating mode of an LS7266 counter.

n cbC8254Config() - Sets the basic operating mode of the 8254 counter.

n cbC8536Config() - Sets the operating mode of the 8536 counter.

n cbC8536Init() - Initializes and selects all of the chip-level features for a 8536 counter board. The options set by this
command are associated with each counter chip, not the individual counters within it.

n cbC9513Config() - Sets the operating mode of the 9513 counter. This function sets all of the programmable options that are
associated with a 9513 counter. It is similar in purpose to cbC8254Config() except that it is used with a 9513 counter.

n cbC9513Init() - Initializes and selects all of the chip level features for a 9513 counter board. The options set by this command
are associated with each counter chip, not the individual counters within it.

n cbCClear() - Clears a scan counter value (sets it to zero).

n cbCConfigScan() - Configures a scan counter channel. This function only works with counter boards that have counter scan
capability.

n cbCFreqIn() - Measures the frequency of a signal by counting it for a specified period of time (GateInterval), and then
converting the count to count/sec (Hz). This function only works with 9513 counters.

n cbCIn() - Reads a counter's current value as a 16-bit integer.

n cbCIn32() - Reads a counter's current value as a 32-bit integer.

n cbCIn64() - Reads a counter's current value as a 64-bit integer.

n cbCInScan() - Scans a range of scan counter channels, and stores the samples in memory for later transfer to an array.

n cbCLoad() - Loads a counter with a 16-bit integer initial value.

n cbCLoad32() - Loads a counter with a 32-bit integer initial value.

n cbCLoad64() - Loads a counter with a 64-bit integer initial value.

n cbCStatus() - Read the counter status of a counter. Returns various bits that indicate the current state of a counter.

n cbCStoreOnInt() - Installs an interrupt handler that stores the current count whenever an interrupt occurs. This function only
works with 9513 counters.

n cbPulseOutStart() - Starts a timer to generate digital pulses at a specified frequency and duty cycle.

n cbPulseOutStop() - Stops a timer output.

n cbTimerOutStart() - Starts a timer square wave output.

n cbTimerOutStop() - Stops a timer square wave output.

Page 246 of 700

Data Logger Functions
The data logger functions read and convert binary files logged by MCC hardware equipped with a data logger capability.

n cbLogConvertFile() - Converts a binary log file to a comma-separated values (.CSV) text file or another text file format that
you specify.

n cbLogGetAIChannelCount() - Retrieves the total number of analog input channels logged in a binary file.

n cbLogGetAIInfo() - Retrieves the channel number and unit value of each analog input channel logged in a binary file.

n cbLogGetCJCInfo() - Retrieves the number of CJC temperature channels logged in a binary file.

n cbLogGetDIOInfo() - Retrieves the number of digital I/O channels logged in a binary file.

n cbLogGetFileInfo() - Retrieves the version level and byte size of a binary file.

n cbLogGetFileName() - Retrieves the name of the nth file in the directory containing binary log files.

n cbLogGetPreferences() - Retrieves API preference settings for time stamped data, analog data, and CJC temperature data.
Returns the default values unless changed using cbLogSetPreferences().

n cbLogGetSampleInfo() - Retrieves the sample interval, sample count, and the date and time of the first data point contained
in a binary file.

n cbLogReadAIChannels() - Retrieves analog input data from a binary file, and stores the values in an array.

n cbLogReadCJCChannels() - Retrieves CJC temperature data from a binary file, and stores the values in an array.

n cbLogReadDIOChannels() - Retrieves digital I/O channel data from a binary file, and stores the values in an array.

n cbLogReadTimeTags() - Retrieves date and time values logged in a binary file. This function stores date values in the
DateTags array, and time values in the TimeTags array.

n cbLogSetPreferences() - Sets preferences for returned time stamped data, analog temperature data, and CJC temperature
data.

Page 247 of 700

Digital I/O Functions
The digital function perform digital input and output operations on various types of digital I/O ports.

n cbDBitIn() - Reads a single bit from a digital input port.

n cbDBitOut() - Sets a single bit on a digital output port.

n cbDConfigBit() - Configures a specific digital bit as input or output.

n cbDConfigPort() - Selects whether a digital port is an input or an output.

n cbDIn() - Reads a specified digital input port.

n cbDInScan() - Reads a specified number of bytes or words from a digital input port at a specified rate.

n cbDOut() - Writes a byte to a digital output port.

n cbDOutScan() - Writes a series of bytes or words to a digital output port at a specified rate.

Page 248 of 700

Error Handling Functions
The Universal Library includes two functions for handling errors.

n cbErrHandling() - Sets the method of reporting and handling errors for all function calls.

n cbGetErrMsg() - Returns the error message associated with a specific error code.

Page 249 of 700

Memory Board Functions
The memory board functions read and write data to and from a memory board, and also set modes that control memory boards
(MEGA-FIFO).

The most common use for the memory boards is to store large amounts of data from an A/D board via a DT-Connect cable to a
memory board. To do this, use the EXTMEMORY option with cbAInScan() or cbAPretrig().

Once the data has been transferred to the memory board, you can use the memory functions to retrieve it.

n cbMemSetDTMode() - Sets DT-Connect mode on a memory board. Memory boards have a DT-Connect interface which can
be used to transfer data through a cable between two boards rather than through the PC's system memory. The DT-Connect
port on the memory board can be configured as either an input (from an A/D) or as an output (to a D/A). This function
configures the port to one of these settings.

n cbMemReset() - Resets the memory board address. The memory board is organized as a sequential device. When data is
transferred to the memory board, it is automatically put in the next address location. This function resets the current address
to the location 0.

n cbMemRead() - Reads a specified number of points from a memory board starting at a specified address.

n cbMemWrite() - Writes a specified number of points to a memory board starting at a specified address.

n cbMemReadPretrig() - Reads data collected with cbAPretrig(). The cbAPretrig() function writes the pre-triggered data to the
memory board in a scrambled order. This function unscrambles the data and returns it in the correct order.

Page 250 of 700

Revision Control Functions
As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new functions are added. It is
our goal to preserve the existing programs you have written and therefore to never change the order or number of arguments in a
function. However, sometimes this is not possible.

The revision control function initializes the DLL so that the functions are interpreted according to the format of the revision you
wrote and used to compile the program.

n cbDeclareRevision() – Declares the revision number of the Universal Library that your program was written with.

n cbGetRevision() – Returns the version number of the installed Universal Library.

Page 251 of 700

Streamer File Functions
The streamer file functions explained below create, fill, and read streamer files.

n cbFileAInScan() - Transfer analog input data directly to file. Very similar to cbAInScan() except that the data is stored in a file
instead of memory.

n cbFilePretrig() - Pre-triggered analog input to a file. Very similar to cbAPretrig() except that the data is stored in a file instead
of memory.

n cbFileGetInfo() - Reads streamer file information on how much data is in the file, and the conditions under which it was
collected (sampling rate, channels, etc.).

n cbFileRead() - Reads a selected number of data points from a streamer file into an array.

Page 252 of 700

Synchronous Functions
The synchronous functions synchronously read data from analog, counter, thermocouple, and digital input channels, write data to
analog or digital output channels, or configure devices that support synchronous I/O.

n cbDaqInScan() – Scans analog, digital, temperature, and counter inputs synchronously, and stores the values in memory.

n cbDaqOutScan() – Outputs values synchronously to analog output channels and digital output ports.

n cbDaqSetSetpoints() – Configures up to 16 detection setpoints associated with the input channels within a scan group.

n cbDaqSetTrigger() – Selects a trigger source and sets up its parameters. This method starts or stops a synchronous data
acquisition operation using cbDaqInScan() with the EXTTRIGGER option

Page 253 of 700

Temperature Input Functions
The temperature sensor functions convert a raw analog input from an EXP or other temperature sensor board to temperature.

n cbTIn() - Reads a channel from a digital input board, filters it (if specified), does the cold junction compensation, linearizes
and converts it to temperature.

n cbTInScan() - Scans a range of temperature inputs. Reads input temperatures from a range of channels, and returns the
temperature values in an array

Page 254 of 700

Windows Memory Management Functions
The Windows memory management functions take care of allocating, freeing and copying to/from Windows global memory buffers.

n cbWinBufAlloc() - Allocates a Windows global memory buffer.

n cbWinBufAlloc32() - Allocates a Windows global memory buffer for use with 32-bit scan functions, and returns a memory
handle for the buffer.

n cbWinBufAlloc64() - Allocates a Windows memory buffer large enough for double precision data values, and returns a
memory handle for the buffer.

n cbWinBufFree() - Frees a Windows buffer.

n cbWinArrayToBuf() - Copies data from an array to a Windows buffer.

n cbWinBufToArray() - Copies data from a Windows buffer to an array.

n cbWinBufToArray32() - Copies 32-bit data from a Windows global memory buffer into an array. This function is typically used
to retrieve data from the buffer after executing an input scan function.

n cbScaledWinArrayToBuf() - Copies double precision values from an array into a Windows memory buffer.

n cbScaledWinBufAlloc() - Allocates a Windows global memory buffer large enough to hold scaled data obtained from scan
operations in which the SCALEDATA option is selected, and returns a memory handle for the buffer.

n cbScaledWinBufToArray() - Copies double precision values from a Windows memory buffer into an array.

Page 255 of 700

Miscellaneous Functions
These functions do not as a group fit into a single category. They get and set board information, convert units, manage events and
background operations, and perform serial communication operations.

n cbDeviceLogin() - Opens a device session with a shared device.

n cbDeviceLogout() - Releases the device session with a shared device.

n cbEnableEvent() - Installs an event handler, or callback function, to be called when a specified condition occurs.

n User Callback Function – Defines the prototype for the user function for cbEnableEvent(). This defines the format for the
user-defined handlers to be called when the events set up using cbEnableEvent() occurs.

n cbDisableEvent() - Disables the notification of an event handler for a specified condition.

n cbFlashLED() - Causes the LED on a USB device to flash.

n cbFromEngUnits() - Converts a single precision voltage (or current) value in engineering units to an integer D/A count value
for output to a D/A.

n cbGetBoardName() - Returns the name of a specified board.

n cbGetStatus() - Returns the status of a background operation. Once a background operation starts, your program needs to
periodically check on its progress. This function returns the current status of the process.

n cbGetTCValues() - Converts raw thermocouple data gathered with cbDaqInScan() to data on a temperature scale (Celsius,
Fahrenheit, or Kelvin).

n cbInByte() - Reads a byte from a hardware register on a board.

n cbInWord() - Reads a word from a hardware register on a board.

n cbOutByte() - Writes a byte to a hardware register on a board.

n cbOutWord() - Writes a word to a hardware register on a board.

n cbRS485() - Sets the transmit and receive buffers on an RS485 port.

n cbStopBackground() - Stop a background process. It is sometimes necessary to stop a background process even though the
process has been set up to run continuously. This function stops a background process that is running. cbStopBackground()
should be executed after normal termination of all background functions in order to clear variables and flags.

n cbTEDSRead() - Reads data from a TEDS sensor into an array.

n cbToEngUnits() - Converts an integer A/D count value to an equivalent single precision voltage (or current) value.

n cbToEngUnits32() - Converts an integer A/D count value to an equivalent double precision voltage (or current) value.

Page 256 of 700

Analog I/O Methods
The analog I/O methods available from the MccBoard class are explained below. These methods perform analog input and output
and convert analog data.

n MccBoard.AIn() - Takes a single reading from an analog input channel (A/D), and returns a 16-bit integer value.

n MccBoard.AIn32() - Takes a single reading from an analog input channel (A/D), and returns a 32-bit integer value.

n MccBoard.AInScan() - Repeatedly scans a range of analog input (A/D) channels. You can specify the channel range, the
number of samples, the sampling rate, and the A/D range. The data that is collected is stored in memory for later transfer to
an array.

n MccBoard.ALoadQueue() - Loads a series of channel/gain pairs into an A/D board's queue. These channel/gains are used with
all subsequent analog input methods.

n MccBoard.AOut() - Outputs a single value to an analog output (D/A).

n MccBoard.AOutScan() - Repeatedly scans a range of analog output (D/A) channels. You can specify the channel range, the
number of samples, the update rate, and the D/A range. The data values from consecutive elements of a memory buffer are
sent to each D/A channel in the scan.

n MccBoard.APretrig() - Repeatedly scans a range of analog input (A/D) channels waiting for a trigger signal. When a trigger
occurs, it returns the specified number of samples before the trigger occurred, and fills the remainder of the buffer with post-
trigger samples. You can specify the channel range, the sampling rate, the A/D range, and the number of pre-trigger
samples. All of the data that is collected is stored in memory for later transfer to an array.

n MccBoard.ATrig() - Reads analog input and waits until it goes above or below a specified threshold. When the trigger
condition is met, the current sample is returned.

n MccBoard.AConvertData() - Converts analog data from data plus channel tags to separate data and channel tags when using
12-bit devices that support channel tags.

n MccBoard.ACalibrateData() - Calibrates analog data after an acquisition using the NoCalibrateData option is complete.

n MccBoard.AConvertPretrigData() - Used to properly arrange data and separate channel tags (if necessary) after a pre-trigger
acquisition is complete, when data was acquired without using the ConvertData option.

n MccBoard.VIn() - Reads an A/D input channel, and returns a single precision voltage value.

n MccBoard.VIn32() - Reads an A/D input channel, and returns a double precision voltage value.

n MccBoard.VOut() - Sets the value of a D/A output.

Page 257 of 700

Configuration Methods and Properties
The configuration methods and properties available from the MccBoard class, cBoardConfig class, cCtrConfig class, cDioConfig
class, and cExpansionConfig class are explained below.

The configuration information for all boards is stored in the configuration file CB.CFG . This information is loaded from CB.CFG by
all programs that use the library. The Library includes the following classes and methods that retrieve or change configuration
options.

n MccBoard.BoardNum property – Retrieves the number of the board associated with an instance of the MccBoard class.

n MccBoard.GetSignal() – Retrieves the configured auxiliary or DAQ Sync connection and polarity for the specified timing and
control signal. This method is intended for advanced users.

n MccBoard.SelectSignal() – Configures timing and control signals to use specific auxiliary or DAQ Sync connections as a
source or destination. This method is intended for advanced users.

n MccBoard.SetTrigger() – Sets up trigger parameters used with the ExtTrigger option for MccBoard.AInScan().

n MccBoard.BoardConfig property – Gets an instance of a cBoardConfig object.

n MccBoard.BoardConfig.DACUpdate() – Updates the voltage values on analog output channels.

n MccBoard.BoardConfig.GetAdRetrigCount() – Gets the number of samples to acquire during a trigger event when
ScanOptions.RetrigMode is set.

n MccBoard.BoardConfig.GetBaseAdr() – Gets the base address of a board.

n MccBoard.BoardConfig.GetBoardType() – Gets the unique number (device ID) assigned to the board (between 0 and 8000h)
indicating the type of board installed.

n MccBoard.BoardConfig.GetCiNumDevs() – Gets the number of counter devices on the board.

n MccBoard.BoardConfig.GetClock() – Gets the clock frequency in MHz (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0 for not supported.

n MccBoard.BoardConfig.GetDACStartup() – Gets the board's configuration register STARTUP bit setting.

n MccBoard.BoardConfig.GetDACUpdateMode() – Gets the update mode for a digital–to–analog converter (DAC).

n MccBoard.BoardConfig.GetDeviceId() – Gets the name that identifies the instance of a device.

n MccBoard.BoardConfig.GetDeviceNotes() – Gets the device notes that are stored in the device's memory.

n MccBoard.BoardConfig.GetDInMask() – Determines the bits on a specified port that are configured for input.

n MccBoard.BoardConfig.GetDiNumDevs() – Gets the number of digital devices on the board.

n MccBoard.BoardConfig.GetDmaChan() – Gets the DMA channel (0, 1 or 3) set for the board.

n MccBoard.BoardConfig.GetDOutMask() – Determines the bits on a specified port that are configured for output.

n MccBoard.BoardConfig.GetDtBoard() – Gets the number of the board with the DT connector used to connect to external
memory boards.

n MccBoard.BoardConfig.GetIntLevel() – Gets the interrupt level set for the board (0 for none, or 1 to 15).

n MccBoard.BoardConfig.GetNumAdChans() – Gets the number of A/D channels

n MccBoard.BoardConfig.GetNumDaChans() – Gets the number of D/A channels.

n MccBoard.BoardConfig.GetNumExps() – Gets the number of expansion boards.

n MccBoard.BoardConfig.GetNumIoPorts() – Gets the number of I/O ports used by the board.

n MccBoard.BoardConfig.GetPANID() – Gets the Personal Area Network (PAN) identifier for wireless communication.

n MccBoard.BoardConfig.GetRange() – Gets the selected voltage range.

n MccBoard.BoardConfig.GetRFChannel() – Gets the RF channel number that a wireless device uses to communicate.

n MccBoard.BoardConfig.GetRSS() – Gets the signal strength in dBm of a signal received by a remote device.

n MccBoard.BoardConfig.GetSignal() – Retrieves the configured Auxiliary or DAQ Sync connection and polarity for the specified
timing and control signal.

n MccBoard.BoardConfig.GetUsesExps() – Gets the True/False value indicating support of expansion boards.

n MccBoard.BoardConfig.GetWaitState() – Gets the value of the Wait State jumper (1–enabled, 0–disabled).

n MccBoard.BoardConfig.SetAdRetrigCount() – Sets the number of samples to acquire during a trigger event when
ScanOptions.RetrigMode is set.

Page 258 of 700

classes\class_overview.htm#cboardconfig

n MccBoard.BoardConfig.SetBaseAdr() – Sets the base address of a board

n MccBoard.BoardConfig.SetClock() – Sets the clock source by the frequency (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0 for not
supported.

n MccBoard.BoardConfig.SetDACStartup() – Sets the board's configuration register STARTUP bit to 0 or 1 to enable/disable the
storing of digital–to–analog converter (DAC) startup values.

n MccBoard.BoardConfig.SetDACUpdateMode() – Sets the update mode for a digital–to–analog converter (DAC).

n MccBoard.BoardConfig.SetDeviceId() – Sets the name that identifies the instance of a device.

n MccBoard.BoardConfig.SetDeviceNotes() – Sets the device notes to store in a device's memory.

n MccBoard.BoardConfig.SetDmaChan() – Sets the DMA channel (0, 1 or 3).

n MccBoard.BoardConfig.SetIntLevel() – Sets the interrupt level: 0 for none, or 1 to 15.

n MccBoard.BoardConfig.SetNumAdChans() – Sets the number of A/D channels available on the board.

n MccBoard.BoardConfig.SetPanID() – Sets the Personal Area Network (PAN) identifier used for wireless communication.

n MccBoard.BoardConfig.SetRange() – Sets the selected voltage range.

n MccBoard.BoardConfig.SetRFChannel() – Sets the RF channel number used for wireless communications.

n MccBoard.BoardConfig.SetWaitState() – Sets the value of the Wait State jumper (1 = enabled, 0 = disabled).

n MccBoard.CtrConfig property – Gets an instance of a cCtrConfig object.

n MccBoard.CtrConfig.GetCtrType() – Gets the counter device number of counter type specified with the configVal parameter.

n MccBoard.DioConfig property – Gets an instance of a cDioConfig object.

n MccBoard.DioConfig.GetConfig() – Gets the configuration of a digital device (digital input or digital output).

n MccBoard.DioConfig.GetCurVal() – Gets the current value of digital outputs.

n MccBoard.DioConfig.GetDevType() – Gets the device type of the digital port (AUXPORT, FIRSTPORTA, etc.).

n MccBoard.DioConfig.GetDInMask() – Determines the bits on a specified port that are configured for input.

n MccBoard.DioConfig.GetDOutMask() – Determines the bits on a specified port that are configured for output.

n MccBoard.DioConfig.GetNumBits() – Gets the number of bits in the digital port value.

n MccBoard.ExpansionConfig property – Gets an instance of a cExpansionConfig object.

n MccBoard.ExpansionConfig.GetBoardType() – Gets the expansion board type.

n MccBoard.ExpansionConfig.GetCjcChan() – Gets the channel that the CJC is connected to.

n MccBoard.ExpansionConfig.GetMuxAdChan1() – Gets the first A/D channel that the board is connected to.

n MccBoard.ExpansionConfig.GetMuxAdChan2() – Gets the second A/D channel that the board is connected to.

n MccBoard.ExpansionConfig.GetNumExpChans() – Gets the number of expansion board channels.

n MccBoard.ExpansionConfig.GetRange1() – Gets the range/gain of the low 16 channels.

n MccBoard.ExpansionConfig.GetRange2() – Gets the range/gain of the high 16 channels.

n MccBoard.ExpansionConfig.GetThermType() – Gets the type of thermocouple configuration for the board (J, K, E, T, R, S, and
B types).

n MccBoard.ExpansionConfig.SetCjcChan() – Sets the channel that the CJC is connected to.

n MccBoard.ExpansionConfig.SetMuxAdChan1() – Sets the first A/D channel that the board is connected to.

n MccBoard.ExpansionConfig.SetMuxAdChan2() – Sets the second A/D channel that the board is connected to.

n MccBoard.ExpansionConfig.SetRange1() – Sets the range/gain of the low 16 channels.

n MccBoard.ExpansionConfig.SetRange2() – Sets the range/gain of the high 16 channels.

n MccBoard.ExpansionConfig.SetThermType() – Sets the type of thermocouple configuration for the board (J, K, E, T, R, S, and
B types).

n GlobalConfig.NumBoards property – Returns the maximum number of boards you can install at one time.

n GlobalConfig.NumExpBoards property – Returns the maximum number of expansion boards you can install on a board.

Page 259 of 700

classes\class_overview.htm#cctrconfig
classes\class_overview.htm#cdioconfig
classes\class_overview.htm#cexpansionconfig

n GlobalConfig.Version property – Information used by the library to determine compatibility.

Page 260 of 700

Counter Methods
The counter methods available from the MccBoard class load, read, and configure counters. There are several types of counters
used in Measurement Computing devices. Some of the counter commands only apply to one type of counter.

n MccBoard.C7266Config() - Selects the basic operating mode of an LS7266 counter.

n MccBoard.C8254Config() - Selects the basic operating mode of an 8254 counter.

n MccBoard.C8536Config() - Selects the basic operating mode of an 8536 counter chip.

n MccBoard.C8536Init() - Initializes and selects all of the chip level features for a 8536 counter board. The options that are set
by this command are associated with each counter chip, not the individual counters within it.

n MccBoard.C9513Config() - Sets the basic operating mode of a 9513 counter. This method sets all of the programmable
options that are associated with a 9513 counter. It is similar in purpose to C8254Config() except that it is used with a 9513
counter.

n MccBoard.C9513Init() - Initializes and selects all of the chip level features for a 9513 counter board. The options that are set
by this command are associated with each counter chip, not the individual counters within it.

n MccBoard.CClear() - Clears a scan counter value (sets it to zero).

n MccBoard.CConfigScan() - Configures a scan counter channel. This method only works with counter boards that have counter
scan capability.

n MccBoard.CFreqIn() - Measures the frequency of a signal by counting it for a specified period of time (gateInterval), and then
converting the count to count/sec (Hz). This method only works with 9513 counters.

n MccBoard.CIn() - Reads a counter's current value as a 16-bit integer.

n MccBoard.CIn32() - Reads a counter's current value as a 32-bit integer.

n MccBoard.CIn64() - Reads a counter's current value as a 64-bit integer.

n MccBoard.CInScan() - Scans a range of scan counter channels, and stores the samples in memory for later transfer to an
array.

n MccBoard.CLoad() - Loads a counter with a 16-bit integer initial value.

n MccBoard.CLoad32() - Loads a counter with a 32-bit integer initial value.

n MccBoard.CLoad64() - Loads a counter with a 64-bit integer initial value.

n MccBoard.CStatus() - Read the counter status of a counter. Returns various bits that indicate the current state of a counter
(currently only applies to LS7266 counters).

n MccBoard.CStoreOnInt() - Installs an interrupt handler that stores the current count whenever an interrupt occurs. This
method only works with 9513 counters.

n MccBoard.PulseOutStart() - Starts a timer to generate digital pulses at a specified frequency and duty cycle.

n MccBoard.PulseOutStop() - Stops a timer output.

n MccBoard.TimerOutStart() - Starts a timer square wave output.

n MccBoard.TimerOutStop() - Stops a timer square wave output.

Page 261 of 700

Data Logger Methods and Property
The methods and property available from the DataLogger class are explained below. These class members read and convert binary
log files.

n DataLogger.ConvertFile() - Converts a binary log file to a comma-separated values (.CSV) text file or another text file format
that you specify.

n DataLogger.GetAIChannelCount() - Retrieves the total number of analog input channels logged in a binary file.

n DataLogger.GetAIInfo() - Retrieves the channel number and unit value of each analog input channel logged in a binary file.

n DataLogger.GetCJCInfo() - Retrieves the number of CJC temperature channels logged in a binary file.

n DataLogger.GetDIOInfo() - Retrieves the number of digital I/O channels logged in a binary file.

n DataLogger.GetFileInfo() - Retrieves the version level and byte size of a binary file.

n DataLogger.GetFileName() - Retrieves the name of the nth file in the directory containing binary log files.

n DataLogger.GetPreferences() - Retrieves API preference settings for time stamp data, analog temperature data, and CJC
temperature data. Returns the default values unless changed using SetPreferences().

n DataLogger.GetSampleInfo() - retrieves the sample interval, sample count, and the date and time of the first data point in a
binary file.

n DataLogger.ReadAIChannels() - Retrieves analog input data from a binary file, and stores the values in an array.

n DataLogger.ReadCJCChannels() - Retrieves CJC temperature data from a binary file, and stores the values in an array.

n DataLogger.ReadDIOChannels() - Retrieves digital I/O channel data from a binary file, and stores the values in an array.

n DataLogger.ReadTimeTags() - Retrieves date and time values logged in a binary file. This method stores date values in the
dateTags array, and time values in the timeTags array.

n DataLogger.SetPreferences() - Sets preferences for returned time stamp data, analog temperature data, and CJC
temperature data.

n DataLogger.FileName property – Returns the file name associated with an instance of the DataLogger class.

Page 262 of 700

Digital I/O Methods
The digital methods available from the MccBoard class are explained below. These methods perform digital input and output on
various types of digital I/O ports.

n MccBoard.DBitIn() - Reads a single bit from a digital input port.

n MccBoard.DBitOut() - Sets a single bit on a digital output port.

n MccBoard.DConfigBit() - Configures a specific digital bit as input or output.

n MccBoard.DConfigPort() - Selects whether a digital port is an input or an output.

n MccBoard.DIn() - Reads a specified digital input port.

n MccBoard.DInScan() - Reads a set number of bytes or words from a digital input port at a specified rate.

n MccBoard.DOut() - Writes a byte to a digital output port.

n MccBoard.DOutScan() - Writes a series of bytes or words to a digital output port at a specified rate.

Page 263 of 700

Error Handling Methods and Properties
Most UL for .NET methods return ErrorInfo objects. The MccService class includes one method that determines how errors are
handled internally by the library. The ErrorInfo class includes properties that provide information returned by the method called.

n MccService.ErrHandling() - Sets the manner of reporting and handling errors for all method calls.

n ErrorInfo.Message property - Gets the text of the error message associated with a specific error code.

n ErrorInfo.Value property - Gets the error constant associated with an ErrorInfo object.

n ErrorInfo.LogToFile property - When set true, records time-stamped error codes to a file.

Page 264 of 700

Memory Board Methods
The memory board methods available from the MccBoard class read and write data to and from a memory board, and also set
modes that control memory boards (MEGA-FIFO).

The most common use for memory boards is to store large amounts of data from an A/D board via a DT-Connect cable between
the two boards. To do this, use the ExtMemory option with the MccBoard.AInScan() or MccBoard.APretrig() methods.

Once the data has been transferred to the memory board you can use the memory methods to retrieve the data.

n MccBoard.MemSetDTMode() - Set DT-Connect mode on a memory board. Memory boards have a DT-Connect interface which
can be used to transfer data through a cable between two boards rather than through the PC's system memory. The DT-
Connect port on the memory board can be configured as either an input (from an A/D) or as an output (to a D/A). This
method configures the port.

n MccBoard.MemReset() - Resets the memory board address. The memory board is organized as a sequential device. When
data is transferred to the memory board it is automatically put in the next address location. This method resets the current
address to the location 0.

n MccBoard.MemRead() - Reads a specified number of points from a memory board starting at a specified address.

n MccBoard.MemWrite() - Writes a specified number of points to a memory board starting at a specified address.

n MccBoard.MemReadPretrig() - Reads data collected with MccBoard.APretrig(). The MccBoard.APretrig() method writes the
pre-triggered data to the memory board in a scrambled order. This method unscrambles the data and returns it in the correct
order.

Page 265 of 700

Revision Control Methods
The revision control methods and property explained below are available from the MccBoard class. As new revisions of the library
are released, bugs from previous revisions are fixed, and occasionally new properties and methods are added. It is our goal to
preserve the programs you have written so that you never change the order or number of arguments in a method. However,
sometimes this is not possible.

The revision control methods initialize the DLL so that the functions are interpreted according to the format of the revision you
wrote and used to compile the program.

n MccBoard.DeclareRevision() – Declares the revision number of the Universal Library for .NET that your program was written
with.

n MccBoard.GetRevision() – Returns the version number of the installed Universal Library for .NET.

Page 266 of 700

Streamer File Methods
The streamer file methods available from the MccBoard class create, fill, and read streamer files.

n MccBoard.FileAInScan() - Transfer analog input data directly to file. Very similar to AInScan() except that the data is stored
in a file instead of memory.

n MccBoard.FilePretrig() - Pre-triggered analog input to a file. Very similar to APretrig() except that the data is stored in a file
instead of memory.

n MccBoard.FileGetInfo() - Reads streamer file information on how much data is in the file, and the conditions under which it
was collected (sampling rate, channels, etc.).

n MccBoard.FileRead() - Reads a selected number of data points from a streamer file into a one-dimensional or two-
dimensional array.

Page 267 of 700

Synchronous Methods
The synchronous methods available from the MccBoard class synchronously read data from analog, counter, thermocouple, and
digital input channels, write data to analog or digital output channels, or configure devices that support synchronous I/O.

n MccBoard.DaqInScan() – Scans analog, digital, temperature, and counter inputs synchronously, and stores the values in
memory.

n MccBoard.DaqOutScan() – Outputs values synchronously to analog output channels and digital output ports.

n MccBoard.DaqSetSetpoints() – Configures up to 16 detection setpoints associated with the input channels within a scan group.

n MccBoard.DaqSetTrigger() – Selects a trigger source and sets up its parameters. This method starts or stops a synchronous
data acquisition operation using DaqInScan()with the ExtTrigger option.

Page 268 of 700

Temperature Input Methods
The temperature input methods available from the MccBoard class convert a raw analog input from an EXP or other temperature
sensor board to temperature.

n MccBoard.TIn() - Reads a channel from a digital input board, filters it (if specified), does the cold junction compensation,
linearizes and converts it to temperature.

n MccBoard.TInScan() - Scans a range of temperature inputs. Reads temperatures from a range of channels, and returns the
temperature values to an array.

Page 269 of 700

Windows Memory Management Methods
The Windows memory management methods available from the MccService class take care of allocating, freeing, and copying
to/from Windows global memory buffers.

n MccService.WinBufAlloc() - Allocates a Windows memory buffer.

n MccService.WinBufAlloc32() - Allocates a Windows global memory buffer for use with 32-bit scan functions, and returns a
memory handle for the buffer.

n MccService.WinBufAlloc64() - Allocates a Windows global memory buffer large enough for double precion data values, and
returns a memory handle for the buffer.

n MccService.WinBufFree() - Frees a Windows buffer.

n MccService.WinArrayToBuf() - Copies data from a one-dimensional or two-dimensional array into a Windows buffer.

n MccService.WinBufToArray() - Copies data from a Windows memory buffer into a one-dimensional or two-dimensional array.

n MccService.WinBufToArray32() - Copies 32-bit data from a Windows global memory buffer into an array. This method is
typically used to retrieve data from the buffer after executing an input scan method.

n MccService.ScaledWinArrayToBuf() - Copies double precision values from an array into a Windows memory buffer.

n MccService.ScaledWinBufAlloc() - Allocates a Windows global memory buffer large enough to hold scaled data obtained from
scan operations in which the ScaleData option is selected, and returns a memory handle for the buffer.

n MccService.ScaledWinBufToArray() - Copies double precision values from a Windows memory buffer into an array.

Page 270 of 700

Miscellaneous Methods
The methods explained below are available from the MccBoard class. These methods do not as a group fit into a single category.
They get and set board information, convert units, manage events and background operations, copy two-dimensional arrays
to/from Windows global memory buffers, and perform serial communication operations.

n MccBoard.DeviceLogin() - Opens a device session with a shared device.

n MccBoard.DeviceLogout() - Releases the device session with a shared device.

n MccBoard.DisableEvent() - Disables one or more events set up with EnableEvent() and disconnects their user-defined
handlers

n MccBoard.EnableEvent() - Binds one or more event conditions to a user-defined callback function.

n EventCallback delegate – Defines the prototype for the user function for EnableEvent(). This defines the format for the user-
defined handlers to be called when the events set up using EnableEvent() occurs.

n MccBoard.EngArrayToWinBuf() - Transfers a 2D array of engineering unit values to a Windows buffer as integer values.

n MccBoard.FlashLED() - Causes the LED on a USB device to flash.

n MccBoard.FromEngUnits() - Converts a single precision voltage (or current) value in engineering units to an integer D/A count
value for output to a D/A.

n MccBoard.GetBoardName() - Returns the name of a specified board.

n MccBoard.GetStatus() - Returns the status of a background operation. Once a background operation starts, your program
must periodically check on its progress. This method returns the current status of the operation.

n MccBoard.GetTCValues() - Converts raw thermocouple data gathered with DaqInScan() to Celsius, Fahrenheit or Kelvin.

n MccBoard.HideLoginDialog() – Prevents the default login dialog from being shown when a protected function is called while
not logged in.

n MccBoard.InByte() - Reads a byte from a hardware register on a board.

n MccBoard.InWord() - Reads a word from a hardware register on a board.

n MccBoard.OutByte() - Writes a byte to a hardware register on a board.

n MccBoard.OutWord() - Writes a byte or word to a hardware register on a board.

n MccBoard.RS485() - Sets the transmit and receive buffers on an RS485 port.

n MccBoard.StopBackground() - Stop a background process. It is sometimes necessary to stop a background process even
though the process has been set up to run continuously. This method stops a background process that is running.
StopBackground() should be executed after normal termination of all background functions in order to clear variables and
flags.

n MccBoard.TEDSRead() - Reads data from a TEDS sensor into an array.

n MccBoard.ToEngUnits() - Converts an integer A/D count value to an equivalent single precision voltage (or current) value.

n MccBoard.ToEngUnits32() - Converts an integer count value to an equivalent double precision voltage (or current) value.

n MccBoard.WinBufToEngArray() - Transfers integer values from a Windows buffer to a 2D array as engineering unit values.

n MccBoard.BoardName property - Name of the board associated with an instance of the MccBoard class.

Page 271 of 700

cbAConvertData() function
Changed R3.3 RW

Converts the raw data collected by cbAInScan() into 12-bit A/D values. The cbAInScan() function can return either raw A/D data or
converted data, depending on whether or not the CONVERTDATA option is used. For many 12-bit A/D boards, the raw data is a 16-
bit value that contains a 12-bit A/D value and a 4 bit channel tag (refer to board-specific information in the Universal Library User's
Guide). The data returned to ADData consists of just the 12-bit A/D value. The data returned to ChanTags consists of just the
channel numbers.

Function Prototype
C/C++

int cbAConvertData(int BoardNum, long NumPoints, unsigned short ADData[], unsigned short ChanTags[])

Visual Basic

Function cbAConvertData(ByVal BoardNum&, ByVal NumPoints&, ADData%, ChanTags%) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal.

NumPoints

Number of samples to convert.

ADData

Pointer or reference to start of data array.

ChanTags

Pointer or reference to the start of the channel tag array.

When collecting data using cbAInScan() without the CONVERTDATA option, use this function to convert the data after it has
been collected. There are cases where the CONVERTDATA option is not allowed. For example - if you are using both the
DMAIO and BACKGROUND option with cbAInScan() on some devices, the CONVERTDATA option is not allowed. In those
cases this function should be used to convert the data after the data collection is complete.

For some boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number. This function pulls each
data point apart and puts the A/D value into the ADData array and the channel number into the ChanTags array.

Returns

n Error code or 0 if no errors

n ADData - converted data

n ChanTags - channel tags, if available

Notes

n 12-bit A/D Boards

The name of the array must match that used in cbAInScan() or cbWinBufToArray().

Upon returning from cbAConvertData(), ADData array contains only 12-bit A/D data.

n 16-bit A/D Boards

This function is not for use with 16-bit A/D boards because 16-bit boards do not have channel tags. The argument BoardNum
was added in revision 3.3 to prevent applying this function to 16-bit data. If you wrote your program for a 12-bit board then
later upgrade to a 16-bit board, all you need change is the InstaCal configuration file. If this function is called for a 16-bit
board, it is simply ignored, and no errors are generated.

Page 272 of 700

cbAConvertPretrigData() function
Changed R3.3 RW

For products with pretrigger implemented in hardware (most products), this function converts and aligns the raw data collected by
cbAPretrig(). The cbAPretrig() function can return either raw A/D data or converted data, depending on whether or not the
CONVERTDATA option was used. The raw data as it is collected is not in the correct order. After the data collection is completed it
must be rearranged into the correct order. This function correctly orders the data also, starting with the first pretrigger data point
and ending with the last post-trigger point.

Change at revision 3.3 is to support multiple background tasks. It is now possible to run two boards with DMA or REP-INSW
background convert-and-transfer features active, therefore, the convert function must know which board the data came from. The
data value assigned to BoardNum should be assigned in the header file so it is easy to locate if a change is needed.

Function Prototype
C/C++

int cbAConvertPretrigData(int BoardNum, long PretrigCount, long TotalCount, unsigned short ADData[],
unsigned short ChanTags[])

Visual Basic

Function cbAConvertPretrigData(ByVal BoardNum&, ByVal PretrigCount&, ByVal TotalCount&, ADData%,
ChanTags%) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal.

PretrigCount

Number of pre-trigger samples. This value must match the value returned by the PretrigCount argument in the cbAPretrig()
function.

TotalCount

Total number of samples that were collected.

ADData

Pointer to the data array. this value must match the array name used in the cbAPretrig() function.

ChanTags

Pointer to the channel tag array or a NULL pointer may be passed if using 16-bit boards or if channel tags are not desired;
see the note regarding 16-bit boards below.

Returns

n Error code or 0 if no errors.

n ADData - converted data.

Notes

n When you collect data with cbAPretrig() and you don't use the CONVERTDATA option, you must use this function to convert
the data after it is collected. There are cases where the CONVERTDATA option is not allowed, for example, if you use the
BACKGROUND option with cbAPretrig() on some devices, the CONVERTDATA option is not allowed. In those cases this
function should be used to convert the data after the data collection is complete.

n 12-Bit A/D boards

On some 12-bit boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number. This function pulls
each data point apart and puts the A/D value into the ADData and the channel number into the ChanTags array.

The name of the ADData array must match that used in cbAInScan() or cbWinBufToArray().

Upon returning from cbAConvertPretrigData(), ADData array contains only 12-bit A/D data.

n 16-Bit A/D boards

This function is for use with 16-bit A/D boards only insofar as ordering the data. No channel tags are returned.

Visual Basic Programmers

After the data is collected with cbAPretrig() it must be copied to an array with cbWinBufToArray().

Page 273 of 700

Important: The entire array must be copied. This array includes the extra 512 samples needed by cbAPretrig(). Example code is
given below:

Count& = 10000

Dim ADData%(Count& + 512)

Dim ChanTags%(Count& + 512)

cbAPretrig%(BoardNum, LowChan, HighChan, PretrigCount&, Count&...)

cbWinBufToArray%(MemHandle%, ADData%, Count& + 512)

cbAConvertPretrigData%(PretrigCount&, Count&, ADData%, ChanTags%)

Page 274 of 700

cbACalibrateData() function
New R3.3

Calibrates the raw data collected by cbAInScan() from boards with real time software calibration when the real time calibration has
been turned off. The cbAInScan() function can return either raw A/D data or calibrated data, depending on whether or not the
NOCALIBRATEDATA option was used.

Function Prototype
C/C++

int cbACalibrateData(int BoardNum, long NumPoints, int Range, unsigned ADData[])

Visual Basic

Function cbACalibrateData(ByVal BoardNum&, ByVal NumPoints&, ByVal Range&, ADData%) As Long

Arguments
BoardNum

May be 0 to 99. Refers to the number associated with the board when it was installed with InstaCal.

NumPoints

Number of samples to convert

Range

The programmable gain/range used when the data was collected. Refer to board specific information for a list of the
supported A/D ranges of each board.

ADData

Pointer to data array.

Returns

n Error code or 0 if no errors.

n ADData - converted data.

Notes

n When collecting data using cbAInScan() with the NOCALIBRATEDATA option, use this function to calibrate the data once
collected.

n The name of the array must match that used in cbAInScan() or cbWinBufToArray().

n Applying software calibration factors in real time on a per sample basis eats up machine cycles. If your CPU is slow, or if
processing time is at a premium, do not calibrate until the acquisition run finishes. Turn off real time software calibration to
save CPU time during high speed acquisitions by using the NOCALIBRATEDATA option to a turn off real-time software
calibration. After the acquisition is run, calibrate the data with cbACalibrateData().

Page 275 of 700

../../Misc/Supported_A_D_Ranges.htm

cbAIn() function
Reads an A/D input channel from the specified board, and returns a 16-bit unsigned integer value. If the specified A/D board has
programmable gain then it sets the gain to the specified range. The raw A/D value is converted to an A/D value and returned to
DataValue.

Function Prototype
C/C++

int cbAIn(int BoardNum, int Channel, int Range, unsigned short *DataValue);

Visual Basic

Function cbAIn(ByVal BoardNum&, ByVal Channel&, ByVal Range&, DataValue%) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed using InstaCal. The specified board must have an A/D.

Channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured. For example, a USB-1608GX device has 8 differential or 16 single-ended analog input channels. Expansion boards
also support this function, so this argument can contain values up to 272. See board specific information for EXP boards if
you are using an expansion board.

Range

A/D Range code. If the selected A/D board does not have a programmable gain feature, this argument is ignored. If the A/D
board does have programmable gain, set the Range argument to the desired A/D range. Refer to board specific information
for a list of the supported A/D ranges of each board.

DataValue

Pointer or reference to the data value.

Returns

n Error code or 0 if no errors.

n DataValue - Returns the value of the A/D sample.

Page 276 of 700

../../Misc/Supported_A_D_Ranges.htm

cbAIn32() function
Reads an A/D input channel from the specified board, and returns a 32-bit unsigned integer value. If the specified A/D board has
programmable gain then it sets the gain to the specified range. The raw A/D value is converted to an A/D value and returned to
DataValue. In general, this function should be used with devices with a resolution higher than 16-bits.

Function Prototype
C/C++

int cbAIn32(int BoardNum, int Chan, int Gain, ULONG *DataValue, int Options);

Visual Basic

Function cbAIn32(ByVal BoardNum&, ByVal Chan&, ByVal Gain&, DataValue&, ByVal Options&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed using InstaCal. The specified board must have an A/D.

Chan

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured. For example, a USB-2416 device has 16 differential or 32 single-ended analog input channels. Expansion boards
also support this function, so this argument can contain values up to 272. See board specific information for EXP boards if
you are using an expansion board.

Gain

A/D Range code. If the selected A/D board does not have a programmable gain feature, this argument is ignored. If the A/D
board does have programmable gain, set the Range argument to the desired A/D range. Refer to board specific information
for a list of the supported A/D ranges of each board.

DataValue

Pointer or reference to the data value.

Options

Reserved for future use.

Returns

n Error code or 0 if no errors.

n DataValue - Returns the value of the A/D sample.

Page 277 of 700

../../Misc/Supported_A_D_Ranges.htm

cbAInScan() function
Changed R3.3 ID

Scans a range of A/D channels and stores the samples in an array. cbAInScan() reads the specified number of A/D samples at the
specified sampling rate from the specified range of A/D channels from the specified board. If the A/D board has programmable
gain, then it sets the gain to the specified range. The collected data is returned to the data array.

Changes: Revision 3.3 added a "no real time calibration" option.

Function Prototype
C/C++

int cbAInScan(int BoardNum, int LowChan, int HighChan, long Count, long *Rate, int Range, int
MemHandle, int Options)

Visual Basic

Function cbAInScan(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&, ByVal Count&, Rate&, ByVal Range&,
ByVal MemHandle&, ByVal Options&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed using InstaCal. The specified board must have an A/D.

LowChan

The first A/D channel of scan. When cbALoadQueue() is used, the channel count is determined by the total number of entries
in the channel gain queue, and LowChan is ignored.

HighChan

The last A/D channel of scan. When cbALoadQueue() is used, the channel count is determined by the total number of entries
in the channel gain queue, and HighChan is ignored.

Low / High Channel number: The maximum allowable channel depends on which type of A/D board is being used. For boards
that have both single ended and differential inputs the maximum allowable channel number also depends on how the board is
configured. For example, a CIO-DAS1600 has 8 channels for differential, 16 for single ended.

Count

The number of A/D samples to collect. Specifies the total number of A/D samples that will be collected. If more than one
channel is being sampled, the number of samples collected per channel is equal to Count / (HighChan – LowChan + 1).

Rate

The rate at which samples are acquired, in samples per second per channel.

For example, if you sample four channels, 0-3, at a rate of 10,000 scans per second (10 kHz), the resulting A/D converter
rate is 40 kHz: four channels at 10,000 samples per channel per second. This is different from some software where you
specify the total A/D chip rate. In those systems, the per channel rate is equal to the A/D rate divided by the number of
channels in a scan.

The channel count is determined by the LowChan and HighChan parameters. Channel Count = (HighChan - LowChan + 1).

When cbALoadQueue is used, the channel count is determined by the total number of entries in the channel gain queue.
LowChan and HighChan are ignored.

Rate also returns the value of the actual rate set, which may be different from the requested rate because of pacer
limitations.

Range

A/D range code. If the selected A/D board does not have a programmable range feature, this argument is ignored.
Otherwise, set the Range argument to any range that is supported by the selected A/D board. Refer to board specific
information for a list of the supported A/D ranges of each board.

MemHandle

Handle for Windows buffer to store data in (Windows). This buffer must have been previously allocated with either
cbWinBufAlloc() or cbWinBufAlloc32().

Options

Bit fields that control various options. This field may contain any combination of non-contradictory choices from the values
listed in the Options argument values section below.

Returns

n Error code or 0 if no errors.

Page 278 of 700

../../Misc/Supported_A_D_Ranges.htm

n Rate - Actual sampling rate used.

n MemHandle - Collected A/D data returned via the Windows buffer.

Options argument values

Transfer method
options

The following four options determine how data is transferred from the board to PC memory.
If none of these options are specified (recommended), the optimum sampling mode is
automatically chosen based on board type and sampling speed. Use the default method
unless you have a reason to select a specific transfer method.

n SINGLEIO

A/D transfers to memory are initiated by an interrupt. One interrupt per conversion.
Rates attainable using SINGLEIO are PC-dependent and generally less than 10 kHz.

n DMAIO

A/D transfers are initiated by a DMA request.

n BLOCKIO

A/D transfers are handled in blocks (by REP-INSW for example).

BLOCKIO is not recommended for slow acquisition rates. If the rate of
acquisition is very slow (for example less than 200 Hz) BLOCKIO is probably not the
best choice for transfer mode. The reason for this is that status for the operation is not
available until one packet of data has been collected (typically 512 samples). The
implication is that if acquiring 100 samples at 100 Hz using BLOCKIO, the operation will
not complete until 5.12 seconds has elapsed.

n BURSTIO

Allows higher sampling rates for sample counts up to full FIFO. Data is collected into the
local FIFO. Data transfers to the PC are held off until after the scan is complete. For
BACKGROUND scans, the count and index returned by cbGetStatus() remain 0 and the
status equals RUNNING until the scan finishes. When the scan is complete and the data
is retrieved, the count and index are updated and the status equals IDLE.

BURSTIO is the default mode for non-Continuous fast scans (aggregate sample rates
above 1000 Hz) with sample counts up to full FIFO. To avoid the BURSTIO default,
specify BLOCKIO.

BURSTIO is not a valid option for most boards. It is used mainly for USB products.

BACKGROUND If the BACKGROUND option is not used then the cbAInScan() function will not return to your
program until all of the requested data has been collected and returned to the buffer. When
the BACKGROUND option is used, control will return immediately to the next line in your
program and the data collection from the A/D into the buffer will continue in the
background. Use cbGetStatus() with AIFUNCTION to check on the status of the background
operation. Alternatively, some boards support cbEnableEvent() for event notification of
changes in status of BACKGROUND scans. Use cbStopBackground() with AIFUNCTION to
terminate the background process before it has completed. cbStopBackground() should be
executed after normal termination of all background functions in order to clear variables
and flags.

BURSTMODE Enables burst mode sampling. Scans from LowChan to HighChan are clocked at the
maximum A/D rate in order to minimize channel to channel skew. Scans are initiated at the
rate specified by the Rate argument.

BURSTMODE is not recommended for use with the SINGLEIO option. If this combination is
used, the Count value should be set as low as possible, preferably to the number of
channels in the scan. Otherwise, overruns may occur.

CONVERTDATA This option is used to align data, either within each byte (in the case of some 12-bit devices)
or within the buffer (see the cbAPreTrig() function). Only the former case applies for
cbAInScan(). The data stored on some 12-bit devices is offset in the devices data register.
For these devices, the CONVERTDATA option converts the data to 12-bit A/D values by
shifting the data to the first 12 bits within the byte. For devices that store the data without
an offset and for all 16-bit devices, this option is ignored.

Use of CONVERTDATA is recommended unless one of the following two conditions exist: 1)
On some devices, CONVERTDATA may not be specified if you are using the BACKGROUND
option and DMA transfers. In this case, if data conversion is required, use cbAConvertData
() to re-align the data. 2) Some 12-bit boards store the data as a 12-bit A/D value and a 4-
bit channel number. Using CONVERTDATA will strip out the channel number from the data.
If you prefer to store the channel number as well as the data, call cbAConvertData() to
retrieve the data and the channel number from the buffer after the data acquisition to the
buffer is complete.

CONTINUOUS This option puts the function in an endless loop. Once it collects the required number of
samples, it resets to the start of the buffer and begins again. The only way to stop this
operation is with cbStopBackground(). Normally this option should be used in combination
with BACKGROUND so that your program will regain control.

Count argument settings in CONTINUOUS mode: For some DAQ hardware, Count must

Page 279 of 700

be an integer multiple of the packet size. Packet size is the amount of data that a DAQ
device transmits back to the PC's memory buffer during each data transfer. Packet size can
differ among DAQ hardware, and can even differ on the same DAQ product depending on
the transfer method.

In some cases, the minimum value for the Count argument may change when the
CONTINUOUS option is used. This can occur for several reasons; the most common is that
in order to trigger an interrupt on boards with FIFOs, the circular buffer must occupy at least
half the FIFO. Typical half-FIFO sizes are 256, 512 and 1,024.

Another reason for a minimum Count value is that the buffer in memory must be
periodically transferred to the user buffer. If the buffer is too small, data will be overwritten
during the transfer resulting in garbled data.

Refer to board-specific information in the Universal Library User's Guide for packet size
information for your particular DAQ hardware.

DTCONNECT All A/D values will be sent to the A/D board's DT-Connect port. This option is incorporated
into the EXTMEMORY option. Use DTCONNECT only if the external board is not supported by
Universal Library.

EXTCLOCK If this option is used, conversions will be controlled by the signal on the external clock input
rather than by the internal pacer clock. Each conversion will be triggered on the appropriate
edge of the clock input signal (refer to the board-specific information in the Universal
Library User's Guide). In most cases, when this option is used the Rate argument is ignored.
The sampling rate is dependent on the clock signal. Options for the board will default to a
transfer mode that will allow the maximum conversion rate to be attained unless otherwise
specified.

In some cases, such as with the PCI-DAS4020/12, an approximation of the rate is used to
determine the size of the packets to transfer from the board. Set the Rate argument to an
approximate maximum value.

SINGLEIO is recommended for slow external clock rates: If the rate of the external
clock is very slow (for example less than 200 Hz) and the board you are using supports
BLOCKIO, you may want to include the SINGLEIO option. The reason for this is that the
status for the operation is not available until one packet of data has been collected (typically
512 samples). The implication is that, if acquiring 100 samples at 100 Hz using BLOCKIO
(the default for boards that support it if EXTCLOCK is used), the operation will not complete
until 5.12 seconds has elapsed.

EXTMEMORY Causes the command to send the data to a connected memory board via the DT Connect
interface rather than returning the data to the buffer. Data for each call to this function will
be appended unless cbMemReset() is called. The data should be unloaded with the
cbMemRead() function before collecting new data. When EXTMEMORY option is used, the
MemHandle argument can be set to null or 0. CONTINUOUS option cannot be used with
EXTMEMORY. Do not use EXTMEMORY and DTCONNECT together. The transfer modes
DMAIO, SINGLEIO, BLOCKIO and BURSTIO have no meaning when used with this option.

EXTTRIGGER If this option is specified, the sampling will not begin until the trigger condition is met. On
many boards, this trigger condition is programmable (refer to the cbSetTrigger() function
and board-specific information for details) and can be programmed for rising or falling edge
or an analog level.

On other boards, only 'polled gate' triggering is supported. In this case, assuming active
high operation, data acquisition will commence immediately if the trigger input is high. If the
trigger input is low, acquisition will be held off unit it goes high. Acquisition will then continue
until NumPoints& samples have been taken regardless of the state of the trigger input. For
"polled gate" triggering, this option is most useful if the signal is a pulse with a very low
duty cycle (trigger signal in TTL low state most of the time) so that triggering will be held off
until the occurrence of the pulse.

HIGHRESRATE Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
Rate argument above).

NOCALIBRATEDATA Turns off real-time software calibration for boards which are software calibrated. This is
done by applying calibration factors to the data on a sample by sample basis as it is
acquired. Examples are the PCM-DAS16/330 and PCM-DAS16x/12. Turning off software
calibration saves CPU time during a high speed acquisition run. This may be required if your
processor is less than a 150 MHz Pentium and you desire an acquisition speed in excess of
200 kHz. These numbers may not apply to your system. Only trial will tell for sure. DO NOT
use this option if you do not have to. If this option is used, the data must be calibrated after
the acquisition run with the cbACalibrateData() function.

NOTODINTS If this option is specified, the system's time-of-day interrupts are disabled for the duration
of the scan. These interrupts are used to update the systems real time clock and are also
used by various other programs. These interrupts can limit the maximum sampling speed of
some boards - particularly the PCM-DAS08. If the interrupts are turned off using this option,
the real-time clock will fall behind by the length of time that the scan takes.

RETRIGMODE Re-arms the trigger after a trigger event is performed. With this mode, the scan begins
when a trigger event occurs. When the scan completes, the trigger is re-armed to acquire
the next the batch of data. You can specify the number of samples in the scan for each

Page 280 of 700

Caution!

You will generate an error if you specify a total A/D rate beyond the capability of the board. For example, if you specify LowChan =
0, HighChan = 7 (8 channels total), and Rate = 20,000, and you are using a CIO-DAS16/JR, you will get an error – you have
specified a total rate of 8*20,000 = 160,000, but the CIO-DAS16/JR is capable of converting only 120,000 samples per second.

The maximum sampling rate depends on the A/D board that is being used. It is also dependent on the sampling mode options.

Important

In order to understand the functions, you must read the board-specific information found in the Universal Library User's Guide. The
example programs should be examined and run prior to attempting any programming of your own. Following this advice will save
you hours of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this function. Now is the time to read the board specific information
for your board that is contained in the Universal Library User's Guide. We suggest that you make a copy of this information for
reference as you read this manual and examine the example programs.

trigger event (described below). The RETRIGMODE option can be used with the
CONTINUOUS option to continue arming the trigger until cbStopBackground() is called.

You can specify the number of samples to acquire with each trigger event. This is the
trigger count. Use the cbSetConfig() ConfigItem option BIADCTRIGCOUNT to set the trigger
count. If you specify a trigger count that is either zero or greater than the value of the
cbAInScan() Count argument, the trigger count will be set to the value of the Count
argument.

Specify the CONTINUOUS option with the trigger count set to zero to fill the buffer with
Count samples, re-arm the trigger, and refill the buffer upon the next trigger.

SCALEDATA Converts raw scan data — to voltage, temperature, and so on, depending upon the selected
channel sensor category — during the analog input scan, and puts the scaled data directly
into the user buffer. The user buffer should have been allocated with cbScaledWinBufAlloc().

Page 281 of 700

cbALoadQueue() function
Loads the A/D board's channel/gain queue. This function only works with A/D boards that have channel/gain queue hardware.

Some products do not support channel/gain queue, and some that do support it are limited on the order of elements, number of
elements, and gain values that can be included, etc. Refer to the device-specific information in the Universal Library User's Guide to
find details for your particular product.

Function Prototype
C/C++

int cbALoadQueue(int BoardNum, short ChanArray[], short GainArray[], int Count)

Visual Basic

Function cbALoadQueue(ByVal BoardNum&, ChanArray%, GainArray%, ByVal Count&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed using InstaCal. The specified board must have an A/D and a channel/gain queue.

ChanArray

Array containing channel values. This array should contain all of the channels that will be loaded into the channel gain queue.

GainArray

Array containing A/D range values. This array should contain each of the A/D ranges that will be loaded into the channel gain
queue.

Count

Number of elements in ChanArray and GainArray or 0 to disable channel/gain queue. Specifies the total number of
channel/gain pairs that will be loaded into the queue. ChanArray and GainArray should contain at least Count elements. Set
Count = 0 to disable the board's channel/gain queue. The maximum value is specific to the queue size of the A/D boards
channel gain queue.

Returns

n Error code or 0 if no errors.

Notes

n Normally the cbAInScan() function scans a fixed range of channels (from LowChan to HighChan) at a fixed A/D range. If you
load the channel gain queue with this function then all subsequent calls to cbAInScan() will cycle through the channel/range
pairs that you have loaded into the queue.

Page 282 of 700

cbAOut() function
Sets the value of a D/A output.

Function Prototype
C/C++

int cbAOut(int BoardNum, int Channel, int Range, unsigned short DataValue)

Visual Basic

Function cbAOut(ByVal BoardNum&, ByVal Channel&, ByVal Range&, ByVal DataValue%) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed using InstaCal. The specified board must have a D/A.

Channel

D/A channel number. The maximum allowable channel depends on which type of D/A board is being used.

Range

D/A range code. The output range of the D/A channel can be set to any of those supported by the board. If the D/A board
does not have programmable ranges then this argument will be ignored. Refer to board specific information for a list of the
supported A/D ranges.

DataValue

Value to set D/A to. Must be in the range 0 - n where n is the value 2Resolution – 1 of the converter.

Exception: using 16-bit boards with Basic range is –32,768 to 32,767. Refer to the discussion on 16-bit values using a signed
integer data type for more information.

Returns

n Error code or 0 if no errors.

Notes

n "Simultaneous Update" or "Zero Power-Up" boards: If you set the simultaneous update jumper for simultaneous operation,
use cbAOutScan() for simultaneous update of multiple channels. cbAOut() always writes the D/A data then reads the D/A,
which causes the D/A output to be updated.

Page 283 of 700

cbAPretrig() function
Waits for a trigger to occur and then returns a specified number of analog samples before and after the trigger occurred. If only
'polled gate' triggering is supported, the trigger input line (refer to the user's manual for the board) must be at TTL low before this
function is called, or a TRIGSTATE error will occur. The trigger occurs when the trigger condition is met. Refer to the cbSetTrigger()
function for more details.

Function Prototype
C/C++

int cbAPretrig(int BoardNum, int LowChan, int HighChan, long *PretrigCount, long *TotalCount, long
*Rate, int Range, int MemHandle, int Options)

Visual Basic

Function cbAPretrig(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&, PretrigCount&, TotalCount&,
Rate&, ByVal Range&, ByVal MemHandle&, ByVal Options&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99. The
specified board must have an A/D.

LowChan

First A/D channel of scan.

HighChan

Last A/D channel of scan.

LowChan/HighChan: The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured (e.g., 8 channels for differential inputs, 16 for single ended inputs).

PretrigCount

Number of pre-trigger A/D samples to collect. Specifies the number of samples to collect before the trigger occurs.

For products using a hardware implementation of pretrigger (most products), PretrigCount must be less than (TotalCount -
512). For these devices, if the trigger occurs too early, fewer than the requested number of pre-trigger samples will be
collected, and a TOOFEW error will occur. The PretrigCount will be set to indicate how many samples were actually collected.
The post trigger samples will still be collected.

For software implementations of pretrigger, PretrigCount must be less than TotalCount. For these devices, triggers that occur
before the requested number of pre-trigger samples are collected are ignored. See board-specific information contained in
the UL Users Guide for details.

TotalCount

Total number of A/D samples to collect. Specifies the total number of samples that will be collected and stored in the buffer.

For products using a hardware implementation of pretrigger (most products), TotalCount must be greater than or equal to the
PretrigCount + 512. If the trigger occurs too early, fewer than the requested number of samples will be collected, and a
TOOFEW error will occur. The TotalCount will be set to indicate how many samples were actually collected.

For software implementations of pretrigger, TotalCount must be greater than PretrigCount. For these devices, triggers that
occur before the requested number of pre-trigger samples are collected are ignored. See board-specific information.

TotalCount must be evenly divisible by the number of channels being scanned. If it is not, this function will adjust the number
(down) to the next valid value and return that value to the TotalCount argument.

PretrigCount must also be evenly divisible by the number of channels being scanned. If it is not, this function will adjust the
number (up) to the next valid value and return that value to the PretrigCount argument.

Rate

Sample rate in scans per second.

Range

A/D Range code. If the selected A/D board does not have a programmable gain feature, this argument is ignored. Otherwise,
set to any range that is supported by the selected A/D board. Refer to board specific information for a list of the supported
A/D ranges of each board.

Page 284 of 700

../../Misc/Supported_A_D_Ranges.htm

MemHandle

Handle for Windows buffer to store data. This buffer must have been previously allocated with the cbWinBufAlloc() function.

For hardware trigger types, the buffer referenced by MemHandle must be big enough to hold at least TotalCount + 512
integers.

Options

Bit fields that control various options. This field may contain any combination of non-contradictory choices from the values
listed in the Options argument values section below.

Returns

n Error code or 0 if no errors.

n PretrigCount - Number of pre-trigger samples.

n TotalCount - Total number of samples collected.

n Rate - The actual sampling rate.

n MemHandle - Collected A/D data returned via the Windows buffer.

Options argument values

Important

For hardware trigger types, the buffer referenced by MemHandle must be big enough to hold at least TotalCount + 512 integers.

BACKGROUND If the BACKGROUND option is not used, the cbAPretrig() function will not return to your
program until all of the requested data has been collected and returned to the buffer. When
the BACKGROUND option is used, control returns immediately to the next line in your
program, and the data collection from the A/D into the buffer will continue in the
background. Use cbGetStatus() with AIFUNCTION to check on the status of the background
operation. Alternatively, some boards support cbEnableEvent() for event notification of
changes in status of BACKGROUND scans. Use cbStopBackground() with AIFUNCTION to
terminate the background process before it has completed.

Call cbStopBackground() after normal termination of all background functions to clear
variables and flags.

For hardware trigger types, you cannot use the CONVERTDATA option in combination with
the BACKGROUND option for this function. To correctly order and parse the data, use
cbAConvertPretrigData() after the function completes

CONVERTDATA For hardware trigger types, the data is collected into a "circular" buffer. The CONVERTDATA
option is used to align data within the buffer when the data acquisition is complete. This
option is ignored for all 16-bit devices, and for 12-bit devices that store the data without an
offset (refer to cbAInScan()). Note that you can also call cbAConvertPretrigData() to align
data within the buffer when the data acquisition is complete.

Use of CONVERTDATA is recommended unless one of the following two conditions exist: 1)
On some devices, CONVERTDATA may not be specified if you are using the BACKGROUND
option and DMA transfers. In this case, if data conversion is required, use cbAConvertData
() to re-align the data. 2) Some 12-bit boards store the data as a 12-bit A/D value and a 4-
bit channel number. Using CONVERTDATA will strip out the channel number from the data.
If you prefer to store the channel number as well as the data, call cbAConvertData() to
retrieve the data and the channel number from the buffer after the data acquisition to the
buffer is complete.

The CONVERTDATA option is not required for software triggered types.

EXTCLOCK This option is available only for boards that have separate inputs for external pacer and
external trigger. See your hardware manual or board-specific information.

EXTMEMORY Causes this function to send the data to a connected memory board via the DT-Connect
interface rather than returning the data to the buffer. If you use this option to send the data
to a MEGA-FIFO memory board, then you must use cbMemReadPretrig() to later read the
pre-trigger data from the memory board. If you use cbMemRead(), the data will NOT be in
the correct order.

Every time this option is used, it overwrites any data already stored in the memory board.
All data should be read from the board (with cbMemReadPretrig()) before collecting any
new data. When this option is used, the MemHandle argument is ignored. The MEGA-FIFO
memory must be fully populated in order to use the cbAPretrig() function with the
EXTMEMORY option.

DTCONNECT When DTCONNECT option is used with this function, the data from ALL A/D conversions is
sent out the DT-Connect interface. While this function is waiting for a trigger to occur, it will
send data out the DT-Connect interface continuously. If you have a Measurement
Computing memory board plugged into the DT-Connect interface then you should use
EXTMEMORY option rather than this option.

Page 285 of 700

cbAOutScan() function
Outputs values to a range of D/A channels. This function can be used for paced analog output on hardware that supports paced
output. It can also be used to update all analog outputs at the same time when the SIMULTANEOUS option is used.

Function Prototype
C/C++

int cbAOutScan(int BoardNum, int LowChan, int HighChan, long NumPoints, long *Rate, int Range, int
MemHandle, int Options)

Visual Basic

Function cbAOutScan(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&, ByVal NumPoints&, Rate&, ByVal
Range&, ByVal MemHandle&, ByVal Options&) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a D/A.
BoardNum may be 0 to 99.

LowChan

First D/A channel of scan.

HighChan

Last D/A channel of scan.

LowChan/HighChan: The maximum allowable channel depends on which type of D/A board is being used.

NumPoints

Number of D/A values to output. Specifies the total number of D/A values that will be output. Most D/A boards do not support
timed outputs. For these boards, set the count to the number of channels in the scan.

Rate

Sample rate in scans per second. For many D/A boards the Rate is ignored and can be set to NOTUSED. For D/A boards with
trigger and transfer methods which allow fast output rates, such as the CIO-DAC04/12-HS, Rate should be set to the D/A
output rate (in scans/sec). This argument returns the value of the actual rate set. This value may be different from the user
specified rate due to pacer limitations.

If supported, this is the rate at which scans are triggered. If you are updating 4 channels, 0-3, then specifying a rate of
10,000 scans per second (10 kHz) will result in the D/A converter rates of 10 kHz (one D/A per channel). The data transfer
rate is 40,000 words per second; 4 channels * 10,000 updates per scan.

The maximum update rate depends on the D/A board that is being used. It is also dependent on the sampling mode options.

Range

D/A range code. The output range of the D/A channel can be set to any of those supported by the board. If the D/A board
does not have a programmable gain, this argument is ignored.

MemHandle

Handle for Windows buffer from which data will be output. This buffer must have been previously allocated with the
cbWinBufAlloc() function and data values loaded (perhaps using cbWinArrayToBuf().

Options

Bit fields that control various options. This field may contain any combination of non-contradictory choices from the values
listed in the Options argument values section below.

Returns

n Error code or 0 if no errors.

n Rate - Actual sampling rate used.

Page 286 of 700

Options argument values

Caution!

You will generate an error if you specify a total D/A rate beyond the capability of the board. For example: If you specify LowChan
= 0 and HighChan = 3 (4 channels total) and Rate = 100,000, and you are using a cSBX-DDA04, you will get an error. You have
specified a total rate of 4*100,000 = 400,000. The cSBX-DDA04 is rated to 330,000 updates per second. The maximum update rate
depends on the D/A board that is being used. It is also dependent on the sampling mode options.

ADCCLOCK Paces the data output operation using the ADC clock.

ADCCLOCKTRIG Triggers a data output operation when the ADC clock starts.

BACKGROUND This option may only be used with boards which support interrupt, DMA or REP-INSW
transfer methods. When this option is used the D/A operations will begin running in the
background and control will immediately return to the next line of your program. Use
cbGetStatus() with AOFUNCTION to check the status of background operation. Alternatively,
some boards support cbEnableEvent() for event notification of changes in status of
BACKGROUND scans. Use cbStopBackground() with AOFUNCTION to terminate background
operations before they are completed. cbStopBackground() should be executed after
normal termination of all background functions in order to clear variables and flags.

CONTINUOUS This option may only be used with boards which support interrupt, DMA or REP INSW
transfer methods. This option puts the method in an endless loop.

Once it outputs the specified number (NumPoints) of D/A values, it resets to the start of the
buffer and begins again. The only way to stop this operation is by calling cbStopBackground
() with AOFUNCTION. This option should only be used in combination with BACKGROUND so
that your program can regain control.

EXTCLOCK If this option is specified, conversions will be paced by the signal on the external clock input
rather than by the internal pacer clock. Each conversion will be triggered on the appropriate
edge of the clock input signal (refer to board-specific information contained in the Universal
Library Users Guide).

When this option is used the Rate argument is ignored. The sampling rate is dependent on
the clock signal. Options for the board default to transfer types that allow the maximum
conversion rate to be attained unless otherwise specified.

EXTTRIGGER If this option is specified the sampling will not begin until the trigger condition is met. On
many boards, this trigger condition is programmable (refer to the cbSetTrigger() function
and board-specific information contained in the Universal Library Users Guide for details).

NONSTREAMEDIO When this option is used, you can output non-streamed data to a specific DAC output
channel. The aggregate size of the data output buffer must be less than or equal to the size
of the internal data output FIFO in the device. This allows the data output buffer to be
loaded into the device's internal output FIFO. Once the sample updates are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't make
any changes to the output buffer once the output begins.

With NONSTREAMEDIO mode, you do not have to periodically feed output data through the
program to the device for the data output to continue. However, the size of the buffer is
limited.

NONSTREAMEDIO can only be used with the number of samples (Count) set equal to the
size of the FIFO or less.

RETRIGMODE Re-arms the trigger after a trigger event is performed. With this mode, the scan begins
when a trigger event occurs. When the scan completes, the trigger is re-armed to generate
the next the batch of data. You can specify the number of samples to generate for each
trigger event (described below). The RETRIGMODE option can be used with the
CONTINUOUS option to continue arming the trigger until cbStopBackground() is called.

You can specify the number of samples to generate with each trigger event. This is the
trigger count. Use the cbSetConfig() ConfigItem option BIDACTRIGCOUNT to set the trigger
count. If you specify a trigger count that is either zero or greater than the value of the
NumPoints argument, the trigger count will be set to the value of NumPoints.

SCALEDATA Gets scaled data, such as voltage, temperature, and so on, from the user buffer, and
converts it to raw data. The user buffer should have been allocated with
cbScaledWinBufAlloc().

SIMULTANEOUS When this option is used (if the board supports it and the appropriate switches are set on
the board) all of the D/A voltages will be updated simultaneously when the last D/A in the
scan is updated. This generally means that all the D/A values will be written to the board,
then a read of a D/A address causes all D/As to be updated with new values
simultaneously.

Page 287 of 700

cbATrig() function
Waits for a specified analog input channel to go above or below a specified value. cbATrig() continuously reads the specified
channel and compares its value to TrigValue. Depending on whether TrigType is set to TRIGABOVE or TRIGBELOW, it waits for the
first A/D sample that is above or below TrigValue. The first sample that meets the trigger criteria is returned to DataValue.

Function Prototype
C/C++

int cbATrig(int BoardNum, int Channel, int TrigType, int TrigValue, int Range, unsigned short
*DataValue)

Visual Basic

Function cbATrig(ByVal BoardNum&, ByVal Channel&, ByVal TrigType&, ByVal TrigValue%, ByVal Range&,
DataValue%) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with the InstaCal. BoardNum may be 0 to 99. The
specified board must have an A/D.

Channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured. For example a CIO-DAS1600 has 8 channels for differential inputs and 16 channels for single ended inputs.

TrigType

TRIGABOVE or TRIGBELOW. Specifies whether to wait for the analog input to be ABOVE or BELOW the specified trigger value.

TrigValue

The threshold value that all A/D values are compared to. Must be in the range 0 –4,095 for 12-bit A/D boards, or 0–65,535
for 16-bit A/D boards. Refer to your BASIC manual for information on signed BASIC integer data types.

Range

Gain code. If the selected A/D board does not have a programmable gain feature, this argument is ignored. Otherwise, set to
any range that is supported by the selected A/D board. Refer to board specific information for a list of the supported A/D
ranges of each board.

DataValue

Returns the value of the first A/D sample to meet the trigger criteria.

Returns

n Error code or 0 if no errors

n DataValue - Value of the first A/D sample to match the trigger criteria.

Notes

n Pressing Ctrl-C will not terminate the wait for an analog trigger that meets the specified condition. There are only two ways to
terminate this call: satisfy the trigger condition or reset the computer.

Caution!

Use caution when using this function in Windows programs. All active windows will lock on the screen until the trigger condition is
satisfied. The keyboard and mouse activity will also lock until the trigger condition is satisfied.

Page 288 of 700

../../Misc/Supported_A_D_Ranges.htm

cbVIn() function
Reads an A/D input channel, and returns a voltage value. If the specified A/D board has programmable gain, then this function sets
the gain to the specified range. The voltage value is returned to DataValue.

Function Prototype
C/C++

int cbVIn(int BoardNum, int Channel, int Range, float *DataValue, int Options);

Visual Basic

Function cbVIn(ByVal BoardNum&, ByVal Channel&, ByVal Range&, DataValue!, ByVal Options&) As Long

Arguments
BoardNum

The board number associated with the board used to collect the data when it was installed with InstaCal. BoardNum may be 0
to 99. The specified board must have an A/D.

Channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single-ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured.

Range

A/D range code. If the board has a programmable gain, it will be set according to this argument value. Keep in mind that
some A/D boards have a programmable gain feature, and others set the gain via switches on the board. In either case, the
range that the board is configured for must be passed to this function. Refer to board specific information for a list of the
supported A/D ranges of each board.

DataValue

A pointer or reference to the data value.

Options

Reserved for future use.

Returns

n Error code or 0 if no errors

n DataValue - Returns the value in volts of the A/D sample.

Options argument values

Default

Reserved for future use.

Page 289 of 700

../../Misc/Supported_A_D_Ranges.htm

cbVIn32() function
Reads an A/D input channel, and returns a voltage value. This function is similar to cbVIn(), but returns a double precision float
value instead of a single precision float value. If the specified A/D board has programmable gain, then this function sets the gain to
the specified range. The voltage value is returned to DataValue.

Function Prototype
C/C++

int cbVIn32(int BoardNum, int Chan, int Gain, double* DataValue, int Options);

Visual Basic

Function cbVIn32(ByVal BoardNum&, ByVal Chan&, ByVal Gain&, DataValue#, ByVal Options&) As Long

Arguments
BoardNum

The board number associated with the board used to collect the data when it was installed withInstaCal. BoardNum may be 0
to 99. The specified board must have an A/D.

Chan

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single-ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured.

Gain

A/D range code. If the board has a programmable gain, it will be set according to this argument value. Keep in mind that
some A/D boards have a programmable gain feature, and others set the gain via switches on the board. In either case, the
range that the board is configured for must be passed to this function. Refer to board specific information for a list of the
supported A/D ranges of each board.

DataValue

A pointer or reference to the data value.

Options

Board-specific operations to apply to the operation.

Returns

n Error code or 0 if no errors

n DataValue - Returns the value in volts of the A/D sample.

Options argument values

Default

Reserved for future use.

Page 290 of 700

../../Misc/Supported_A_D_Ranges.htm

cbVOut() function
Sets the value of a D/A channel. This function cannot be used for current output.

Function Prototype
C/C++

int cbVOut(int BoardNum, int Channel, int Range, float DataValue, int Options);

Visual Basic

Function cbVOut(ByVal BoardNum&, ByVal Channel&, ByVal Range&, ByVal DataValue!, ByVal Options&) As
Long

Arguments
BoardNum

The board number associated with the board used to collect the data when it was installed with InstaCal. BoardNum may be 0
to 99. The specified board must have a D/A.

Channel

The D/A channel number. The maximum allowable channel depends on which type of D/A board is being used.

Range

The D/A range code. If the device has a programmable gain, it is set according to this argument value. If the range specified
isn't supported, the function return a BADRANGE error.

If the gain is fixed or manually selectable, make sure that this argument matches the gain configured for the device. If it
doesn't, the output voltage will not match the voltage specified in the DataValue argument.

DataValue

The voltage value to be written.

Options

Reserved for future use.

Returns

n Error code or 0 if no errors

options parameter values

Default Reserved for future use.

Page 291 of 700

cbGetConfig() function
Returns a configuration option for a board. The configuration information for all boards is stored in the CB.CFG file. This information
is loaded from CB.CFG by all programs that use the library. You can change the current configuration within a running program with
the cbSetConfig() function. The cbGetConfig() function returns the current configuration information.

Function Prototype
C/C++

int cbGetConfig(int InfoType, int BoardNum, int DevNum, int ConfigItem, int *ConfigVal)

Visual Basic

Function cbGetConfig(ByVal InfoType&, ByVal BoardNum&, ByVal DevNum&, ByVal ConfigItem&, ConfigVal&) As
Long

Arguments
InfoType

The configuration information for each board is grouped into different categories. This argument specifies which category you
want. Set it to one of the constants listed in the "InfoType argument values" below.

BoardNum

Refers to the board number associated with a board when it was installed with InstaCal. BoardNum may be 0 to 99.

DevNum

Selects a particular device. If InfoType = DIGITALINFO, then DevNum specifies which of the board's digital devices you want
information on. If InfoType = COUNTERINFO, then DevNum specifies which of the board's counter devices you want
information from.

ConfigItem

Specifies which configuration item you wish to retrieve. Set it in conjunction with the InfoType argument using one of the
constants listed in the "ConfigItem argument values" below.

ConfigVal

The specified configuration item is returned to this variable.

Returns

n Error code or 0 if no errors.

n ConfigVal - returns the value of the specified configuration item here.

InfoType argument values

InfoType Description

GLOBALINFO Information about the configuration file.

BOARDINFO General information about a board.

DIGITALINFO Information about a digital device.

COUNTERINFO Information about a counter device.

EXPANSIONINFO Information about an expansion device.

MISCINFO One of the miscellaneous options for the board.

Page 292 of 700

ConfigItem argument values

Valid ConfigItem constant settings for each InfoType constant are as follows:

InfoType ConfigItem Description

GlobalInfo GIVERSION CB.CFG file format - used by the library to determine
compatibility.

GINUMBOARDS Maximum number of boards that can be installed.

GINUMEXPBOARDS Maximum number of expansion boards that can be installed.

BOARDINFO BIADCSETTLETIME ADC settling time

BIBASEADR Base address of the device

BIBOARDTYPE Returns a unique number in the range of 0 to 8000 Hex describing
the board type installed.

BICINUMDEVS Number of counter devices

BICLOCK Clock frequency in megahertz (MHz) (40, 10, 8, 6, 5, 4, 3, 2, 1) or
0 for not supported.

BIDACSTARTUP Returns the setting of a DAC board's configuration register
STARTUP bit. Refer to the Notes section below for more
information.

BIDACUPDATEMODE Returns the setting of the update mode for a digital-to-analog
converter (DAC). Refer to the Notes section below for more
information.

BIDINUMDEVS Number of digital devices

BIDMACHAN DMA channel — 0, 1 or 3

BIDTBOARD Board number of the connected DT board

BIFACTORYID The factory serial number of a USB device, or the MAC address of
a WEB device.

BIINTLEVEL Interrupt level. 0 for none, or 1 - 15

BINETIOTIMEOUT The amount of time (in milliseconds) to wait for a WEB device to
acknowledge a command or query sent to the device over a
network connection. If no acknowledgement is received in this
time a timeout occurs.

BINUMADCHANS Number of A/D channels

BINUMDACHANS Number of D/A channels

BINUMIOPORTS Number of I/O ports used by the device

BINUMTEMPCHANS Number of temperature channels

BIPANID Sets the Personal Area Network (PAN) identifier for a USB device
that supports wireless communication.

BIRANGE Selected voltage range. For switch selectable gains only.

If the selected A/D board does not have a programmable gain
feature, this argument returns the range as defined by the
installed InstaCal settings. If InstaCal and the board are installed
correctly, the returned range will correspond to the input range as
set via the switches on the board. Refer to board specific
information for a list of the A/D ranges supported by each board.

BIRFCHANNEL Sets the RF channel number used to transmit/receive data by a
USB device that supports wireless communication.

BIRSS Returns the received signal strength in dBm of a remote device.

BISERIALNUM Returns the serial number assigned by a user to a USB device in
InstaCal. This ConfigItem does not return the factory serial
number.

BIWAITSTATE Setting of the Wait State jumper. 1 = enabled, 0 = disabled

BIUSESEXPS Supports expansion boards. TRUE/FALSE value is returned.

DIGITALINFO DIBASEADR Base address (16-bit library only)

DIDEVTYPE Device Type - AUXPORT, FIRSTPORTA etc.

DICONFIG Current configuration INPUT or OUTPUT.

DINUMBITS Number of bits in the port.

DICURVAL Current value of outputs.

DIINMASK Returns the bit configuration of the specified port. Any bits that
return a value of 1 are configured for input. Refer to the Notes
section below for more information.

DIOUTMASK Returns the bit configuration of the specified port. Any bits that
return a value of 1 are configured for output. Refer to the Notes
section below for more information.

Page 293 of 700

../../Misc/Supported_A_D_Ranges.htm

Notes

n Use the DIINMASK and DIOUTMASK options to determine if an AUXPORT is configurable. Execute cbGetConfig() twice to the
same port – once using DIINMASK and once using DIOUTMASK. If both of the ConfigValue arguments returned have input
and output bits that overlap, the port is not configurable.

You can determine overlapping bits by Anding both arguments.

Example: for a device with seven bits of digital I/O (four outputs and three inputs), the ConfigValue returned by DIINMASK is
always 7 (0000 0111), while the ConfigValue argument returned by DIOUTMASK is always 15 (0000 1111). When you And
both ConfigValue arguments together, you get a non-zero number (7). Any non-zero number indicates that input and output
bits overlap for the specified port, and the port is a non-configurable AUXPORT.

n Use the BIDACSTARTUP option to determine whether a board's DAC values before the last power down are stored.

With ConfigItem set to BIDACSTARTUP, Configval returns 0 when the startup bit is disabled. Current DAC settings are stored
as startup values.

ConfigVal returns 1 when the startup bit is enabled. The last DAC values are stored as startup values.

Refer to the cbSetConfig() Notes section for information about how to store the current or last DAC values as start-up values.

n Use the BIDACUPDATEMODE option to check the update mode for a DAC board.

With ConfigItem set to BIDACUPDATEMODE, ConfigVal returns 0 when the DAC update mode is immediate. Values written
with cbAOut() are automatically output by the DAC channels.

ConfigVal returns 1 when the DAC update mode is set to on command. Values written with cbAOut() are not output by the
DAC channels until a cbSetConfig() call is made with its ConfigItem argument set to BIDACUPDATECMD.

COUNTERINFO CICTRNUM The counter number referred to by devnum.

CICTRTYPE The counter type, where:

1 = 8254, 2 = 9513, 3 = 8536, 4 = 7266, 5 = event counter, 6 =
scan counter, 7 = timer counter, 8 = quadrature counter, and 9 =
pulse counter.

EXPANSIONINFO XIBOARDTYPE Board type (refer to the "Measurement Computing Device IDs
topic in the Universal Library User's Guide)

XIMUXADCHAN1 First A/D channel that the EXP board is connected to

XIMUXADCHAN2 Second A/D channel that the EXP board is connected to

XIRANGE1 Range (gain) of the low 16 channels

XIRANGE2 Range (gain) of the high 16 channels

XICJCCHAN A/D channel that the CJC is connected to

XITHERMTYPE Sensor type. Use one of the sensor types listed below:

n J = 1

n K = 2

n T = 3

n E = 4

n R = 5

n S = 6

n B = 7

n Platinum .00392 = 257

n Platinum .00391 = 258

n Platinum .00385 = 259

n Copper .00427 = 260

n Nickel/Iron .00581 = 261

n Nickel/Iron .00527 = 262

XINUMEXPCHANS Number of channels on the expansion board

XIPARENTBOARD Board number of the parent A/D board

Page 294 of 700

cbGetConfigString() function
Retrieves configuration or device information as a null-terminated string.

Function Prototype
C/C++

int cbGetConfigString(int InfoType, int BoardNum, int ItemIndex, int ConfigItem, char *ConfigVal, int*
maxConfigLen)

Visual Basic

Function cbGetConfigString(ByVal InfoType, ByVal BoardNum&, ByVal ItemIndex&, ByVal ConfigItem&, ByVal
ConfigVal$, ByRef maxConfigLen&) As Long

Arguments
InfoType

The configuration information for each board is grouped into different categories. This argument specifies which category you
want. Always set this argument to BOARDINFO.

BoardNum

Refers to the board number associated with a board when it was installed with InstaCal. BoardNum may be 0 to 99.

ItemIndex

The location in the device memory (specified by ConfigItem) at which to start reading.

ConfigItem

Specifies the type of information (or memory area) to read from the device. Set it to one of the constants listed in the
"ConfigItem argument values" section below.

ConfigVal

Pointer to a user-allocated buffer where the configuration string is copied.

maxConfigLen

Pointer to the value holding the maximum number of bytes to be read from the device into ConfigVal.

Returns

n Error code or 0 if no errors.

n maxConfigLen - The number of bytes read from the device into ConfigVal.

n ConfigVal - The string read from the device.

ConfigItem argument values

ConfigItem Description

BIDEVNOTES Reads up to maxConfigLen characters/bytes from the device notes memory, starting at the location
defined by ItemIndex. Currently supported only for WLS Series devices.

BIFACTORYID Reads the factory serial number of a USB device, or the MAC address of a WEB device.

BINODEID Reads up to maxConfigLen character/bytes from the string identifier memory. Note that ItemIndex
is not used for this ConfigItem.

Page 295 of 700

cbGetSignal() function
Retrieves the configured Auxiliary or DAQ Sync connection and polarity for the specified timing and control signal.

This function is intended for advanced users. Except for the SYNC_CLK input, you can easily view the settings for the timing and
control signals using InstaCal.

Note: This function is not supported by all board types.

Function Prototype
C/C++

int cbGetSignal(int BoardNum, int Direction, int Signal, int Index, int* Connection, int* Polarity)

Visual Basic

Function cbGetSignal(ByVal BoardNum&, ByVal Direction&, ByVal Signal&, ByVal Index&, ByRef Connection,
ByRef Polarity) As Long

Arguments
BoardNum

Refers to the board number associated with the A/D board when it was installed with InstaCal. The specified board must have
configurable signal inputs and outputs.

Direction

Specifies whether retrieving the source (SIGNAL_IN) or destination (SIGNAL_OUT) of the specified signal.

Signal

Signal type whose connection is to be retrieved. See cbSelectSignal for valid signal types.

Index

Used to indicate which connection to reference when there is more than one connection associated with the output Signal
type. When querying output signals, increment this value until BADINDEX is returned or 0 is returned via the Connection
parameter to determine all the output Connections for the specified output Signal. The first Connection is indexed by 0.

For input signals (Direction=SIGNAL_IN), this should always be set to 0.

Connection

The specified connection is returned through this variable. This is set to 0 if no connection is associated with the Signal, or if
the Index is set to an invalid value.

Polarity

Holds the polarity for the associated Signal and Connection.

For output Signals assigned an AUXOUT Connection, the return value is either INVERTED or NONINVERTED.

For Signal settings of ADC_CONVERT, DAC_UPDATE, ADC_TB_SRC and DAC_TB_SRC input signals, either POSITIVEEDGE or
NEGATIVEEDGE is returned.

All other signals return 0.

Returns

n Error code or 0 if no errors.

Notes
Timing and control configuration information can be viewed and edited inside InstaCal. Do the following:

1. Run InstaCal.

2. Click on the board and press the Configure... button or menu item. If the board supports DAQ Sync and Auxiliary
Input/Output signal connections, a button labeled Advanced Timing & Control Configuration displays.

3. Press this button to open a display for viewing and modifying the above timing and control signals.

Page 296 of 700

cbSelectSignal() function
Configures timing and control signals to use specific Auxiliary or DAQ Sync connections as a source or destination.

This function is intended for advanced users. Except for the SYNC_CLK input, you can easily configure all the timing and control
signals using InstaCal.

Note: This function is not supported by all board types. Please refer to board specific information for details.

Function Prototype
C/C++

int cbSelectSignal(int BoardNum, int Direction, int Signal, int Connection, int Polarity);

Visual Basic

Function cbSelectSignal(ByVal BoardNum&, ByVal Direction&, ByVal Signal&, ByVal Connection&, ByVal
Polarity&) as Long

Arguments
BoardNum

Refers to the board number associated with the A/D board when it was installed. The specified board must have configurable
signal inputs and outputs.

Direction

Direction of the specified signal type to be assigned a connector pin. For most signal types, this should be either SIGNAL_IN
or SIGNAL_OUT. For the SYNC_CLK , ADC_TB_SRC and DAC_TB_SRC signals, the external source can also be disabled by
specifying DISABLED(=0) such that it is neither input nor output. Set it in conjunction with the Signal, Connection, and
Polarity arguments using the information listed in the Direction argument values section below.

Signal

Signal type to be associated with a connector pin. Set it to one of the constants listed in the "Signal argument values" section
below.

Connection

Designates the connector pin to associate the signal type and direction. Since individual pin selection is not allowed for the
DAQ-Sync connectors, all DAQ-Sync pin connections are referred to as DS_CONNECTOR. The AUXIN and AUXOUT settings
match their corresponding hardware pin names.

Polarity

ADC_TB_SRC and DAC_TB_SRC input signals (SIGNAL_IN) can be set for either rising edge (POSITIVEEDGE) or falling edge
(NEGATIVEEDGE) signals. The AUXOUT connections can be set to INVERTED or NONINVERTED from their internal polarity.

Returns

n Error code or 0 if no errors.

Page 297 of 700

Signal argument values

Direction argument values

Valid input (Direction=SIGNAL_IN) connection pin and polarity settings include:

Valid output (Direction=SIGNAL_OUT) connection pin and polarity settings include:

* INVERTED is only valid for Auxiliary Output (AUXOUT) connections.

Signal Connection

ADC_CONVERT A/D conversion pulse or clock.

ADC_GATE External gate for A/D conversions.

ADC_SCANCLK A/D channel scan signal.

ADC_SCAN_STOP A/D scan completion signal.

ADC_SSH A/D simultaneous sample and hold signal.

ADC_STARTSCAN Start of the A/D channel-scan sequence signal.

ADC_START_TRIG A/D scan start trigger.

ADC_STOP_TRIG A/D stop- or pre- trigger.

ADC_TB_SRC A/D pacer timebase source.

CTR1_CLK CTR1 clock source.

CTR2_CLK CTR2 clock source.

DAC_START_TRIG D/A start trigger.

DAC_TB_SRC D/A pacer timebase source.

DAC_UPDATE D/A update signal.

DGND Digital ground.

SYNC_CLK STC timebase signal.

Signal Connection Polarity

ADC_CONVERT AUXIN0..AUXIN5

DS_CONNECTOR
POSITIVEEDGE or NEGATIVEEDGE

ADC_GATE AUXIN0..AUXIN5 See cbSetTrigger()

ADC_START_TRIG AUXIN0..AUXIN5

DS_CONNECTOR
See cbSetTrigger()

ADC_STOP_TRIG AUXIN0..AUXIN5

DS_CONNECTOR
See cbSetTrigger()

ADC_TB_SRC AUXIN0..AUXIN5 POSITIVEEDGE or NEGATIVEEDGE

DAC_START_TRIG AUXIN0..AUXIN5

DS_CONNECTOR
Not assigned here.

DAC_TB_SRC AUXIN0..AUXIN5 POSITIVEEDGE or NEGATIVEEDGE

DAC_UPDATE AUXIN0..AUXIN5

DS_CONNECTOR
POSITIVEEDGE or NEGATIVEEDGE

SYNC_CLK DS_CONNECTOR Not assigned here.

Signal Connection Polarity

ADC_CONVERT AUXIN0..AUXIN2

DS_CONNECTOR
INVERTED* or NONINVERTED

ADC_SCANCLK AUXIN0..AUXIN2

ADC_SCAN_STOP AUXIN0..AUXIN2

ADC_SSH AUXIN0..AUXIN2

ADC_STARTSCAN AUXIN0..AUXIN2

ADC_START_TRIG AUXIN0..AUXIN2

DS_CONNECTOR

ADC_STOP_TRIG AUXIN0..AUXIN2

DS_CONNECTOR

CTR1_CLK AUXIN0..AUXIN2

CTR2_CLK AUXIN0..AUXIN2

DAC_START_TRIG AUXIN0..AUXIN2

DS_CONNECTOR

DAC_UPDATE AUXIN0..AUXIN2

DS_CONNECTOR

DGND AUXIN0..AUXIN2 Not assigned here.

SYNC_CLK DS_CONNECTOR

Page 298 of 700

Valid disabled settings (Direction=DISABLED):

Notes

n You can view and edit the above timing and control configuration information from InstaCal. Open InstaCal, click on the
board, and press the "Configure..." button or menu item. If the board supports DAQ Sync and Auxiliary Input/Output signal
connections, a button labeled "Advanced Timing & Control Configuration" displays. Press that button to open a display for
viewing and modifying the above timing and control signals.

n Except for the ADC_TB_SRC, DAC_TB_SRC and SYNC_CLK signals, selecting an input signal connection does not necessarily
activate it. However, assigning an output signal to a connection does activate the signal upon performing the respective
operation. For instance, when running an EXTCLOCK cbAInScan(), ADC_CONVERT SIGNAL_IN selects the connection to use
as an external clock to pace the A/D conversions; if cbAInScan() is run without setting the EXTCLOCK option, however, the
selected connection is not activated and the signal at that connection is ignored. In both cases, the ADC_CONVERT signal is
output via the connection(s) selected for the ADC_CONVERT SIGNAL_OUT. Since there are no scan options for enabling the
Timebase Source and the SYNC_CLK, selecting an input for the A/D or D/A Timebase Source, or SYNC_CLK does activate the
input source for the next respective operations.

n Multiple input signals can be mapped to the same AUXINn connection by successive calls to cbSelectSignal; however, only
one connection can be mapped to each input signal. If another connection had already been assigned to an input signal, the
former selection is de-assigned and the new connection is assigned.

n Only one output signal can be mapped to the same AUXOUTn connection; however, multiple connections can be mapped to
the same output signal by successive calls to cbSelectSignal. If an output signal had already been assigned to a connection,
then the former output signal is de-assigned and the new output signal is assigned to the connection. Note that there are at
most MAX_CONNECTIONS(=4) connections that can be assigned to each output signal.

n When selecting DS_CONNECTOR for a signal, only one direction per signal type can be defined at a given time. Attempting to
assign both directions of a signal to the DS_CONNECTOR results in only the latest selection being applied. If the signal type
had formerly been assigned an input direction from the DS_CONNECTOR, assigning the output direction for that signal type
results in the input signal being reassigned to its default connection:

n ADC_TB_SRC and DAC_TB_SRC are intended to synchronize the timebase of the analog input and output pacers across two
or more boards. Internal calculations of sampling and update rates assume that the external timebase has the same
frequency as its internal clock. Adjust sample rates to compensate for differences in clock frequencies.

For instance, if the external timebase has a frequency of 10 MHz on a board that has a internal clock frequency of 40 MHz,
the scan function samples or updates at a rate of about 1/4 the rate entered. However, while compensating for differences in
external timebase and internal clock frequency, if the rate entered results in an invalid pacer count, the function returns a
BADRATE error.

Signal Connection Polarity

ADC_TB_SRC Not assigned here. Not assigned here.

DAC_TB_SRC

SYNC_CLK

Default input signal connections

Input signal Default connection

ADC_CONVERT AUXIN0

ADC_GATE AUXIN5

ADC_START_TRIG AUXIN1

ADC_STOP_TRIG AUXIN2

DAC_UPDATE AUXIN3

DAC_START_TRIG AUXIN3

Page 299 of 700

cbSetConfig() function
Sets a configuration option for a board. The configuration information for all boards is stored in the CB.CFG file. All programs that
use the library read this file. You can use this function to override the configuration information stored in the CB.CFG file.

Function prototype
C/C++

int cbSetConfig(int InfoType, int BoardNum, int DevNum, int ConfigItem, int ConfigVal)

Visual Basic

Function cbSetConfig(ByVal InfoType&, ByVal BoardNum&, ByVal DevNum&, ByVal ConfigItem&, ByVal
ConfigVal&) As Long

Arguments
InfoType

The configuration information for each board is grouped into different categories. InfoType specifies which category you
want. Set it to one of the constants listed in the InfoType argument values section below.

BoardNum

Refers to the board number associated with a board when it was installed. BoardNum may be 0 to 99.

DevNum

Selects a particular device. If InfoType = DIGITALINFO, then DevNum specifies which of the board's digital devices you want
to set information on. If InfoType = COUNTERINFO then DevNum specifies which of the board's counter devices you want to
set information on.

ConfigItem

Specifies which configuration item you wish to set. Set it in conjunction with the InfoType argument using the table under
ConfigItem argument values section below.

ConfigVal

The value to set the specified configuration item to.

Returns

n Error code or 0 if no errors.

InfoType argument values

InfoType Description

BOARDINFO General information about a board.

DIGITALINFO Information about a digital device.

COUNTERINFO Information about a counter device.

EXPANSIONINFO Information about an expansion device.

MISCINFO One of the miscellaneous options for the board.

Page 300 of 700

ConfigItem argument values

InfoType ConfigItem Description

BoardInfo BIADTRIGCOUNT ADC trigger count. For use with the cbAInScan()/AInScan()
RETRIGMODE option to set up repetitive trigger events.

BIBASEADR Base address of the board

BICALOUTPUT Sets the voltage for the CAL pin on supported USB devices

BICLOCK Clock frequency in megahertz (MHz) (1, 4, 6 or 10)

BIDACSTARTUP Sets the board's configuration register STARTUP bit to 0 or 1 to
enable/disable the storing of digital-to-analog converter (DAC)
startup values. Each time the board is powered up, the stored
values are written to the DACs. Refer to the "Notes" section below
for more information.

BIDACTRIGCOUNT DAC trigger count. For use with the cbAOutScan()/AOutScan()
RETRIGMODE option to set up repetitive trigger events.

BIDACUPDATECMD Updates all analog output channels.

When ConfigItem is set to BIDACUPDATECMD, the DevNum and
ConfigVal arguments are not used and can be set to 0. Refer to
the "Notes" section below for more information.

BIDACUPDATEMODE Sets the update mode for a digital-to-analog converter (DAC).
Use this setting in conjunction with one of these ConfigVal
settings:

n UPDATEIMMEDIATE

n UPDATEONCOMMAND

Refer to the "Notes" section below for more information.

BIDACSETTLETIME ADC settling time

BIDIDEBOUNCESTATE The state of the digital inputs when debounce timing is set

BIDIDEBOUNCETIME Sets the debounce time of digital inputs

BIDMACHAN DMA channel

BIINTLEVEL Interrupt level

BIHIDELOGINDLG Enables or disables the Device Login dialog. Set to a nonzero
value to disable the dialog. When disabled, the cbDeviceLogin()
function must be used to log in to a device session.

BINETIOTIMEOUT Sets the amount of time (in milliseconds) to wait for a WEB device
to acknowledge a command or query sent to the device over a
network connection. If no acknowledgement is received in this
time a timeout occurs.

BINUMADCHANS Number of A/D channels

BIPANID Sets the Personal Area Network (PAN) identifier of a USB device
that supports wireless communication.

BIRANGE Selected voltage range

BIRFCHANNEL Sets the RF channel number used to transmit/receive data by a
USB device that supports wireless communication.

BIRSS The received signal strength in dBm of a remote device.

BISRCADPACER Outputs the A/D pacer signal to the SYNC pin on supported USB
devices.

BIWAITSTATE Setting of the Wait State jumper

EXPANSIONINFO XIMUXADCHAN1 The first A/D channel that the board is connected to.

XIMUXADCHAN2 The second A/D channel that the board is connected to.

XIRANGE1 Range (gain) of the low 16 channels.

XIRANGE2 Range (gain) of the high 16 channels.

XICJCCHAN A/D channel that the CJC is connected to.

XITHERMTYPE Thermocouple type

Page 301 of 700

../../Misc/Supported_A_D_Ranges.htm

Notes

n Use the ConfigItem option BIDACSTARTUP to store either the current DAC values or the DAC values before the board was
last powered down.

To store the current DAC values as start-up values, call cbSetConfig() with a value of 1 for the BIDACSTARTUP value. Then,
call cbAOut() or cbAOutScan() for each channel (), and call cbSetConfig() again with a value of 0 for the BIDACSTARTUP
value.

Example:

cbSetConfig(BOARDINFO, boardNumber, 0, BIDACSTARTUP, 1);

for (int i =1; i <8; i++)

{

cbAOut(boardNumber, i, BIP5VOLTS, DACValue[i]);

}

cbSetConfig(BOARDINFO, boardNumber, 0, BIDACSTARTUP, 0);

To store the DAC's last settings, call cbSetConfig() with a BIDACSTARTUP value of 1. Leave this bit turned on until the
application exits. The next time the board is powered up, it restores the values last written to the DACs.

n Use the BIDACUPDATEMODE option to set the update mode for a DAC board.

With ConfigItem set to BIDACUPDATEMODE and ConfigVal set to 0, the DAC update mode is immediate. Values written with
cbAOut() or cbAOutScan() are automatically output by the DAC channels.

With ConfigItem set to BIDACUPDATEMODE and ConfigVal set to 1, the DAC update mode is on command. Values written
with cbAOut() or cbAOutScan()are not output by the DAC channels until another cbSetConfig() call is made with ConfigItem
set to BIDACUPDATECMD.

Page 302 of 700

cbSetConfigString() function
Sets the configuration or device information as a null-terminated string.

Function Prototype
C/C++:

int cbSetConfigString(int InfoType, int BoardNum, int ItemIndex, int ConfigItem, char *ConfigVal, int*
maxConfigLen)

Visual Basic:

Function cbSetConfigString(ByVal InfoType, ByVal BoardNum&, ByVal ItemIndex&, ByVal ConfigItem&, ByVal
ConfigVal$, ByRef maxConfigLen&) As Long

Arguments
InfoType

The configuration information for each board is grouped into different categories. This argument specifies which category you
want. Always set this argument to BOARDINFO.

BoardNum

Refers to the board number associated with a board when it was installed. BoardNum may be 0 to 99.

ItemIndex

The location in the device memory (specified by ConfigItem) at which to start writing.

ConfigItem

The type of information (or memory area) to write to the device. Set it to one of the constants listed in the "ConfigItem
argument values" section below.

ConfigVal

Pointer to the user-allocated buffer containing the string to copy to the device's memory.

maxConfigLen

Pointer to the value specifying the number of bytes to be written to the device from ConfigVal.

Returns

n Error code or 0 if no errors.

n maxConfigLen - The number of bytes written to the device.

ConfigItem argument values

ConfigItem Description

BIDEVNOTES Writes up to maxConfigLen characters/bytes from the ConfigVal buffer to the device notes memory,
beginning at the location defined by ItemIndex. Currently supported only for WLS Series devices.

BINODEID Writes up to maxConfigLen characters/bytes from the ConfigVal buffer to the string identifier
memory on the device. Note that ItemIndex is not used for this ConfigItem.

Page 303 of 700

cbSetTrigger() function
Selects the trigger source and sets up its parameters. This trigger is used to initiate analog to digital conversions using the following
Universal Library functions:

n cbAInScan(), if the EXTTRIGGER option is selected.

n cbDInScan(), if the EXTTRIGGER option is selected.

n cbCInScan(), if the EXTTRIGGER option is selected.

n cbAPretrig()

n cbFilePretrig()

Function prototype
C/C++

int cbSetTrigger(int BoardNum, int TrigType, unsigned short LowThreshold, unsigned short
HighThreshold);

Visual Basic

Function cbSetTrigger(ByVal BoardNum&, ByVal TrigType&, ByVal LowThreshold%, ByVal HighThreshold%) As
Long

Arguments
BoardNum

Specifies the board number associated with the board when it was installed with the configuration program. The board must
have the software selectable triggering source and/or options. BoardNum may be 0 to 99.

TrigType

Specifies the type of triggering based on the external trigger source. Set it to one of the constants in the TrigType argument
values section below.

LowThreshold

Selects the low threshold used when the trigger input is analog. The range depends upon the resolution of the trigger
circuitry. Must be 0 to 255 for 8-bit trigger circuits, 0 to 4,095 for 12-bit trigger circuits, and 0 to 65,535 for 16-bit trigger
circuits. Refer to the Notes section below.

HighThreshold

Selects the high threshold used when the trigger input is analog. The range depends upon the resolution of the trigger
circuitry. Must be 0 to 255 for 8-bit trigger circuits, 0 to 4,095 for 12-bit trigger circuits, and 0 to 65,535 for 16-bit trigger
circuits. Refer to the Notes section below.

Returns

n Error code or 0 if no errors.

Page 304 of 700

TrigType argument values

Notes

n The threshold value must be within the range of the analog trigger circuit associated with the board. Refer to the board-
specific information. For example, on the PCI-DAS 1602/16 the analog trigger circuit handles ±10V. A value of 0 corresponds
to –10V, whereas a value of 65,535 corresponds to +10V.

Since Visual Basic does not support unsigned integer types, the thresholds range from –32,768 to 32,767 for 16 bit boards,
instead of from 0 to 65,535. In this case, the unsigned value of 65,535 corresponds to a value of –1, 65,534 corresponds to –
2, ..., 32,768 corresponds to –32,768.

n For most boards that support analog triggering, you can pass the required trigger voltage level and the appropriate Range to
cbFromEngUnits() to calculate the HighThreshold and LowThreshold values.

For some boards, you must manually calculate the threshold by first calculating the least significant bit (LSB) for a
particular range for the trigger resolution of your hardware. You then use the LSB to find the threshold in counts based on an
analog voltage trigger threshold. Refer to the following procedure for details. For board-specific information, refer to your
hardware in the "Analog Input Boards" section of the Universal Library User's Guide.

Manually calculating the threshold

To calculate the threshold, do the following:

1. Calculate the LSB by dividing the full scale range (FSR) by 2resolution. FSR is the entire span from –FS to +FS of your
hardware for a particular range. For example, the full scale range of ±10 V is 20 V.

2. Calculate how many times you need to add the LSB calculated in step 1 to the negative full scale (–FS) to reach the
trigger threshold value.

The maximum threshold value is 2 resolution – 1. The formula is shown here:

Abs (–FS – threshold in volts) ÷ (LSB) = threshold in counts

Here are two examples that use this formula — one for 8-bit trigger resolution, and one for 12-bit trigger resolution:

Trigger
source

Type Explanation

Analog GATE_NEG_HYS AD conversions are enabled when the external analog trigger input is more
positive than HighThreshold. AD conversions are disabled when the external
analog trigger input is more negative than LowThreshold. Hysteresis is the level
between LowThreshold and HighThreshold.

GATE_POS_HYS AD conversions are enabled when the external analog trigger input is more
negative than LowThreshold. AD conversions are disabled when the external
analog trigger input is more positive than HighThreshold. Hysteresis is the level
between LowThreshold and HighThreshold.

GATE_ABOVE AD conversions are enabled as long as the external analog trigger input is
more positive than HighThreshold.

GATE_BELOW AD conversions are enabled as long as the external analog trigger input is
more negative than LowThreshold.

GATE_IN_WINDOW AD conversions are enabled as long as the external analog trigger is inside the
region defined by LowThreshold and HighThreshold.

GATE_OUT_WINDOW AD conversions are enabled as long as the external analog trigger is outside
the region defined by LowThreshold and HighThreshold.

TRIG_ABOVE AD conversions are enabled when the external analog trigger input transitions
from below HighThreshold to above. Once conversions are enabled, the
external trigger is ignored.

TRIG_BELOW AD conversions are enabled when the external analog trigger input transitions
from above LowThreshold to below. Once conversions are enabled, the external
trigger is ignored.

Digital GATE_HIGH AD conversions are enabled as long as the external digital trigger input is 5V
(logic HIGH or '1').

GATE_LOW AD conversions are enabled as long as the external digital trigger input is 0V
(logic LOW or '0').

TRIG_HIGH AD conversions are enabled when the external digital trigger is 5V (logic HIGH
or '1'). Once conversions are enabled, the external trigger is ignored.

TRIG_LOW AD conversions are enabled when the external digital trigger is 0V (logic LOW
or '0'). Once conversions are enabled, the external trigger is ignored.

TRIG_POS_EDGE AD conversions are enabled when the external digital trigger makes a transition
from 0V to 5V (logic LOW to HIGH). Once conversions are enabled, the external
trigger is ignored.

TRIG_NEG_EDGE AD conversions are enabled when the external digital trigger makes a transition
from 5V to 0V (logic HIGH to LOW). Once conversions are enabled, the external
trigger is ignored.

Page 305 of 700

n 8-bit example using the ±10 V range with a –5 V threshold:

Calculate the LSB: LSB = 20 ÷ 28 = 20 ÷ 256 = 0.078125

Calculate the threshold: Abs(–10 – (–5)) ÷ 0.078125 = 5 ÷ 0.078125 = 64 (round this result if it is not an integer). A
count of 64 translates to a voltage threshold of –5.0 V.

n 12-bit example using the ±10 V range with a +1 V threshold:

Calculate the LSB: LSB = 20 ÷ 212 = 20 ÷ 4096 = 0.00488

Calculate the threshold: Abs(–10 – 1) ÷ 0.00488 = 11 ÷ 0.00488 = 2254 (rounded from 2254.1). A count of 2254
translates to a voltage threshold of 0.99952 V.

Page 306 of 700

cbC7266Config() function
Configures 7266 counter for desired operation. This function can only be used with boards that contain a 7266 counter chip
(Quadrature Encoder boards). For more information, see LS7266R1 data sheet in accompanying ls7266r1.pdf file located in the
Documents subdirectory where the UL is installed (C:\Program files\Measurement Computing\DAQ by default).

Function Prototype
C/C++

int cbC7266Config(int BoardNum, int CounterNum, int Quadrature, int CountingMode, int DataEncoding, int
IndexMode, int InvertIndex, int FlagPins, int Gating)

Visual Basic

Function cbC7266Config(ByVal BoardNum&, ByVal CounterNum&, ByVal Quadrature&, ByVal CountingMode&,
ByVal DataEncoding&, ByVal IndexMode&, ByVal InvertIndex&, ByVal FlagPins&, ByVal Gating&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. The specified board must have an
LS7266 counter. BoardNum may be 0 to 99.

CounterNum

Counter Number (1 - n), where n is the number of counters on the board.

Quadrature

Selects the resolution multiplier for quadrature input, or disables quadrature input (NO_QUAD) so that the counters can be
used as standard TTL counters. NO_QUAD, X1_QUAD, X2_QUAD, or X4_QUAD.

CountingMode

Selects operating mode for the counter. NORMAL_MODE, RANGE_LIMIT, NO_RECYCLE, MODULO_N. Set it to one of the
constants in the CountingMode argument values section below.

DataEncoding

Selects the format of the data that is returned by the counter - either Binary or BCD format. BCD_ENCODING,
BINARY_ENCODING.

IndexMode

Selects which action will be taken when the Index signal is received. The IndexMode must be set to INDEX_DISABLED
whenever a Quadrature is set to NON_QUAD or when Gate is set to ENABLED. Set it to one of the constants in the IndexMode
argument values section below.

InvertIndex

Selects the polarity of the Index signal. If set to DISABLED, the Index signal is assumed to be positive polarity. If set to
ENABLED, the Index signal is assumed to be negative polarity.

FlagPins

Selects which signals will be routed to the FLG1 and FLG2 pins. Set it to one of the constants in the FlagPins argument values
section below.

Gating

If gating is set to ENABLED, then the channel INDEX input is routed to the RCNTR pin of the LS7266 chip, and is used as a
gating signal for the counter. Whenever Gating = ENABLED the IndexMode must be set to INDEX_DISABLED.

Returns

n Error code or 0 if no error occurs

Page 307 of 700

http://www.measurementcomputing.com/PDFmanuals/LS7266R1.pdf
http://www.adobe.com/products/acrobat/readstep2.html

CountingMode argument values

IndexMode argument values

FlagPins argument values

NORMAL_MODE Each counter operates as a 24 bit counter that rolls over to 0 when the maximum count is
reached.

RANGE_LIMIT In range limit count mode, an upper an lower limit is set, mimicking limit switches in the
mechanical counterpart. The upper limit is set by loading the PRESET register with the
cbCLoad() function after the counter has been configured. The lower limit is always 0. When
counting up, the counter freezes whenever the count reaches the value that was loaded into
the PRESET register. When counting down, the counter freezes at 0. In either case the
counting is resumed only when the count direction is reversed.

NO_RECYCLE In non-recycle mode the counter is disabled whenever a count overflow or underflow takes
place. The counter is re-enabled when a reset or load operation is performed on the
counter.

MODULO_N In modulo-n mode, an upper limit is set by loading the PRESET register with a maximum
count. Whenever counting up, when the maximum count is reached, the counter will roll-
over to 0 and continue counting up. Likewise when counting down, whenever the count
reaches 0, it will roll over to the maximum count (in the PRESET register) and continue
counting down.

INDEX_DISABLED The Index signal is ignored.

LOAD_CTR The channel INDEX input is routed to the LCNTR pin of the LS7266 counter chip. The counter
is loaded whenever the signal occurs.

LOAD_OUT_LATCH The channel INDEX input is routed to the LCNTR pin of the LS7266 counter chip. The current
count is latched whenever the signal occurs. When this mode is selected, the cbCIn()
function will return the same count value each time it is called until the Index signal occurs.

RESET_CTR The channel INDEX input is routed to the RCNTR pin of the LS7266 counter chip. The
counter is reset whenever the signal occurs.

CARRY_BORROW FLG1 pin is CARRY output, FLG2 is BORROW output.

COMPARE_BORROW FLG1 pin is COMPARE output, FLG2 is BORROW output.

CARRYBORROW_UPDOWN FLG1 pin is CARRY/BORROW output, FLG2 is UP/DOWN signal.

INDEX_ERROR FLG1 pin is INDEX output, FLG2 is error output.

Page 308 of 700

cbC8254Config() function
Configures 8254 counter for desired operation. This function can only be used with 8254 counters.

For more information, see the 82C54 data sheet in accompanying 82C54.pdf file located in the Documents subdirectory where the
UL is installed (C:\Program files\Measurement Computing\DAQ by default).

Function Prototype
C/C++

int cbC8254Config(int BoardNum, int CounterNum, int Config)

Visual Basic

Function cbC8254Config(ByVal BoardNum&, ByVal CounterNum&, ByVal Config&) As Long

Arguments
BoardNum

Refers to the number associated with the board when it was installed with InstaCal. Board must have an 82C54 installed.
BoardNum may be 0 to 99.

CounterNum

Selects one of the counter channels. An 8254 has 3 counters. The value may be 1 - n, where n is the number of 8254
counters on the board (see board-specific information in the Universal Library User's Guide).

Config

Refer to the 8254 data sheet for a detailed description of each of the configurations. Set it to one of the constants in the
"Config argument values" below.

Returns

n Error code or 0 if no errors

Config argument values

HARDWARESTROBE Output of counter (OUT N) pulses low for one clock cycle on terminal count. Count starts on
rising edge at GATE N input. See Mode 5 in the 8254 data sheet in the accompanying
82C54.pdf file located in the Documents subdirectory where you installed the UL.

HIGHONLASTCOUNT Output of counter (OUT N) transitions from low to high on terminal count and remains high
until reset. See Mode 0 in the 8254 data sheet in the accompanying 82C54.pdf file located in
the Documents subdirectory where you installed the UL (C:\Program Files\Measurement
Computing\DAQ by default).

ONESHOT Output of counter (OUT N) transitions from high to low on rising edge of GATE N, then back
to high on terminal count. See Mode 1 in the 8254 data sheet in the accompanying
82C54.pdf file located in the Documents subdirectory where you installed the UL.

RATEGENERATOR Output of counter (OUT N) pulses low for one clock cycle on terminal count, reloads counter
and recycles. See Mode 2 in the 8254 data sheet in the accompanying 82C54.pdf file
located in the Documents subdirectory where you installed the UL.

SOFTWARESTROBE Output of counter (OUT N) pulses low for one clock cycle on terminal count. Count starts
after counter is loaded. See Mode 4 in the 8254 data sheet in the accompanying 82C54.pdf
file located in the Documents subdirectory where you installed the UL.

SQUAREWAVE Output of counter (OUT N) is high for count < 1/2 terminal count then low until terminal
count, whereupon it recycles. This mode generates a square wave. See Mode 3 in the 8254
data sheet in the accompanying 82C54.pdf file located in the Documents subdirectory where
you installed the UL.

Page 309 of 700

http://www.measurementcomputing.com/PDFmanuals/82C54.pdf
http://www.adobe.com/products/acrobat/readstep2.html

cbC8536Config() function
Configures an 8536 counter for desired operation. This function can only be used with 8536 counters.

For more information, refer to the Zilog 8536 product specification. The document is available on our web site at
http://www.mccdaq.com/PDFmanuals/Z8536.pdf.

Function Prototype
C/C++

int cbC8536Config(int BoardNum, int CounterNum, int OutputControl, int RecycleMode, int TrigType)

Visual Basic

Function cbC8536Config(ByVal BoardNum&, ByVal CounterNum&, ByVal OutputControl&, ByVal RecycleMode&,
ByVal TrigType&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. The board must have an 8536
counter. BoardNum may be 0 to 99.

CounterNum

Selects one of the counter channels. An 8536 has three counters. The value may be 1, 2 or 3. INT32 Series boards have two
chips installed, so the CounterNum value may be 1 to 6.

OutputControl

Specifies the action of the output signal. Set it to one of the constants in the "OutputControl argument values" section below.

RecycleMode

If set to RECYCLE (as opposed to ONETIME), the counter automatically reloads to the starting count every time it reaches 0,
then counting continues.

TrigType

Specifies the trigger type. Set it to one of the constants in the "TrigType argument values" section below.

Returns

n Error code or 0 if no errors

OutputControl argument values

TrigType argument values

HIGHPULSEONTC Output transitions from low to high for one clock pulse on the terminal count.

TOGGLEONTC Output changes state on the terminal count.

HIGHUNTILTC Output transitions to high at the start of counting, then goes low on the terminal count.

HW_START_TRIG The first trigger on the counter's trigger input initiates loading of the initial count. Counting
proceeds from the initial count.

HW_RETRIG Every trigger on the counter's trigger input initiates loading of the initial count. Counting
proceeds from the initial count.

SW_START_TRIG The cbCLoad() function initiates loading of the initial count. Counting proceeds from the
initial count.

Page 310 of 700

http://www.mccdaq.com/PDFmanuals/Z8536.pdf
http://www.adobe.com/products/acrobat/readstep2.html

cbC8536Init() function
Initializes the counter linking features of an 8536 counter chip. The linking of counters 1 & 2 must be accomplished prior to enabling
the counters.

Refer to the Zilog 8536 product specification for a description of the hardware affected by this mode. The document is available on
our web site at http://www.mccdaq.com/PDFmanuals/Z8536.pdf.

Function Prototype
C/C++

int cbC8536Init(int BoardNum, int ChipNum, int CtrlOutput)

Visual Basic

Function cbC8536Init(ByVal BoardNum&, ByVal ChipNum&, ByVal Ctr1Output&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. The specified board must have an
8536. BoardNum may be 0 to 99.

ChipNum

Selects one of the 8536 chips on the board, 1 to n.

CtrlOutput

Specifies how the counter 1 is to be linked to counter 2, if at all. Set it to one of the constants in the "CtrlOutput argument
values" section below.

Returns

n Error code or 0 if no errors.

CtrlOutput argument values

NOTLINKED Counter 1 is not connected to any other counters inputs.

GATECTR2 Output of counter 1 is connected to the GATE of counter #2.

TRIGCTR2 Output of counter 1 is connected to the trigger of counter #2.

INCTR2 Output of counter 1 is connected to the counter #2 clock input.

Page 311 of 700

http://www.mccdaq.com/PDFmanuals/Z8536.pdf
http://www.adobe.com/products/acrobat/readstep2.html

cbC9513Config() function
Sets all of the configurable options of a 9513 counter. For more information, refer to the AM9513A data sheet in accompanying
9513A.pdf file located in the Documents subdirectory where you installed the UL (C:\Program files\MeasurementComputing\DAQ by
default).

Function Prototype
C/C++

int cbC9513Config(int BoardNum, int CounterNum, int GateControl, int CounterEdge, int CountSource, int
SpecialGate, int Reload, int RecycleMode, int BCDMode, int CountDirection, int OutputControl);

Visual Basic

Function cbC9513Config(ByVal BoardNum&, ByVal CounterNum&, ByVal GateControl&, ByVal CounterEdge&,
ByVal CountSource&, ByVal SpecialGate&, ByVal Reload&, ByVal RecycleMode&, ByVal BCDMode&, ByVal
CountDirection&, ByVal OutputControl&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. The specified board must have a
9513 counter. BoardNum may be 0 to 99.

CounterNum

Counter number (1 - n) where n is the number of counters on the board. For example, a CIO-CTR5 has 5, a CIO-CTR10 has
10, etc. See board-specific information in the UL User's Guide.

GateControl

Sets the gating response for level, edge, etc. Set it to one of the constants in the "GateControl argument values" section
below.

CounterEdge

Which edge to count. Referred to as "Source Edge" in 9513 data book. Can be set to POSITIVEEDGE (count on rising edge)
or NEGATIVEEDGE (count on falling edge).

CountSource

Each counter may be set to count from one of 16 internal or external sources. Set it to one of the constants in the
"CountSource argument values" section below.

SpecialGate

Special gate may be enabled or disabled (CBENABLED or CBDISABLED in Visual Basic).

Reload

Reload the counter from the load register (Reload = LOADREG) or alternately load from the load register, then the hold
register (Reload = LOADANDHOLDREG).

RecycleMode

Execute once (RecycleMode = ONETIME) or reload and recycle (RecycleMode = RECYCLE).

BCDMode

Counter may operate in binary coded decimal count (ENABLED) or binary count (DISABLED) (CBENABLED or CBDISABLED in
Visual Basic).

CountDirection

AM9513 may count up (COUNTUP) or down (COUNTDOWN).

OutputControl

The type of output desired. Set it to one of the constants in the "OutputControl argument values" section below.

Returns

n Error code or 0 if no errors

GateControl argument values

NOGATE No gating

AHLTCPREVCTR Active high TCN -1

Page 312 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf
http://www.adobe.com/products/acrobat/readstep2.html

CountSource argument values

OutputControl argument values

Notes

n The information provided here and in cbC9513Config() will help you understand how Universal Library syntax corresponds to
the 9513 data sheet, but is not a substitute for the data sheet. You cannot program and use a 9513 without this data sheet.

Refer to the accompanying 9513A.pdf datasheet located in the Documents subdirectory where you installed the UL
(C:\Program Files\Measurement Computing\DAQ by default).

AHLNEXTGATE Active High Level GATE N + 1

AHLPREVGATE Active High Level GATE N - 1

AHLGATE Active High Level GATE N

ALLGATE Active Low Level GATE N

AHEGATE Active High Edge GATE N

ALEGATE Active Low Edge GATE N

TCPREVCTR TCN - 1 (Terminal count of previous counter)

CTRINPUT1 SRC 1 (Counter Input 1)

CTRINPUT2 SRC 2 (Counter Input 2)

CTRINPUT3 SRC 3 (Counter Input 3)

CTRINPUT4 SRC 4 (Counter Input 4)

CTRINPUT5 SRC 5 (Counter Input 5)

GATE1 GATE 1

GATE2 GATE 2

GATE3 GATE 3

GATE4 GATE 4

GATE5 GATE 5

FREQ1 F1

FREQ2 F2

FREQ3 F3

FREQ4 F4

FREQ5 F5

ALWAYSLOW Inactive, Output Low

HIGHPULSEONTC High pulse on Terminal Count

TOGGLEONTC TC Toggled

DISCONNECTED Inactive, Output High Impedance

LOWPULSEONTC Active Low Terminal Count Pulse

3, 6, 7 (numeric values) Illegal

Page 313 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf

cbC9513Init() function
Initializes all of the chip level features of a 9513 counter chip. This function can only be used with 9513 counters. For more
information refer to the AM9513A data sheet in the accompanying 9513A.pdf file located in the Documents subdirectory where you
installed the UL (C:\Program files\Measurement Computing\DAQ by default).

Function Prototype
C/C++

int cbC9513Init(int BoardNum, int ChipNum, int FOutDivider, int FOutSource, int Compare1, int Compare2,
int TimeOfDay)

Visual Basic

Function cbC9513Init(ByVal BoardNum&, ByVal ChipNum&, ByVal FOutDivider&, ByVal FOutSource&, ByVal
Compare1&, ByVal Compare2&, ByVal TimeOfDay&) As Long

 Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. The specified board must have a
9513 counter. BoardNum may be 0 to 99.

ChipNum

Specifies which 9513 chip is to be initialized. For a CTR05 board this should be set to 1. For a CTR10 board it should be either
1 or 2, and for a CTR20 it should be 1-4.

FOutDivider

F-Out divider (0-15). If set to 0, FoutDivider is the rate of FoutSource divided by 16. If set to a number between 1 ands 15,
FoutDivider is the rate of FoutSource divided by FoutDivider.

FOutSource

Specifies source of the signal for F-Out signal. Set it to one of the constants in the "FOutSource argument values" section
below.

Compare1

Compare1 ENABLED or Compare1 DISABLED. (CBENABLED or CBDISABLED in Visual Basic).

Compare2

Compare2 ENABLED or Compare2 DISABLED. (CBENABLED or CBDISABLED in Visual Basic).

TimeOfDay

TimeOfDay ENABLED or TimeOfDay DISABLED. (CBENABLED or CBDISABLED in Visual Basic). The options for this argument
are listed in the "TimeofDay argument values" section below.

Returns

n Error code or 0 if no errors

Page 314 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf
http://www.adobe.com/products/acrobat/readstep2.html

FOutSource argument valuesand 9513 Data Sheet Equivalent

TimeOfDay argument values and 9513 Data Sheet Equivalent

No Arguments - For:

n 0 (FOUT on): FOUT Gate

n 0 (Data bus matches board): Data Bus Width

n 1 (Disable Increment): Data Pointer Control

n 1 (BCD Scaling): Scalar Control

Notes

n The information provided here and in cbC9513Config() will help you understand how Universal Library syntax corresponds to
the 9513 data sheet, but is not a substitute for the data sheet. You cannot program and use a 9513 without this data sheet.

Refer to the accompanying 9513A.pdf file located in the Documents subdirectory where you installed the UL (C:\Program
files\Measurement Computing\DAQ by default).

TCPREVCTR TCN - 1 (Terminal count of previous counter)

CTRINPUT1 SRC 1 (Counter Input 1)

CTRINPUT2 SRC 2 (Counter Input 2)

CTRINPUT3 SRC 3 (Counter Input 3)

CTRINPUT4 SRC 4 (Counter Input 4)

CTRINPUT5 SRC 5 (Counter Input 5)

GATE1 GATE 1

GATE2 GATE 2

GATE3 GATE 3

GATE4 GATE 4

GATE5 GATE 5

FREQ1 F1

FREQ2 F2

FREQ3 F3

FREQ4 F4

FREQ5 F5

CBDISABLED TOD Disabled

1 TOD Enabled / 5 Input

2 TOD Enabled / 6 Input

3 TOD Enabled / 10 Input

Page 315 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf

cbCClear() function
Clears a scan counter value (sets it to zero). This function only works with counter boards that have counter scan capability.

Function Prototype
C/C++

int cbCClear(int BoardNum, int CounterNum)

Visual Basic

Function cbCClear(ByVal BoardNum&, ByVal CounterNum&) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a counter.
BoardNum may be 0 to 99.

CounterNum

The counter to clear. Note: This argument is zero-based (the first counter number to clear is "0").

Returns

n Error code or 0 if no errors

Page 316 of 700

cbCConfigScan() function
Configures a counter channel. This function only works with counter boards that have counter scan capability.

Function Prototype
C/C++

int cbCConfigScan(int BoardNum, int CounterNum, int Mode, int DebounceTime, int DebounceMode, int
EdgeDetection, int TickSize, int MappedChannel)

Visual Basic

Function cbCConfigScan(ByVal BoardNum&, ByVal CounterNum&, ByVal Mode&, ByVal DebounceTime&, ByVal
DebounceMode&, ByVal EdgeDetection&, ByVal TickSize&, ByVal MappedChannel&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The specified board must have a scan counter.

CounterNum

The counter to set up. Note: This argument is zero-based (the first counter number to set up is "0").

Mode

Bit fields that control various options. This field may contain any combination of non-contradictory choices in the "Mode
argument values" section below.

DebounceTime

Used to bypass the debounce mode, or to set a channel's comparator output to one of 16 debounce times. Debounce is used
to eliminate switch-induced transients typically associated with electromechanical devices including relays, proximity
switches, and encoders. The choices are:

n CTR_DEBOUNCE500ns

n CTR_DEBOUNCE1500ns

n CTR_DEBOUNCE3500ns

n CTR_DEBOUNCE7500ns

n CTR_DEBOUNCE15500ns

n CTR_DEBOUNCE31500ns

n CTR_DEBOUNCE63500ns

n CTR_DEBOUNCE127500ns

n CTR_DEBOUNCE100us

n CTR_DEBOUNCE300us

n CTR_DEBOUNCE700us

n CTR_DEBOUNCE1500us

n CTR_DEBOUNCE3100us

n CTR_DEBOUNCE6300us

n CTR_DEBOUNCE12700us

n CTR_DEBOUNCE25500us

n CTR_DEBOUNCE_NONE

DebounceMode

Sets the mode of the debounce module to CTR_TRIGGER_AFTER_STABLE or to CTR_TRIGGER_BEFORE_STABLE.

CTR_TRIGGER_AFTER_STABLE: This mode rejects glitches and only passes state transitions after a specified period of
stability (the debounce time). This mode is used with electromechanical devices like encoders and mechanical switches to
reject switch bounce and disturbances due to a vibrating encoder that is not otherwise moving. The debounce time should be
set short enough to accept the desired input pulse but longer than the period of the undesired disturbance.

CTR_TRIGGER_BEFORE_STABLE: Use this mode when the input signal has groups of glitches and each group is to be counted
as one. The trigger before stable mode will recognize and count the first glitch within a group but reject the subsequent
glitches within the group if the debounce time is set accordingly. In this case the debounce time should be set to encompass

Page 317 of 700

one entire group of glitches

EdgeDetection

Selects whether to detect rising edge or falling edge. Choices are: CTR_RISING_EDGE and CTR_FALLING_EDGE.

If a counter is configured for CTR_FALLING_EDGE, calling cbCIn() or cbCIn32() for that counter will result in a
BADCOUNTERMODE error.

TickSize

Sets the tick size, which is the fundamental unit of time for period, pulsewidth, and timing measurements. The choices are:

n CTR_TICK20PT83ns

n CTR_TICK208PT3ns

n CTR_TICK2083PT3ns

n CTR_TICK20833PT3ns

MappedChannel

Used to select the mapped channel. A mapped channel is one of the input channels on a counter other than CounterNum that
can participate with the input signal of the counter defined by CounterNum by gating the counter or decrementing the
counter.

Returns

n Error code or 0 if no errors

Mode argument values

n TOTALIZE mode

Sets the specified counter to totalize mode. This mode may contain any combination of non-contradictory choices from the
following list of options:

CLEAR_ON_READ The counter counts up and is cleared at the beginning of every sample. By
default, the counter counts up and only clears the counter at the start of a
new scan command.

STOP_AT_MAX The counter will stop at the top of its count. For the cbCIn32() function,
the top of the count depends on whether the BIT_32 option is used. If it is,
the top of the count is FFFFFFFF hex. If not, the top of the count is FFFF
hex. By default, the counter counts upward and rolls over on the 32-bit
boundary.

DECREMENT_ON Allows the mapped channel to decrement the counter. With this option, the
main counter input channel will increment the counter, and the mapped
channel can be used to decrement the counter. By default, the counter
decrement option is set to "off."

This mode is not compatible with cbCIn() or cbCIn32(). If a counter is
configured for DECREMENT_ON, calling cbCIn() or cbCIn32() for that
counter will result in a BADCOUNTERMODE error.

GATING_ON Selects gating "on." When "on", the counter is enabled when the mapped
channel used to gate the counter is high. When the mapped channel is
low, the counter is disabled but holds the count value. By default, the
counter gating option is set to "off."

This mode is not compatible with cbCIn() or cbCIn32(). If a counter is
configured for GATING_ON, calling cbCIn() or cbCIn32() for that counter
will result in a BADCOUNTERMODE error.

LATCH_ON_MAP Causes the count to be latched by the signal on the mapped channel. By
default, the count is latched by the internal "start of scan" signal, so the
count is updated each time it's read.

This mode is not compatible with cbCIn() or cbCIn32(). If a counter is
configured for LATCH_ON_MAP, calling cbCIn() or cbCIn32() for that
counter will result in a BADCOUNTERMODE error.

BIT_32 Selects a 32-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn32(). (Using the BIT_32 option with cbCIn() is not very useful,
since the value returned by cbCIn() is only 16 bits. The effect is that the
value returned by cbCIn() rolls over 65,535 times before stopping.)

Refer to board-specific information for the product you are using for
details on how this affects asynchronous reads on a specific device.

BIT_48 Selects a 48-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Using the BIT_48 option with
cbCIn() and cbCIn32() is not very useful, since the value returned by

Page 318 of 700

n ENCODER mode

Sets the specified counter to encoder measurement mode. This mode may contain any combination of non-contradictory
choices from the following list of options:

cbCIn() is only 16 bits, and the value returned by cbCIn32() is only 32
bits. The effect is that the value returned by cbCIn() rolls over
4,294,967,295 times before stopping, and the value returned by cbCIn32
() rolls over 65,535 times before stopping.)

Refer to board-specific information for the product you are using for
details on how this affects asynchronous reads on a specific device.

UPDOWN_ON Enables Up/down counting mode.

RANGE_LIMIT_ON Enables Range Limit counting mode. In Range Limit mode, an upper and
lower limit is set, mimicking limit switches in the mechanical counterpart.
The upper limit is set by loading the max limit register with the cbCLoad,
cbCLoad32 or cbCLoad64 functions. The lower limit is always 0. When
counting up, the counter freezes whenever the count reaches the value
that was loaded into the max limit register.

NO_RECYCLE_ON Enables Non-recycle counting mode. In Non-recycle mode, the counter is
disabled whenever a count overflow or underflow takes place. The counter
is re-enabled when a clear or a load operation is performed on the
counter

MODULO_N_ON Enables Modulo-N counting mode. In Modulo-N mode, an upper limit is set
by loading the max limit register with a maximum count. When counting
up, the counter will roll-over to 0 when the maximum count is reached,
and then continue counting up. Likewise when counting down, the counter
will roll over to the maximum count (in the max limit register) whenever
the count reaches 0, and then continue counting down.

ENCODER_MODE_X1 Sets the encoder measurement mode to X1.

ENCODER_MODE_X2 Sets the encoder measurement mode to X2.

ENCODER_MODE_X4 Sets the encoder measurement mode to X4.

ENCODER_MODE_LATCH_ON_Z Selects the Encoder Z mapped signal to latch the counter outputs. This
allows the user to know the exact counter value when an edge is present
on another counter.

ENCODER_MODE_CLEAR_ON_Z_ON Selects "clear on Z" on. The counter is cleared on the rising edge of the
mapped (Z) channel. By default, the "clear on Z" option is off, and the
counter is not cleared.

ENCODER_MODE_BIT_16 Selects a 16-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn().

ENCODER_MODE_BIT_32 Selects a 32-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn32(). (Using the ENCODER_MODE_BIT_32 option with cbCIn() is
not very useful, since the value returned by cbCIn() is only 16 bits. The
effect is that the value returned by cbCIn() rolls over 65,535 times before
stopping.)

ENCODER_MODE_BIT_48 Selects a 48-bit counter for asynchronous mode.This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn64(). (Using the ENCODER_MODE_BIT_48 option with cbCIn()
and cbCIn32() is not very useful, since the value returned by cbCIn() is
only 16 bits, and the value returned by cbCIn32() is only 32 bits. The
effect is that the value returned by cbCIn() rolls over 4,294,967,295 times
before stopping, and the value returned by cbCIn32() rolls over 65,535
times before stopping.)

ENCODER_MODE_RANGE_LIMIT_ON Enables Range Limit counting mode. In Range Limit mode, an upper and
lower limit is set, mimicking limit switches in the mechanical counterpart.
The upper limit is set by loading the max limit register with the cbCLoad,
cbCLoad32 or cbCLoad64 functions. The lower limit is always 0. When
counting up, the counter freezes whenever the count reaches the value
that was loaded into the max limit register.

ENCODER_MODE_NO_RECYCLE_ON Enables Non-recycle counting mode. In Non-recycle mode, the counter is
disabled whenever a count overflow or underflow takes place. The counter
is re-enabled when a clear or a load operation is performed on the
counter

ENCODER_MODE_MODULO_N_ON Enables Modulo-N counting mode. In Modulo-N mode, an upper limit is set
by loading the max limit register with a maximum count. When counting
up, the counter will roll-over to 0 when the maximum count is reached,
and then continue counting up. Likewise when counting down, the counter
will roll over to the maximum count (in the max limit register) whenever
the count reaches 0, and then continue counting down.

Page 319 of 700

n PERIOD mode

Sets the specified counter to period measurement mode. This mode may contain any combination of non-contradictory
choices from the following list of options:

n PULSEWIDTH mode

Sets the specified counter to pulsewidth measurement mode. This mode may contain any combination of non-contradictory
choices from the following list of options:

n TIMING mode

Sets the specified counter to timing mode. This mode supports the following options:

PERIOD_MODE_X1 The measurement is latched each time one complete period is observed.

PERIOD_MODE_X10 The measurement is latched each time 10 complete periods are observed.

PERIOD_MODE_X100 The measurement is latched each time 100 complete periods are
observed.

PERIOD_MODE_X1000 The measurement is latched each time 1000 complete periods are
observed.

PERIOD_MODE_GATING_ON Selects gating "on." When "on", the counter is enabled when the mapped
channel used to gate the counter is high. When the mapped channel is
low, the counter is disabled but holds the count value. By default, the
counter gating option is set to "off."

This mode is not compatible with cbCIn() or cbCIn32(). If a counter is
configured for PERIOD_MODE_GATING_ON, calling cbCIn() or cbCIn32()
for that counter will result in a BADCOUNTERMODE error.

PERIOD_MODE_BIT_16 Selects a 16-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn().

PERIOD_MODE_BIT_32 Selects a 32-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn32(). (Using the PERIOD_MODE_BIT_32 option with cbCIn() is
not very useful, since the value returned by cbCIn() is only 16 bits. The
effect is that the value returned by cbCIn() rolls over at 65,535 times
before stopping.)

PERIOD_MODE_BIT_48 Selects a 48-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn64(). (Using the PERIOD_MODE_BIT_48 option with cbCIn() and
cbCIn32() is not very useful, since the value returned by cbCIn() is only
16 bits, and the value returned by cbCIn32() is only 32 bits. The effect is
that the value returned by cbCIn() rolls over 4,294,967,295 times before
stopping, and the value returned by cbCIn32() rolls over 65,535 times
before stopping.)

PULSEWIDTH_MODE_GATING_ON Selects gating "on." When "on", the counter is enabled when the mapped
channel used to gate the counter is high. When the mapped channel is
low, the counter is disabled but holds the count value. By default, the
counter gating option is set to "off."

This mode is not compatible with cbCIn() or cbCIn32(). If a counter is
configured for PULSEWIDTH_MODE_GATING_ON, calling cbCIn() or
cbCIn32() for that counter will result in a BADCOUNTERMODE error.

PULSEWIDTH_MODE_BIT_16 Selects a 16-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn().

PULSEWIDTH_MODE_BIT_32 Selects a 32-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn32(). (Using the PULSEWIDTH_MODE_BIT_32 option with cbCIn
() is not very useful, since the value returned by cbCIn() is only 16 bits.
The effect is that the value returned by cbCIn() rolls over 65,535 times
before stopping.)

PULSEWIDTH_MODE_BIT_48 Selects a 48-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn64(). (Using the PULSEWIDTH_MODE_BIT_48 option with cbCIn
() and cbCIn32() is not very useful, since the value returned by cbCIn() is
only 16 bits, and the value returned by cbCIn32() is only 32 bits. The
effect is that the value returned by cbCIn() rolls over 4,294,967,295 times
before stopping, and the value returned by cbCIn32() rolls over 65,535
times before stopping.)

TIMING_MODE_BIT_16 Selects a 16-bit counter for asynchronous mode. This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn().

TIMING_MODE_BIT_32 Selects a 32-bit counter for asynchronous mode. This argument value only

Page 320 of 700

affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn32(). (Using the TIMING_MODE_BIT_32 option with cbCIn() is
not very useful, since the value returned by cbCIn() is only 16 bits. The
effect is that the value returned by cbCIn() rolls over 65,535 times before
stopping.)

TIMING_MODE_BIT_48 Selects a 48-bit counter for asynchronous mode.This argument value only
affects cbCIn(), cbCIn32() and cbCIn64(). Recommended for use only
with cbCIn64(). (Using the TIMING_MODE_BIT_48 option with cbCIn() and
cbCIn32() is not very useful, since the value returned by cbCIn() is only
16 bits, and the value returned by cbCIn32() is only 32 bits. The effect is
that the value returned by cbCIn() rolls over 4,294,967,295 times before
stopping, and the value returned by cbCIn32() rolls over 65,535 times
before stopping.)

Page 321 of 700

cbCFreqIn() function
Measures the frequency of a signal. This function is only used with 9513 counters. This function uses internal counters #4 and #5.

Function Prototype
C/C++

int cbCFreqIn(int BoardNum, int SigSource, int GateInterval, unsigned short *Count, long *Freq)

Visual Basic

Function cbCFreqIn(ByVal BoardNum&, ByVal SigSource&, ByVal GateInterval&, Count%, Freq&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. The specified board must have a
9513 counter. BoardNum may be 0 to 99.

SigSource

Specifies the source of the signal from which the frequency is calculated.

The signal to be measured is routed internally from the source specified by SigSource to the clock input of counter 5. On
boards with more than one 9513 chip, there is more than one counter 5. Which counter 5 is used is also determined by
SigSource. Set it to one of the constants in the "SigSource argument values" section below.

The value of SigSource determines which chip will be used. CTRINPUT6 through CTRINPUT10, FREQ6 through FREQ10 and
GATE6 through GATE9 indicate chip two will be used. The signal to be measured must be present at the chip two input
specified by SigSource. Also, the gating connection from counter 4 output to counter 5 gate must be made between counters
4 and 5 OF THIS CHIP (see below).

Refer to board-specific information in the UL Users Guide to determine valid values for your board.

GateInterval

Gating interval in milliseconds (must be > 0). Specifies the time (in milliseconds) that the counter will be counting. The
optimum GateInterval depends on the frequency of the measured signal. The counter can count up to 65,535.

If the gating interval is too low, then the count will be too low and the resolution of the frequency measurement will be poor.
For example, if the count changes from 1 to 2 the measured frequency doubles.

If the gating interval is too long the counter will overflow and a FREQOVERRUN error will occur.

The cbCFreqIn function does not return until the GateInterval has expired. There is no background option. Under Windows,
this means that window activity will stop for the duration of the call. Adjust the GateInterval so this does not pose a problem
to your user interface.

Count

The raw count is returned here.

Freq

The measured frequency in Hz is returned here.

Returns

n Error code or 0 if no errors

n Count - Count that the frequency calculation is based on is returned here

n Freq - Measured frequency in Hz is returned here

Page 322 of 700

SigSource argument values

Notes

n This function requires an electrical connection between counter 4 output and counter 5 gate. This connection must be made
between counters 4 and 5 on the chip determined by SigSource.

n cbC9513Init() must be called for each ChipNum that will be used by this function. The values of FOutDivider, FOutSource,
Compare1, Compare2, and TimeOfDay are irrelevant to this function and may be any value shown in the cbC9513Init()
function description.

n If you select an external clock source for the counters, the GateInterval, Count, and Freq settings are only valid if the
external source is 1 MHz. Otherwise, you need to scale the values according to the frequency of the external clock source.

For example, for an external clock source of 2 MHz, increase your GateInterval setting by a factor of 2, and also double the
Count and Freq values returned when analyzing your results.

One 9513 chip

(Chip 1 used):
CTRINPUT1 through CTRINPUT5

GATE1 through GATE4

FREQ1 through FREQ5

Two 9513 chips

(Chip 1 or Chip 2 used):
CTRINPUT1 through CTRINPUT10

GATE 1 through GATE 9 (excluding gate 5)

FREQ1 through FREQ10

Four 9513 chips

(Chips 1- 4 may be used):
CTRINPUT1 through CTRINPUT20

GATE1 through GATE19 (excluding gates 5, 10, and 15)

FREQ1 through FREQ20

Page 323 of 700

cbCIn() function
Reads the current count from a counter channel.

Function Prototype
C/C++

int cbCIn(int BoardNum, int CounterNum, unsigned short *Count)

Visual Basic

Function cbCIn(ByVal BoardNum&, ByVal CounterNum&, Count%) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a counter.
BoardNum may be 0 to 99.

CounterNum

The counter to read the current count from. Valid values are in the range of 0 to 20, depending on the device and the number
of counters available on the device. See product-specific information in the Universal Library User's Guide.

Count

Counter value is returned here. Refer to the Notes section below.

Returns

n Error code or 0 if no errors

Notes

n Count: The range of counter values returned are: 0 to 65,535 for C or PASCAL languages.

Refer to your BASIC manual for information on BASIC integer data types. -32,768 to 32,767 for BASIC languages. BASIC
reads counters as:

n 65,535 reads as –1

n 32,768 reads as –32,768

n 32,767 reads as 32,767

n 2 reads as 2

n 0 reads as 0

n cbCIn() vs cbCIn32() vs cbCIn64()

Although the cbCIn(), cbCIn32(), and cbCIn64() functions perform the same operation, cbCIn32() is the preferred method to
use in most situations.

The only difference between the three is that cbCIn() returns a 16-bit count value, cbCIn32() returns a 32-bit value, and
cbCIn64() returns a 64-bit value. Both cbCIn() and cbCIn32() can be used, but cbCIn64() is required whenever you need to
read count values greater than 32-bits (counts >4,294,967,295) or the upper (more significant) bits will be truncated.

Page 324 of 700

cbCIn32() function
Reads the current count from a counter, and returns it as a 32 bit integer.

Function Prototype
C/C++:

int cbCIn32(int BoardNum, int CounterNum, unsigned long *Count)

Visual Basic:

Function cbCIn32(ByVal BoardNum&, ByVal CounterNum&, Count&) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a counter.
BoardNum may be 0 to 99.

CounterNum

The counter to read the current count from. Valid values are dependent on the device and the number of counters available
on the device. See product-specific information in the Universal Library User's Guide.

Count

Current count value from selected counter is returned here.

Returns

n Error code or 0 if no errors

Notes

n cbCIn() vs cbCIn32() vs cbCIn64()

Although the cbCIn(), cbCIn32(), and cbCIn64() functions perform the same operation, cbCIn32() is the preferred method to
use in most situations.

The only difference between the three is that cbCIn() returns a 16-bit count value, cbCIn32() returns a 32-bit value, and
cbCIn64() returns a 64-bit value. Both cbCIn() and cbCIn32() can be used, but cbCIn64() is required whenever you need to
read count values greater than 32-bits (counts >4,294,967,295) or the upper (more significant) bits will be truncated.

Page 325 of 700

cbCIn64() function
Reads the current count from a counter, and returns it as a 64-bit double word. This function is not supported in Visual Basic, since
no appropriate data type is available to accept the Count argument in those languages.

Function Prototype
C/C++:

int cbCIn64(int BoardNum, int CounterNum, ULONGLONG *Count)

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a counter.
BoardNum may be 0 to 99.

CounterNum

The counter to read the current count from. Valid values are dependent on the device and the number of counters available
on the device. See product-specific information in the Universal Library User's Guide.

Count

Current count value from selected counter is returned here.

Returns

n Error code or 0 if no errors

Notes

n cbCIn() vs cbCIn32() vs cbCIn64()

Although the cbCIn(), cbCIn32(), and cbCIn64() functions perform the same operation, cbCIn32() is the preferred method to
use in most situations.

The only difference between the three is that cbCIn() returns a 16-bit count value, cbCIn32() returns a 32-bit value, and
cbCIn64() returns a 64-bit value. Both cbCIn() and cbCIn32() can be used, but cbCIn64() is required whenever you need to
read count values greater than 32-bits (counts >4,294,967,295) or the upper (more significant) bits will be truncated.

Page 326 of 700

cbCInScan() function
Scans a range of scan counter channels, and stores the samples in an array.

Function Prototype
C/C++

int cbCInScan(int BoardNum, int FirstCtr, int LastCtr, long Count, long *Rate, int MemHandle, int
Options)

Visual Basic

Function cbCInScan(ByVal BoardNum&, ByVal FirstCtr&, ByVal LastCtr&, ByVal Count&, Rate&, ByVal
MemHandle&, ByVal Options&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The specified board must have a counter with scan capability.

FirstCtr

First counter channel of the scan. This argument is zero-based, so the first counter number is "0".

LastCtr

Last counter channel of the scan. This argument is zero-based, so the first counter number is "0".

The maximum allowable channel for both FirstCtr and LastCtr depends on how many scan counters are available on the
Measurement Computing device in use.

Count

The total number of counter samples to collect. If more than one channel is being sampled then the number of samples
collected per channel is equal to Count / (LastCtr – FirstCtr + 1).

Rate

The rate at which samples are taken in samples per second.

Rate also returns the value of the actual rate set, which may be different from the requested rate because of pacer
limitations.

MemHandle

The handle for the Windows buffer to store data. This buffer must have been previously allocated with the cbWinBufAlloc32()
function.

Options

Bit fields that control various options. This field may contain any combination of non-contradictory choices in the "Options
argument values" section below.

Returns

n Error code or 0 if no errors

n Rate – the actual sampling rate used.

n MemHandle – the collected counter data returned via the Windows buffer.

Page 327 of 700

Options argument values

BACKGROUND When the BACKGROUND option is used, control returns immediately to the next line in your
program and the data collection from the counters into the buffer continues in the
background. If the BACKGROUND option is not used, the cbCInScan() function does not
return to your program until all of the requested data has been collected and returned to
the buffer.

Use cbGetStatus() with CTRFUNCTION to check on the status of the background operation.
Use cbStopBackground() with CTRFUNCTION to terminate the background process before it
has completed. Execute cbStopBackground() after normal termination of all background
functions in order to clear variables and flags.

CONTINUOUS This option puts the function in an endless loop. Once it collects the required number of
samples, it resets to the start of the buffer and begins again. The only way to stop this
operation is by using cbStopBackground() with CTRFUNCTION. Normally, you should use
this option with BACKGROUND so that your program regains control.

CTR16BIT Sets the counter resolution to 16-bits. When using devices that return data in a 16-bit
format, create the buffer using cbWinBufAlloc().

CTR32BIT Sets the counter resolution to 32-bits. When using devices that return data in a 32-bit
format, create the buffer using cbWinBufAlloc32().

CTR48BIT Sets the counter resolution to 48-bits. When using devices that return data in a 64-bit
format, create the buffer using cbWinBufAlloc64().

EXTCLOCK If this option is specified, conversions will be controlled by the signal on the external clock
input rather than by the internal pacer clock. Each conversion will be triggered on the
appropriate edge of the clock input signal (refer to board-specific information in the UL
User's Guide). When this option is used the Rate argument is ignored. The sampling rate is
dependent on the clock signal. Options for the board will default to a transfer mode that will
allow the maximum conversion rate to be attained unless otherwise specified.

EXTTRIGGER If this option is specified, sampling does not begin until the trigger condition is met. You can
set the trigger condition to rising edge, falling edge, or the level of the digital trigger input
with the cbSetTrigger() function. Refer to board-specific information in the UL User's Guide.

HIGHRESRATE Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
Rate argument above).

Page 328 of 700

cbCLoad() function
Loads the specified counter's LOAD, HOLD, ALARM, COUNT, PRESET or PRESCALER register with a count. When loading a counter
with a starting value, it is never loaded directly into the counter's count register. Rather, it is loaded into the load or hold register.
From there, the counter, after being enabled, loads the count from the appropriate register, generally on the first valid pulse.

Function Prototype
C/C++

int cbCLoad(int BoardNum, int RegNum, unsigned LoadValue)

Visual Basic

Function cbCLoad(ByVal BoardNum&, ByVal RegNum&, ByVal LoadValue&) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a counter.
BoardNum may be 0 to 99.

RegNum

The register to load the count to. Set it to one of the constants in the "RegNum argument values" section below.

LoadValue

The value to be loaded. Must be between 0 and 2resolution – 1 of the counter. For example, a 16-bit counter is 216 – 1, or
65,535. Refer to the Visual Basic signed integers information in the Introduction: Counter Boards topic.

Returns

n Error code or 0 if no errors

RegNum argument values

Notes

n You cannot load a count-down-only counter with less than 2.

n Counter Types: There are several counter types supported. Refer to the counter chip's data sheet for the registers that are
available.

n cbCLoad() vs cbCLoad32()

Although the cbCLoad() and cbCLoad32() functions perform the same operation, cbCLoad32() is the preferred function to
use.

The only difference between the two is that cbCLoad() loads a 16-bit count value, and cbCLoad32() loads a 32-bit value. The
only time you need to use cbCLoad32() is to load counts that are larger than 32-bits (counts >4,294,967,295).

LOADREG0 to LOADREG20 Load registers 0 through 20. This may span several chips.

HOLDREG1 to HOLDREG20 Hold registers 1 through 20. This may span several chips. (9513 only)

ALARM1CHIP1 Alarm register 1 of the first counter chip. (9513 only)

ALARM2CHIP1 Alarm register 2 of the first counter chip. (9513 only)

ALARM1CHIP2 Alarm register 1 of the second counter chip. (9513 only)

ALARM2CHIP2 Alarm register 2 of the second counter chip. (9513 only)

ALARM1CHIP3 Alarm register 1 of the third counter chip. (9513 only)

ALARM2CHIP3 Alarm register 2 of the third counter chip. (9513 only)

ALARM1CHIP4 Alarm register 1 of the fourth counter chip. (9513 only)

ALARM2CHIP4 Alarm register 2 of the fourth counter chip. (9513 only)

COUNT1 to COUNT4 Used to initialize the counter. (LS7266 only)

PRESET1 to PRESET4 Used to set the upper limit of the counter in some modes. (LS7266 only)

PRESCALER1 to PRESCALER4 Used for clock filtering (valid values: 0 to 255). (LS7266 only)

MAXLIMITREG0 to MAXLIMITREG7 Max limit register (USB-QUAD08 only)

Page 329 of 700

cbCLoad32() function
Loads the specified counter's COUNT, PRESET or PRESCALER register with a count.

Function Prototype
C/C++

int cbCLoad32(int BoardNum, int RegNum, unsigned long LoadValue)

Visual Basic

Function cbCLoad32(ByVal BoardNum&, ByVal RegNum&, ByVal LoadValue&) As Long

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

RegNum

The register to load the value into. Set it to one of the constants in the "RegNum argument values" section below.

LoadValue

Value to be loaded into RegNum.

Returns

n Error code or 0 if no error occurs

RegNum argument values

Notes

n cbCLoad() vs cbCLoad32()

Although the cbCLoad() and cbCLoad32()functions perform the same operation, cbCLoad32() is the preferred function to use.

The only difference between the two is that cbCLoad() loads a 16-bit count value, and cbCLoad32() loads a 32-bit value. The
only time you need to use cbCLoad32() is to load counts that are larger than 16-bits (counts > 65,535).

LOADREG1 to LOADREG20 Load registers 1 through 20. This may span several chips.

HOLDREG0 to HOLDREG20 Hold registers 0 through 20. This may span several chips. (9513 only)

ALARM1CHIP1 Alarm register 1 of the first counter chip. (9513 only)

ALARM2CHIP1 Alarm register 2 of the first counter chip. (9513 only)

ALARM1CHIP2 Alarm register 1 of the second counter chip. (9513 only)

ALARM2CHIP2 Alarm register 2 of the second counter chip. (9513 only)

ALARM1CHIP3 Alarm register 1 of the third counter chip. (9513 only)

ALARM2CHIP3 Alarm register 2 of the third counter chip. (9513 only)

ALARM1CHIP4 Alarm register 1 of the fourth counter chip. (9513 only)

ALARM2CHIP4 Alarm register 2 of the fourth counter chip. (9513 only)

COUNT1 to COUNT4 Used to initialize the counter. (LS7266 only)

PRESET1 to PRESET4 Used to set the upper limit of the counter in some modes. (LS7266 only)

PRESCALER1 to PRESCALER4 Used for clock filtering (valid values: 0 to 255). (LS7266 only)

MAXLIMITREG0 to MAXLIMITREG7 Max limit register (USB-QUAD08 only)

Page 330 of 700

cbCLoad64() function
Loads the specified counter's COUNT, PRESET, or PRESCALER register with a count.

Function Prototype
C/C++

int cbCLoad64(int BoardNum, int RegNum, ULONGLONG LoadValue)

Arguments
BoardNum

Refers to the board number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

RegNum

The register to load the value into. Set it to one of the constants in the "RegNum argument values" section below.

LoadValue

Value to be loaded into RegNum.

Returns

n Error code or 0 if no error occurs

RegNum argument values

Notes

n cbCLoad() vs cbCLoad64()

Although the cbCLoad() and cbCLoad64()functions perform the same operation, cbCLoad64() is the preferred function to use.

The only difference between the two is that cbCLoad() loads a 16-bit count value, and cbCLoad64() loads a 64-bit value. The
only time you need to use cbCLoad64() is to load counts that are larger than 32-bits (counts >4,294,967,295).

LOADREG0 to LOADREG20 Load registers 0 through 20. This may span several chips.

HOLDREG1 to HOLDREG20 Hold registers 1 through 20. This may span several chips. (9513 only)

ALARM1CHIP1 Alarm register 1 of the first counter chip. (9513 only)

ALARM2CHIP1 Alarm register 2 of the first counter chip. (9513 only)

ALARM1CHIP2 Alarm register 1 of the second counter chip. (9513 only)

ALARM2CHIP2 Alarm register 2 of the second counter chip. (9513 only)

ALARM1CHIP3 Alarm register 1 of the third counter chip. (9513 only)

ALARM2CHIP3 Alarm register 2 of the third counter chip. (9513 only)

ALARM1CHIP4 Alarm register 1 of the fourth counter chip. (9513 only)

ALARM2CHIP4 Alarm register 2 of the fourth counter chip. (9513 only)

COUNT1 to COUNT4 Used to initialize the counter. (LS7266 only)

PRESET1 to PRESET4 Used to set the upper limit of the counter in some modes. (LS7266 only)

PRESCALER1 to PRESCALER4 Used for clock filtering (valid values: 0 to 255). (LS7266 only)

MAXLIMITREG0 to MAXLIMITREG7 Max limit register (USB-QUAD08 only)

Page 331 of 700

cbCStatus() function
Returns status information about the specified counter (7266 counters only). For more information, refer to the LS7261 data sheet
in the LS7266R1.pdf file located in the Documents subdirectory where you installed the UL (C:\Program files\Measurement
Computing\DAQ by default).

Function Prototype
C/C++

int cbCStatus(int BoardNum, int CounterNum, unsigned long *StatusBits)

Visual Basic

Function cbCStatus(ByVal BoardNum&, ByVal CounterNum&, StatusBits&) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have an LS7266
counter. BoardNum may be 0 to 99.

CounterNum

Number of the counter whose status bits you want to read. Valid values are 1 to N, where N is the number of counters on the
board.

StatusBits

Current status from selected counter is returned here. The status consists of individual bits that indicate various conditions
within the counter. Set it to one of the constants in the "StatusBits argument values" section below.

Returns

n Error code or 0 if no error occurs.

StatusBits argument values

C_UNDERFLOW Set to 1 whenever the count decrements past 0. Is cleared to 0 whenever cbCStatus() is
called.

C_OVERFLOW Set to 1 whenever the count increments past it's upper limit. Is cleared to 0 whenever
cbCStatus() is called.

C_COMPARE Set to 1 whenever the count matches the preset register. Is cleared to 0 whenever
cbCStatus() is called.

C_SIGN Set to 1 when the MSB of the count is 1. Is cleared to 0 whenever the MSB of the count is
set to 0.

C_ERROR Set to 1 whenever an error occurs due to excessive noise on the input. Is cleared to 0 by
calling cbC7266Config()

C_UP_DOWN Set to 1 when counting up. Is cleared to 0 when counting down.

C_INDEX Set to 1 when index is valid. Is cleared to 0 when index is not valid.

Page 332 of 700

http://www.measurementcomputing.com/PDFmanuals/LS7266R1.pdf

cbCStoreOnInt() function
Changed R4.0 RW

Installs an interrupt handler that will store the current count whenever an interrupt occurs. This function can only be used with 9513
counters. This function will continue to operate in the background until either IntCount is satisfied or cbStopBackground() with
CTRFUNCTION is called.

Function Prototype
C/C++

int cbCStoreOnInt(int BoardNum, int IntCount, short CntrControl[], int MemHandle)

Visual Basic

Function cbCStoreOnInt(ByVal BoardNum&, ByVal IntCount&, CntrControl%, ByVal MemHandle&) As Long

Arguments
BoardNum

The board number associated with the board when it was installed with InstaCal. The specified board must have a 9513
counter. BoardNum may be 0 to 99.

IntCount

The counters will be read every time an interrupt occurs until IntCount number of interrupts have occurred. If IntCount is =
0, the function will run until cbStopBackground() is called. (Refer below to the MemHandle argument).

CntrControl

The array should have an element for each counter on the board. (5 elements for CTR05 device, 10 elements for a CTR10
device, and so on). Each element corresponds to a counter channel. Each element should be set to either CBDISABLED or
CBENABLED. All channels that are set to CBENABLED will be read when an interrupt occurs.

MemHandle

Handle for Windows buffer. If IntCount is non-zero, the buffer referenced by MemHandle must be of sufficient size to hold
(IntCount × Number of Counters) points.

Returns

n Error code or 0 if no errors

Notes
New functionality: If the Library Revision is set to 4.0 or greater, the following code changes are required:

n If IntCount is non-zero, the buffer referenced by MemHandle must be able to hold (IntCount × Number of Counters) points.

For example, if you set IntCount to 100 for a CTR05 device, allocate the size of the buffer to be (100 × 5) = 500. This new
functionality keeps the user application from having to move the data out of the buffer for every interrupt before it is
overwritten. For each interrupt, the counter values will be stored in adjacent memory locations in the buffer.

Allocate the proper buffer size for non-zero IntCount settings: Specifying IntCount as a non-zero value and failing to allocate
the proper sized buffer results in a runtime error. There is no way for the Universal Library to determine if the buffer has
been allocated with the proper size.

n If IntCount = 0, the functionality is unchanged.

Page 333 of 700

cbPulseOutStart() function
Starts a timer to generate digital pulses at a specified frequency and duty cycle. Use cbPulseOutStop() to stop the output.

Function Prototype
C/C++

int cbPulseOutStart (int BoardNum, int TimerNum, double *Frequency, double *DutyCycle, unsigned int
PulseCount, double *InitialDelay, int IdleState, int Options);

Visual Basic

Function cbPulseOutStart(ByVal BoardNum&, ByVal TimerNum&, Frequency#, DutyCycle#, ByVal PulseCount&,
InitialDelay#, ByVal IdleState&, ByVal Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. The specified board must have a pulse-type
counter. BoardNum may be 0 to 99.

TimerNum

The timer to start output pulses. Valid values are zero (0) up to the number of timers on the board – 1.

Frequency

The desired square wave frequency. The timer clock will be divided down by integer values to produce the frequency. The
actual frequency output will be returned. Valid values are dependent on the timer's clock and the timer resolution.

DutyCycle

The width of the pulse divided by the pulse period. This ratio is used with the frequency value to determine the pulse width
and the interval between pulses.

PulseCount

The number of pulses to generate. Setting the pulse count to zero will result in pulses being generated until the
cbPulseOutStop() function is called.

InitialDelay

The amount of time to delay before starting the timer output after enabling the output.

IdleState

The resting state of the output. Set it to one of the IdleState constants. Choices are:

0 = IDLE_LOW

1 = IDLE_HIGH

Options

Reserved for future use.

Returns

n Error code or 0 if no errors

n Frequency – the actual frequency set.

Page 334 of 700

cbPulseOutStop() function
Stops a timer output. Use cbPulseOutStart() to start the output.

Function Prototype
C/C++

int cbPulseOutStop (int BoardNum, int TimerNum);

Visual Basic

Function cbPulseOutStop(ByVal BoardNum&, ByVal TimerNum&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. The specified board must have a pulse-type
counter. BoardNum may be 0 to 99.

TimerNum

The timer to stop. Valid values are zero (0) up to the number of timers on the board – 1.

Returns

n Error code or 0 if no errors

Page 335 of 700

cbTimerOutStart() function
Starts a timer square wave output. Use cbTimerOutStop() to stop the output.

Function Prototype
C/C++

int cbTimerOutStart(int BoardNum, int TimerNum, double *Frequency)

Visual Basic

Function cbTimerOutStart(ByVal BoardNum&, ByVal TimerNum&, Frequency#) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. The specified board must have a timer-type
counter. BoardNum may be 0 to 99.

TimerNum

The timer to output the square wave from. Valid values are zero (0) up to the number of timers – 1 on the board.

Frequency

The desired square wave frequency. The timers clock will be divided down by integer values to produce the frequency. The
actual frequency output will be returned. Valid values are dependant on the timer's clock and the timer resolution.

Returns

n Error code or 0 if no errors

n Frequency – the actual frequency set.

Page 336 of 700

cbTimerOutStop() function
Stops a timer square wave output. Use cbTimerOutStart() to start the output.

Function Prototype
C/C++

int cbTimerOutStop(int BoardNum, int TimerNum)

Visual Basic

Function cbTimerOutStop(ByVal BoardNum&, ByVal TimerNum&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with the InstaCal. The specified board must have a timer-type
counter. BoardNum may be 0 to 99.

TimerNum

The timer to stop. Valid values are zero up to the number of timers on the board – 1.

Returns

n Error code or 0 if no errors

Page 337 of 700

cbLogConvertFile() function
Converts a binary log file to a comma-separated values (.CSV) text file or another text file format that you specify.

Function Prototype
C/C++

int cbLogConvertFile(char* srcFile, char* destFile, int startSample, int count, int delimiter)

Visual Basic

Function cbLogConvertFile(ByVal Filename$, ByVal DestFilename$, ByVal StartSample&, ByVal SampleCount&,
ByVal Delimiter&) As Long

Arguments
srcFile

The name and path of the binary file to read.

destFile

The name and destination path of the converted file. Use the file extension of the file type that you want to create.

startSample

The index number of the first sample to read.

count

The number of samples to read.

delimiter

Specifies the character used between fields in the converted file. Set to one of the Delimiter constants. Choices are:

0 = DELIMITER_COMMA

1 = DELIMITER_SEMICOLON

2 = DELIMITER_SPACE

3 = DELIMITER_TAB

Returns

n Error code or 0 if no errors

Notes

n Timestamp data is stored according to the timeZone and timeFormat arguments. Refer to cbLogSetPreferences().

n Timestamps in the converted file may be in either 12-hour or 24-hour format based on the setting of the timeFormat
argument. Timestamps can optionally be converted to local time based on the setting of the timeZone argument.

n AI temperature data is returned according to the Units preference. Refer to cbLogSetPreferences().

n The Units preference is only applied to the AI data if the data was logged as temperature data. Refer to cbLogGetAIInfo().
This value is ignored if the AI data was logged as raw data.

n The units preference is always applied to CJC data, since it is always logged as temperature data.

n If the destFile argument ends with a .CSV extension, the delimiter argument must be set to DELIMITER_COMMA. Otherwise,
an INVALIDDELIMITER error is returned.

n You can open a comma-separated values text file (.CSV) directly in Microsoft Excel. Text files with extensions other
than .CSV can only be imported into Excel.

Page 338 of 700

cbLogGetAIChannelCount() function
Returns the total number of analog input channels logged in a binary file.

Function Prototype
C/C++

int cbLogGetAIChannelCount(char* Filename, int* AICount)

Visual Basic

Function cbLogGetAIChannelCount(ByVal Filename$, ByRef AICount&) As Long

Arguments
Filename

The name of the file to retrieve the information from.

AICount

The number of analog input channels logged in the binary file.

Returns

n Error code or 0 if no errors

n AICount – Returns the number of analog input channels logged in the binary file.

Page 339 of 700

cbLogGetAIInfo() function
Returns the channel number and unit value of each analog input channel logged in a binary file.

Function Prototype
C/C++

int cbLogGetAIInfo(char* Filename, int* ChannelNumbers, int* Units)

Visual Basic

Function cbLogGetAIInfo(ByVal Filename$, ByRef ChannelNumbers&, ByRef Units&) As Long

Arguments
Filename

The name of the file to retrieve the information.

ChannelNumbers

An array that contains the analog input channel numbers logged in the file.

Units

An array that contains the unit values set for the device in InstaCal for each analog input channel logged in the file.

Returns

n Error code or 0 if no errors

n ChannelNumbers – Returns the analog input channel numbers logged in the binary file.

n Units – Returns the unit values set for the device in InstaCal for each analog input channel logged in the binary file. Returned
values include:

0 = Units_Temperature

1 = Units_Raw

Page 340 of 700

cbLogGetCJCInfo() function
Returns the number of CJC temperature channels logged in a binary file.

Function Prototype
C/C++

int cbLogGetCJCInfo(char* Filename, int* CJCCount)

Visual Basic

Function cbLogGetCJCInfo(ByVal Filename$, ByRef CJCChannelCount&) As Long

Arguments
Filename

The name of the file to retrieve the information from.

CJCCount

The number of CJC temperature channels logged in the file.

Returns

n Error code or 0 if no errors

n CJCCount – Returns the number of CJC channels logged in the binary file.

Page 341 of 700

cbLogGetDIOInfo() function
Returns the number of digital I/O channels logged in a binary file.

Function Prototype
C/C++

int cbLogGetDIOInfo(char* Filename, int* DIOCount)

Visual Basic

Function cbLogGetDIOInfo(ByVal Filename$, ByRef DIOChannelCount&) As Long

Arguments
Filename

The name of the file to retrieve the information from.

DIOCount

The number of digital I/O channels logged in the binary file.

Returns

n Error code or 0 if no errors

n DIOCount – Returns the number of digital I/O channels logged in the binary file.

Page 342 of 700

cbLogGetFileInfo() function
Returns the version level and byte size of a binary file.

Function Prototype
C/C++

int cbLogGetFileInfo(char* Filename, int* Version, int* Size)

Visual Basic

Function cbLogGetFileInfo(ByVal Filename$, ByRef Version&, ByRef Size&) As Long

Arguments
Filename

The name of the file to retrieve the information from.

Version

The version level of the binary file.

Size

The size in bytes of the binary file.

Returns

n Error code or 0 if no errors

n Version – Returns the version level of the binary file.

n Size – Returns the size in bytes of the binary file.

Page 343 of 700

cbLogGetFileName() function

Returns the name of the nth file in the directory containing binary log files.

Function Prototype
C/C++

int cbLogGetFileName(int FileNumber, char* Path, char* Filename)

Visual Basic

Function cbLogGetFileName(ByVal FileNum&, ByVal Path$, ByVal Filename$) As Long

Arguments
FileNumber

Index of the file whose name you want to return. Specify one of the following:

n The number (n) that represents the location of the file in the directory (where n = 0, 1, 2, and so on)

n GETFIRST - get the first file in the directory

n GETNEXT - get the next file in the directory, based on the current index.

This parameter is the index of the file in the directory, and is not part of the filename.

Path

The full path to the directory containing the binary file. The path must be NULL terminated, and cannot be longer than 256
characters.

Filename

A NULL terminated string containing the full path to the file.

Returns

n Error code or 0 if no errors

n Filename – Returns a NULL terminated string containing the full path to the file.

Notes

n Set FileNumber to GETFIRST to access the first binary file in a directory. Subsequent calls with FileNumber = GETNEXT
returns each successive file in the directory. When you call the function after accessing the last file in the directory, the
function returns the error code NOMOREFILES.

Page 344 of 700

cbLogGetPreferences() function
Returns API preference settings for time stamped data, analog temperature data, and CJC temperature data. Returns the default
values unless changed using cbLogSetPreferences().

Function Prototype
C/C++

int cbLogGetPreferences(int* TimeFormat, int* TimeZone, int* Units)

Visual Basic

Function cbLogGetPreferences(ByRef TimeFormat&, ByRef TimeZone&, ByRef Units&) As Long

Arguments
TimeFormat

Returns the time format used to display time stamp data. Set to one of the TimeFormat constants. Choices are:

0 = TIMEFORMAT_12HOUR. For example 2:32:51PM.

1 = TIMEFORMAT_24HOUR. For example 14:32:51.

TimeZone

Returns the time zone to store time stamp data. Set to one of the TimeZone constants. Choices are:

0 = TIMEZONE_LOCAL. Converts time stamped data to the local time zone on your computer.

1 = TIMEZONE_GMT. Leaves time stamped data in Greenwich Mean Time.

Units

Returns the unit to use for analog temperature data. This value is ignored if raw data values are logged. Set to one of the
Units constants. Choices are:

0 = FAHRENHEIT

1 = CELSIUS

2 = KELVIN

Returns

n Error code or 0 if no errors

n TimeFormat – Returns the format to apply to time stamped data from API functions that return time data.

n TimeZone – Returns the time zone to apply to time stamped data from API functions that return time data.

n Units – Returns the unit to use when converting temperature data from API functions that return temperature data.

Page 345 of 700

cbLogGetSampleInfo() function
Returns the sample interval, sample count, and the date and time of the first data point contained in a binary file.

Function Prototype
Visual Basic

Function cbLogGetSampleInfo(ByVal Filename$, ByRef SampleInterval&, ByRef SampleCount&, ByRef
StartDate&, ByRef StartTime&) As Long

C/C++

int cbLogGetSampleInfo(char* Filename, int* SampleInterval, int* SampleCount, int* StartDate, int*
StartTime)

Arguments
Filename

The name of the file to retrieve sample information from.

SampleInterval

The time interval, in seconds, between samples.

SampleCount

The number of samples contained in the file.

StartDate

The date when the first data point was logged in the file. Date values are packed in the following format:

Byte 0: day

Byte 1: month

Byte 2 - 3: year

StartTime

The time when the first data point was logged in the file. Time values are packed in the following format:

Byte 0: seconds

Byte 1: minutes

Byte 2: hours

Byte 3: 0xff = 24hour format; 0x0 = AM; 0x1 = PM

Returns

n Error code or 0 if no errors

n SampleInterval – Returns the time interval, in seconds, between samples.

n SampleCount – Returns the number of samples in the file.

n StartDate – Returns the date when the first data point was logged in the file.

n StartTime – Returns the time when the first data point was logged in the file.

Notes

n Time stamped data is returned according to the TimeZone and TimeFormat preferences. Refer to cbLogSetPreferences().

Page 346 of 700

cbLogReadAIChannels() function
Reads analog input data from a binary file, and stores the values in an array.

Function Prototype
C/C++

int cbLogReadAIChannels(char* Filename, int StartSample, int Count, float* AIChannels)

Visual Basic

Function cbLogReadAIChannels(ByVal Filename$, ByVal StartSample&, ByVal SampleCount&, ByRef
AIChannelData!) As Long

Arguments
FileName

The name of the file to retrieve the information from.

StartSample

The first sample to read from the binary file.

Count

The number of samples to read from the binary file.

AIChannels

Receives the analog input values.

Returns

n Error code or 0 if no errors

n AIChannels – Returns the analog input values logged in the file.

Notes

n The units of the analog input data that is returned is set by the value of the Units preference. Refer to cbLogSetPreferences().

n The units preference is only applied if the logged data is temperature data. This value is ignored if the data logged is raw.

Analog array

The user is responsible for allocating the size of the analog array, and ensuring that it is large enough to hold the data that will be
returned. You can calculate the array allocation using the sampleCount value from cbLogGetSampleInfo(), and the aiCount value
from cbLogGetAIChannelCount():

float* AIChannels = new float[sampleCount * AICount];

The figure below shows the layout of the analog array, and how the elements should be indexed.

where n is (AICount – 1).

CH0 – CHn refer to the channels in the array, not the input channels of the device.

Page 347 of 700

For example, assume that all of the even number input channels are logged. The analog array channels are mapped as shown
here:

Use the following code fragment to access the elements of the analog array:

for (i=0; i<numberOfSamples; i++)

{

for (j=0; j<numberOfAIChannels; j++)

{

a = analogArray[(i * numberOfAIChannels) + j];

}

}

where

the numberOfSamples is set by the SampleCount value from cbLogGetSampleInfo().

the numberOfAIChannels is set by the AICount value from cbLogGetAIChannelCount().

Array
Channel

Device
Input
Channel

0 0

1 2

2 4

3 6

Page 348 of 700

cbLogReadCJCChannels() function
Reads CJC temperature data from a binary file, and stores the values in an array.

Function Prototype
C/C++

int cbLogReadCJCChannels(char* Filename, int StartSample, int Count, float* CJCChannels)

Visual Basic

Function cbLogReadCJCChannels(ByVal Filename$, ByVal StartSample&, ByVal SampleCount&, ByRef
CJCChannelData!) As Long

Arguments
Filename

The name of the file to retrieve the information from.

StartSample

The first sample to read from the binary file.

Count

The number of samples to read from the binary file.

CJCChannels

Receives the CJC temperature values.

Returns

n Error code or 0 if no errors

n CJCChannels – Returns the CJC temperature values logged in the file.

Notes

n The temperature scale of the CJC data that is returned is set by the value of the Units preference. Refer to
cbLogSetPreferences().

CJC array

The user is responsible for allocating the size of the CJC array, and ensuring that it is large enough to hold the data that will be
returned. You can calculate the array allocation using the sampleCount value from cbLogGetSampleInfo(), and the cjcCount value
from cbLogGetCJCInfo():

float* CJCChannels = new float[SampleCount * CJCCount];

The figure below shows the layout of the CJC array, and how the elements should be indexed.

where n is (CJCCount - 1).

Page 349 of 700

Use the following code fragment to access the elements of the CJC array.

for (i=0; i<numberOfSamples; i++)

{

for (j=0; j<numberOfCJCChannels; j++)

{

c = cjcArray[(i * numberOfCJCChannels) + j];

}

}

where

the numberOfSamples is set by the sampleCount value from cbLogGetSampleInfo().

the numberOfCJCChannels is set by the cjcCount value from cbLogGetCJCInfo().

Page 350 of 700

cbLogReadDIOChannels() function
Reads digital I/O channel data from a binary file, and stores the values in an array.

Function Prototype
C/C++

int cbLogReadDIOChannels(char* Filename, int StartSample, int Count, int* DIOChannels)

Visual Basic

Function cbLogReadDIOChannels(ByVal Filename$, ByVal StartSample&, ByVal SampleCount&, ByRef
DIOChannelData&) As Long

Arguments
FileName

The name of the file to retrieve the information from.

StartSample

The first sample to read from the binary file.

Count

The number of samples to read from the binary file.

DIOChannels

Receives the DIO input values.

Returns

n Error code or 0 if no errors

n DIOChannels – Returns the DIO channel values logged in the file. Each element of the array contains the value of one bit
from a digital channel.

DIO array

The user is responsible for allocating the size of the DIO array, and ensuring that it is large enough to hold the data that will be
returned. You can calculate the array allocation using the SampleCount value from cbLogGetSampleInfo() and the DIOCount value
from cbLogGetDIOInfo():

int* DIOChannels = new int[SampleCount * DIOCount];

The figure below shows the layout of the DIO array, and how the elements should be indexed.

Page 351 of 700

Where n is (DIOCount - 1)

Use the following code fragment to access the elements of the DIO array:

for (i=0; i<numberOfSamples; i++)

{

for (j=0; j<numberOfDIOChannels; j++)

{

d = dioArray[(i * numberOfDIOChannels) + j];

}

}

where

the numberOfSamples is set by the SampleCount value from cbLogGetSampleInfo()

the numberOfDIOChannels is set by the DIOCount value from cbLogGetDIOInfo()

Page 352 of 700

cbLogReadTimeTags() function
Reads the date and time values logged in a binary file. This function stores the date values in a dateTags array, and the time
values in a timeTags array.

Function Prototype
C/C++

int cbLogReadTimeTags(char* Filename, int StartSample, int Count, int* DateTags, int* TimeTags)

Visual Basic

Function cbLogReadTimeTags(ByVal Filename$, ByVal StartSample&, ByVal SampleCount&, ByRef Dates&, ByRef
Times&) As Long

Arguments
Filename

The name of the file to retrieve the information from.

StartSample

The first sample to read from the binary file.

Count

The number of samples to read from the binary file

DateTags

Receives the date value for each sample logged in the file. The dates are packed in the following format:

Byte 0: day

Byte 1: month

Byte 2-3: year

TimeTags

Receives the time value for each sample logged in the file. The times are packed in the following format:

Byte 0: seconds

Byte 1: minutes

Byte 2: hours

Byte 3: 0xff = 24hour format; 0x0 = AM; 0x1 = PM

Returns

n Error code or 0 if no errors

n DateTags – Returns the date values for each sample logged in the file

n TimeTags – Returns the time values for each sample logged in the file.

Notes

n Time stamped data is returned according to the timeZone preference value and the timeFormat preference value. Refer to
cbLogSetPreferences().

n Time stamped data are logged in the file if InstaCal is configured to do so. If time stamps are not logged, the TimeTags and
DateTags arrays are filled with values calculated from the file header information.

Array size

The user is responsible for allocating the size of the DateTags and TimeTags arrays, and ensuring that they are large enough to
hold the data that is returned. You can calculate the array allocation using the SampleCount value from cbGetSampleInfo().

int* dates = new int[SampleCount];

int* times = new int[SampleCount];

Page 353 of 700

DateTags array

The figure below shows the layout of the DateTags array, and how the elements should be indexed.

where: n is (SampleCount> – 1)

Each sample has only one date. Use the following code fragment to access the elements of the DateTags array:

for (i=0; i<numberOfSamples; i++)

{

d = DateTagsArray[i];

}

TimeTags array

The figure below shows the layout of the TimeTags array, and how the elements should be indexed.

where: n is (SampleCount – 1)

Each sample has only one time stamp. Use the following code fragment to access the elements of the TimeTags array:

for (i=0; i<numberOfSamples; i++)

{

t = TimeTagsArray[i];

}

Page 354 of 700

cbLogSetPreferences() function
Sets preferences for returned time stamped data, analog temperature data, and CJC temperature data.

Function Prototype
C/C++

int cbLogSetPreferences(int TimeFormat, int TimeZone, int Units)

Visual Basic

Function cbLogSetPreferences(ByVal TimeFormat&, ByVal TimeZone&, ByVal Units&) As Long

Arguments
TimeFormat

Specifies the time format to apply when returning time stamped data (when using cbLogReadTimeTags() for example). Set to
one of the TimeFormat constants. Choices are:

0 = TIMEFORMAT_12HOUR. For example 2:32:51PM (default).

1 = TIMEFORMAT_24HOUR. For example 14:32:51.

TimeZone

Specifies whether to convert time stamped data that is returned (when using cbLogReadTimeTags() for example) to the local
time zone or to return the time stamps as they are stored in the file (in the GMT time zone). Set to one of the TimeZone
constants. Choices are:

0 = TIMEZONE_LOCAL. Converts timestamp data to the local time zone on your computer (default).

1 = TIMEZONE_GMT. Leaves time stamped data in Greenwich Mean Time.

Units

Specifies whether to convert temperature data returned (when using cbLogReadAIChannels() for example) to Fahrenheit or
Kelvin, or return temperature data as they are stored in the file (in Celsius units).

Set to one of the Units constants. Choices are:

0 = FAHRENHEIT (default)

1 = CELSIUS

2 = KELVIN

This value is ignored if raw data is logged.

Returns

n Error code or 0 if no errors

Notes

n The TimeFormat and TimeZone preferences are applied to all time data returned using API functions that return time data.

n The units preference specifies the temperature scale that the API applies when reading and converting analog temperature
and CJC data.

Page 355 of 700

cbDBitIn() function
Reads the state of a single digital input bit.

This function treats all of the DIO ports of a particular type on a board as a single port. It lets you read the state of any individual
bit within this port. Note that with some port types, such as 8255 ports, if the port is configured for DIGITALOUT, cbDBitIn provides
readback of the last output value.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions.

Function Prototype
C/C++

int cbDBitIn(int BoardNum, int PortType, int BitNum, unsigned short *BitValue)

Visual Basic

Function cbDBitIn Lib(ByVal BoardNum&, ByVal PortType&, ByVal BitNum&, BitValue%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortType

There are three general types of digital ports — ports that are programmable as input or output, ports that are fixed input or
output, and ports for which each bit may be programmed as input or output. For the first of these types, set PortType to
FIRSTPORTA. For the latter two types, set PortType to AUXPORT. Some boards have both types of digital ports (DAS1600).
Set PortType to either FIRSTPORTA or AUXPORT, depending on which digital inputs you wish to read.

BitNum

Specifies the bit number within the single large port.

BitValue

Place holder for return value of bit. Value will be 0 or 1. A 0 indicates a logic low reading, a 1 indicates a logic high reading.
Logic high does not necessarily mean 5 V. See the board manual for chip input specifications.

Returns

n Error code or 0 if no errors

n BitValue – value (0 or 1) of specified bit returned here.

Page 356 of 700

cbDBitOut() function
Sets the state of a single digital output bit.

This function treats all of the DIO ports of a particular type on a board as a single large port. It lets you set the state of any
individual bit within this large port.

Most configurable ports require configuration before writing. Check the board-specific information in the Universal Library User's
Guide to determine if the port should be configured for your hardware. When configurable, use cbDConfigPort() to configure a port
for output, and cbDConfigBit() to configure a bit for output.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions.

Function Prototype
C/C++

int cbDBitOut(int BoardNum, int PortType, int BitNum, unsigned short BitValue)

Visual Basic

Function cbDBitOut(ByVal BoardNum&, ByVal PortType&, ByVal BitNum&, ByVal BitValue%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortType

There are three general types of digital ports — ports that are programmable as input or output, ports that are fixed input or
output, and ports for which each bit may be programmed as input or output. For the first of these types, set PortType to
FIRSTPORTA. For the latter two types, set PortType to AUXPORT. Some boards have both types of digital ports (DAS1600).
Set PortType to either FIRSTPORTA or AUXPORT, depending on which digital port you wish to write to.

BitNum

Specifies the bit number within the single large port. The specified bit must be in a port that is currently configured as an
output.

BitValue

The value to set the bit to. Value will be 0 or 1. A 0 indicates a logic low output, a 1 indicates a logic high output. Logic high
does not necessarily mean 5 V. See the board manual for chip specifications.

Returns

n Error code or 0 if no errors

Page 357 of 700

cbDConfigBit() function
Configures a specific digital bit as Input or Output. This function treats all DIO ports on a board as a single port (AUXPORT). This
function is NOT supported by 8255 type DIO ports. Please refer to board-specific information for details.

Function Prototype
C/C++

int cbDConfigBit(int BoardNum, int PortType, int BitNum, int Direction)

Visual Basic

Function cbDConfigBit(ByVal BoardNum&, ByVal PortType&, ByVal BitNum&, ByVal Direction&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortType

The port (AUXPORT) whose bits are to be configured. The port specified must be bitwise configurable. Check the board-
specific information in the Universal Library User's Guide for details.

BitNum

The bit number to configure as input or output. See board-specific information for details.

Direction

DIGITALOUT or DIGITALIN configures the specified bit for output or input, respectively.

Returns

n Error code or 0 if no errors

Page 358 of 700

cbDConfigPort() function
Configures a digital port as input or output.

This function is for use with ports that may be programmed as input or output, such as those on the 82C55 chips and 8536 chips.
Refer to the Zilog 8536 manual for details of chip operation. Also refer to the 82C55 data sheet that is located in the
accompanying 82C55A.pdf file in the Documents subdirectory where the UL is installed (C:\Program files\Measurement
Computing\DAQ by default).

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions.

Function Prototype
C/C++

int cbDConfigPort(int BoardNum, int PortNum, int Direction)

Visual Basic

Function cbDConfigPort(ByVal BoardNum&, ByVal PortNum&, ByVal Direction&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

The specified port must be configurable. For most boards, AUXPORT is not configurable. Check the board-specific information
in the Universal Library User's Guide for details.

Direction

DIGITALOUT or DIGITALIN configures the entire eight or four bit port for output or input.

Returns

n Error code or 0 if no errors

Note

n When used on ports within an 8255 chip, this function will reset all ports on that chip configured for output to a zero state.
This means that if you set an output value on FIRSTPORTA and then change the configuration on FIRSTPORTB from OUTPUT
to INPUT, the output value at FIRSTPORTA will be all zeros. You can, however, set the configuration on SECONDPORTx
without affecting the value at FIRSTPORTA. For this reason, this function is usually called at the beginning of the program for
each port requiring configuration.

Page 359 of 700

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf
http://www.adobe.com/products/acrobat/readstep2.html

cbDIn() function
Reads a digital input port.

Note that for some port types, such as 8255 ports, if the port is configured for DIGITALOUT, this function will provide readback of
the last output value.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions.

Function Prototype
C/C++

int cbDIn(int BoardNum, int PortNum, unsigned short *DataValue)

Visual Basic

Function cbDIn(ByVal BoardNum&, ByVal PortNum&, DataValue%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Specifies which digital I/O port to read. Some hardware does allow readback of the state of the output using this function.
Check the board-specific information in the Universal Library User's Guide.

DataValue

Digital input value returned here.

Returns

n Error code or 0 if no errors

n DataValue - Digital input value returned here

Notes

n The size of the ports vary. If it is an eight bit port then the returned value will be in the range 0 - 255. If it is a four bit port
the value will be in the range 0 – 15.

Refer to the example programs and the board-specific information contained in the Universal Library User's Guide for
clarification of valid PortNum values.

Page 360 of 700

cbDInScan() function
Multiple reads of digital input port of a high speed digital port on a board with a pacer clock, such as the CIO-PDMA16.

Function Prototype
C/C++

int cbDInScan(int BoardNum, int PortNum, long Count, long *Rate, int MemHandle, int Options)

Visual Basic

Function cbDInScan(ByVal BoardNum&, ByVal PortNum&, ByVal Count&, Rate&, ByVal MemHandle&, ByVal
Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Specifies which digital I/O port to read (usually FIRSTPORTA or FIRSTPORTB).

Count

The number of times to read digital input.

Rate

Number of times per second (Hz) to read the port. The actual sampling rate in some cases will vary a small amount from the
requested rate. The actual rate will be returned to the Rate argument.

MemHandle

Handle for Windows buffer to store data. This buffer must have been previously allocated with the cbWinBufAlloc() function.

Options

Bit fields that control various options. Refer to the constants in the "Options argument values" section below.

Returns

n Error code or 0 if no errors.

n Rate – actual sampling rate returned.

n MemHandle – digital input value returned via the allocated Windows buffer.

Page 361 of 700

Options argument values

Note

n Transfer Method - May not be specified. DMA is used.

BACKGROUND If the BACKGROUND option is not used then the cbDInScan() function will not return to your
program until all of the requested data has been collected and returned to MemHandle.

When the BACKGROUND option is used, control will return immediately to the next line in
your program and the transfer from the digital input port to MemHandle will continue in the
background. Use cbGetStatus() with DIFUNCTION to check on the status of the background
operation. Use cbStopBackground() with DIFUNCTION to terminate the background process
before it has completed.

CONTINUOUS This option puts the function in an endless loop. Once it transfers the required number of
bytes it resets to the start of DataBuffer and begins again. The only way to stop this
operation is with cbStopBackground() with DIFUNCTION. Normally this option should be
used in combination with BACKGROUND so that your program will regain control.

EXTCLOCK If this option is used then transfers will be controlled by the signal on the trigger input line
rather than by the internal pacer clock. Each transfer will be triggered on the appropriate
edge of the trigger input signal (refer to board-specific information in the Universal Library
User's Guide). When this option is used the Rate argument is ignored. The transfer rate is
dependent on the trigger signal.

EXTTRIGGER If this option is used, then the scan will not begin until the signal on the trigger input line
meets the trigger criteria.

HIGHRESRATE Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
Rate argument above).

WORDXFER Normally this function reads a single (byte) port. If WORDXFER is specified then it will read
two adjacent ports on each read and store the value of both ports together as the low and
high byte of a single array element in the buffer. When WORDXFER is used, it is generally
required to set PortNum to FIRSTPORTA.

Page 362 of 700

cbDOut() function
Writes a byte to a digital output port.

Most configurable ports require configuration before writing. Check the board-specific information in the Universal Library User's
Guide to determine if the port should be configured for your hardware. When configurable, use cbDConfigPort() to configure a port
for output.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O functions.

Function Prototype
C/C++

int cbDOut(int BoardNum, int PortNum, unsigned short DataValue)

Visual Basic

Function cbDOut(ByVal BoardNum&, ByVal PortNum&, ByVal DataValue%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

There are three general types of digital ports — ports that are programmable as input or output, ports that are fixed input or
output, and ports for which each bit may be programmed as input or output. For the first of these types, set PortNum to
FIRSTPORTA. For the latter two types, set PortNum to AUXPORT. Some boards have both types of digital ports (for example
the DAS1600 Series). Set PortNum to either FIRSTPORTA or AUXPORT depending on the digital port you want to set.

DataValue

Digital value to be written.

Returns

n Error code or 0 if no errors.

Notes

n The size of the ports vary. If it is an eight bit port then the output value should be in the range 0 - 255. If it is a four-bit port,
the value should be in the range 0 - 15.

Refer to the example programs and the board-specific information in the Universal Library User's Guide for clarification of
valid PortNum values.

Page 363 of 700

cbDOutScan() function
Writes a series of bytes or words to the digital output port on a board with a pacer clock.

Function Prototype
C/C++

int cbDOutScan(int BoardNum, int PortNum, long Count, long *Rate, int MemHandle, int Options)

Visual Basic

Function cbDOutScan(ByVal BoardNum&, ByVal PortNum&, ByVal Count&, Rate&, ByVal MemHandle&, ByVal
Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Specifies which digital I/O port to write (usually FIRSTPORTA or FIRSTPORTB). The specified port must be configured as an
output.

Count

The number of times to write digital output.

Rate

Number of times per second (Hz) to write to the port. The actual update rate in some cases will vary a small amount from the
requested rate. The actual rate will be returned to the Rate argument.

MemHandle

Handle for Windows buffer to store data. This buffer must have been previously allocated with the cbWinBufAlloc() function.

Options

Bit fields that control various options. Refer to the constants in the "Options argument values" section below.

Returns

n Error code or 0 if no errors.

n Rate – actual sampling rate returned.

Page 364 of 700

Options argument values

Notes

n BYTEXFER is the default option. Make sure you are using an array when your data is arranged in bytes. Use the WORDXFER
option for word array transfers.

n NONSTREAMEDIO can only be used with the number of samples (Count) set equal to the size of the FIFO or less.

n Transfer Method may not be specified. DMA is used.

ADCCLOCK Paces the data output operation using the ADC clock.

ADCCLOCKTRIG Triggers a data output operation when the ADC clock starts.

BACKGROUND If the BACKGROUND option is not used, then the cbDOutScan() function will not return
control to your program until all of the requested data has been output.

When the BACKGROUND option is used, control returns immediately to the next line in your
program and the transfer to the digital output port from MemHandle will continue in the
background. Use cbGetStatus() with DOFUNCTION to check on the status of the background
operation. Use cbStopBackground() with DOFUNCTION to terminate the background process
before it has completed.

CONTINUOUS This option puts the function in an endless loop. Once it transfers the required number of
bytes, it resets to the start of the buffer and begins again. The only way to stop this
operation is with cbStopBackground() with DOFUNCTION. Normally this option should be
used in combination with BACKGROUND so that your program will regain control.

EXTCLOCK When this option is used, transfers are controlled by the signal on the external clock input
rather than by the internal pacer clock. Each transfer will be triggered on the appropriate
edge of the clock input signal (refer to board-specific information contained in the UL Users
Guide).

When this option is used, the Rate argument is used for reference only. The transfer rate is
dependent on the clock signal. An approximation of the external clock rate is used to
determine the size of the packets to transfer from the board. Set the Rate argument to an
approximate maximum value.

NONSTREAMEDIO When this option is used, you can output non-streamed data to a specific DAC output
channel.

To load the data output buffer into the device's internal output FIFO, the aggregate size of
the data output buffer must be ≤ the size of the internal data output FIFO in the device.
Once the sample data are transferred or downloaded to the device, the device is
responsible for outputting the data. You can't make any changes to the output buffer once
the output begins.

With NONSTREAMEDIO mode, you do not have to periodically feed output data through the
program to the device for the data output to continue. However, the size of the buffer is
limited.

WORDXFER Normally this function writes a single (byte) port. If WORDXFER is specified then it will write
two adjacent ports as the low and high byte of a single array element in the buffer. When
WORDXFER is used, it is generally required to set PortNum to FIRSTPORTA.

Page 365 of 700

cbErrHandling() function
Sets the error handling for all subsequent function calls. Most functions return error codes after each call. In addition, other error
handling features are built into the library. This function controls those features. If the Universal Library cannot find the
configuration file CB.CFG, it always terminates the program, regardless of the cbErrHandling() setting.

Function Prototype
C/C++

int cbErrHandling(int ErrReporting, int ErrHandling)

Visual Basic

Function cbErrHandling(ByVal ErrReporting&, ByVal ErrHandling&) As Long

Arguments
ErrReporting

This argument controls when the library will print error messages on the screen. The default is DONTPRINT. Set it to one of
the constants in the "ErrReporting argument values" section below.

ErrHandling

This argument specifies what class of error will cause the program to halt. The default is DONTSTOP. Set it to one of the
constants in the "ErrHandling argument values" section below.

Returns

n Always returns 0.

ErrReporting argument values

ErrHandling argument values

Notes

n Warnings vs Fatal Errors: All errors that can occur are classified as either "warnings" or "fatal":

Errors that can occur in normal operation in a bug free program (disk is full, too few samples before trigger occurred) are
classified as "warnings".

All other errors indicate a more serious problem and are classified as "fatal".

n STOPALL is not intended for 32-bit C console programs: Do not use the STOPALL option in 32-bit C console applications.
Instead, use other methods to end the program, such as checking the return value of the function.

DONTPRINT Errors will not generate a message to the screen. In that case your program must always
check the returned error code after each library call to determine if an error occurred.

PRINTWARNINGS Only warning errors will generate a message to the screen. Your program will have to check
for fatal errors.

PRINTFATAL Only fatal errors will generate a message to the screen. Your program must check for
warning errors.

PRINTALL All errors will generate a message to the screen.

DONTSTOP The program will always continue executing when an error occurs.

STOPFATAL The program will halt if a "fatal" error occurs.

STOPALL Will stop whenever any error occurs. If you are running in an Integrated Development
Environment (IDE), when errors occur the environment may be shut down along with the
program. If your IDE behaves this way, (QuickBasic and VisualBasic do), then set
ErrHandling to DONTSTOP. Refer to the "Error Codes" topic for a complete list of error
codes and their associated messages.

Page 366 of 700

cbGetErrMsg() function
Returns the error message associated with an error code. Each function returns an error code. An error code that is not equal to 0
indicates that an error occurred. Call this function to convert the returned error code to a descriptive error message.

Function Prototype
C/C++

int cbGetErrMsg(int ErrCode, char ErrMsg[ERRSTRLEN])

Visual Basic

Function cbGetErrMsg(ByVal ErrCode&, ByVal ErrMsg$) As Long

Arguments
ErrCode

The error code that is returned by any function in library.

ErrMsg

The error message is returned here. The ErrMsg variable must be pre-allocated to be at least as large as ERRSTRLEN. This
size is guaranteed to be large enough to hold the longest error message.

Returns

n Error code or 0 if no errors

n ErrMsg - error message string is returned here

Note

n See also cbErrHandling() for an alternate method of handling errors.

Page 367 of 700

cbMemRead() function
Reads data from a memory board into an array.

Function Prototype
C/C++

int cbMemRead(int BoardNum, unsigned short DataBuffer[], long FirstPoint, long Count)

Visual Basic

Function cbMemRead(ByVal BoardNum&, DataBuffer%, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

DataBuffer

Pointer to the data array.

FirstPoint

Index of first point to read, or FROMHERE. Use FirstPoint to specify the first point to read. For example, to read data sample
numbers 200 through 250, set FirstPoint = 200 and Count = 50.

Count

Number of data points (words) to read.

Returns

n Error code or 0 if no errors

n DataBuffer – data read from the memory board.

Notes

n If you are going to read a large amount of data from the board in small chunks, set FirstPoint to FROMHERE to read each
successive chunk. Using FROMHERE speeds up the operation of cbMemRead() when working with large amounts of data.

For example, to read 300,000 points in 100,000 point chunks, the calls would look like this:

cbMemRead (0, DataBuffer, 0, 100000)

cbMemRead (0, DataBuffer, FROMHERE, 1000000)

cbMemRead (0, DataBuffer, FROMHERE, 1000000)

n DT-Connect Conflicts: The cbMemRead() function can not be called while a DT-Connect transfer is in progress. For
example, if you start collecting A/D data to the memory board in the background (by calling cbAInScan() with the
DTCONNECT + BACKGROUND options) you can not call cbMemRead() until the cbAInScan() has completed. If you do you will
get a DTACTIVE error.

Page 368 of 700

cbMemReadPretrig() function
Reads pre-trigger data collected with the cbAPretrig() function from a memory board, and re-arranges the data in the correct order
(pre-trigger data first, then post-trigger data). This function can only be used to retrieve data that was collected with the cbAPretrig
() function with EXTMEMORY set in the options argument. After each cbAPretrig() call, all data must be unloaded from the memory
board with this function. If any more data is sent to the memory board then the pre-trigger data will be lost

Function Prototype
C/C++

int cbMemReadPretrig(int BoardNum, unsigned short DataBuffer[], long FirstPoint, long Count)

Visual Basic

Function cbMemReadPretrig(ByVal BoardNum&, DataBuffer%, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

DataBuffer

The pointer to the data array.

FirstPoint

Index of first point to read or FROMHERE. Use FirstPoint to specify the first point to read. For example, to read data sample
numbers 200 through 250, set FirstPoint = 200 and Count = 50.

Count

Number of data samples (words) to read.

Returns

n Error code or 0 if no errors

n DataBuffer – data read from the memory board.

Notes

n When reading a large amount of data from the board in small chunks, set FirstPoint to FROMHERE to read each successive
chunk. Using FROMHERE speeds up the operation of cbMemReadPretrig() when working with large amounts of data.

For example, to read 300,000 points in 100,000 chunks the calls would look like this:

cbMemReadPretrig(0, DataBuffer, 0, 100000)

cbMemReadPretrig(0, DataBuffer, FROMHERE, 1000000)

cbMemReadPretrig(0, DataBuffer, FROMHERE, 1000000)

n DT Connect Conflicts: The cbMemReadPretrig() function can not be called while a DT Connect transfer is in progress. For
example, if you start collecting A/D data to the memory board in the background (by calling cbAInScan() with the
DTCONNECT + BACKGROUND options), you can not call cbMemReadPretrig() until the cbAInScan() has completed. If you do
you will get a DTACTIVE error.

Page 369 of 700

cbMemReset() function
Resets the memory board pointer to the start of the data. The memory boards are sequential devices. They contain a counter
which points to the 'current' word in memory. Every time a word is read or written this counter increments to the next word.

Function Prototype
C/C++

int cbMemReset(int BoardNum)

Visual Basic

Function cbMemReset(ByVal BoardNum&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

Returns

n Error code or 0 if no errors

Notes

n This function is used to reset the counter back to the start of the memory. Between successive calls to cbAInScan(), you
should call this function so that the second cbAInScan() overwrites the data from the first call. Otherwise, the data from the
first cbAInScan() will be followed by the data from the second cbAInScan() in the memory on the card.

Likewise, anytime you call cbMemRead() or cbMemWrite(), it will leave the counter pointing to the next memory location after
the data that you read or wrote. Call cbMemReset() to reset back to the start of the memory buffer before the next call to
cbAInScan().

Page 370 of 700

cbMemSetDTMode() function
Sets the DT-Connect Mode of a Memory Board

Function Prototype
C/C++

int cbMemSetDTMode(int BoardNum, int Mode)

Visual Basic

Function cbMemSetDTMode(ByVal BoardNum&, ByVal Mode&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

Mode

Must be set to either DTIN or DTOUT. Set the Mode on the memory board to DTIN to transfer data from an A/D board to the
memory board. Set Mode = DTOUT to transfer data from a memory board to a D/A board.

Returns

n Error code or 0 if no errors

Notes

n This command only controls the direction of data transfer between the memory board and its parent board that is connected
to it via a DT-Connect cable.

n If you are using the EXTMEMORY option, do not use cbMemSetDTMode(), as the memory board mode is already set with
EXTMEMORY. Only use cbMemSetDTMode() when the parent board is not supported by the Universal Library.

Page 371 of 700

cbMemWrite() function
Writes data from an array to the memory card.

Function Prototype
C/C++

int cbMemWrite(int BoardNum, unsigned short DataBuffer[], long FirstPoint, long Count)

Visual Basic

Function cbMemWrite(ByVal BoardNum&, DataBuffer%, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

DataBuffer

Pointer to the data array.

FirstPoint

Index of first point to write or FROMHERE. Use FirstPoint to specify the first point to write data to. For example, to write to
location numbers 200 through 250, set FirstPoint = 200 and Count = 50.

Count

Number of data points (words) to write.

Returns

n Error code or 0 if no errors

Notes

n To write a large amount of data to the board in small chunks, set FirstPoint to FROMHERE to write each successive chunk. For
example, to write 300,000 points in 100,000 point chunks:

cbMemWrite(0, DataBuffer, 0, 100000)

cbMemWrite(0, DataBuffer, FROMHERE, 100000)

cbMemWrite(0, DataBuffer, FROMHERE, 100000)

n DT-Connect Conflicts: The cbMemWrite() function cannot be called while a DT-Connect transfer is in progress. For
example, if you start collecting A/D data to the memory board in the background (by calling cbAInScan() with the
DTCONNECT + BACKGROUND options). You cannot call cbMemWrite() until the cbAInScan() is complete. Doing so will
generate a DTACTIVE error.

Page 372 of 700

cbDeclareRevision() function
New R3.3 ID

Initializes the Universal Library with the revision number of the library used to write your program. Must be the first Universal
Library function to be called by your program.

Function Prototype
C/C++

int cbDeclareRevision(float* RevNum);

Visual Basic

Function cbDeclareRevision(RevNum!) As Long

Arguments
RevNum

Revision number of the Universal Library used to interpret function arguments.

Default setting: Any program using the 32-bit library and not containing this line of code will be defaulted to revision 5.4
argument assignments.

Returns

n Error code or 0 if no errors

Notes

n As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new functions are
added. It is Measurement Computing's goal to preserve existing programs you have written and therefore to never change
the order or number of arguments in a function. Sometimes this is not possible, as in the changes from revision 3.2 to 3.3. In
revision 3.3, we added support for multiple background tasks, a feature that users have requested.

Allowing multiple background tasks required adding the argument BoardNum to several functions. Doing so would have
meant that programs written for version 3.2 would not run with 3.3 if they called those functions. If not for the
cbDeclareRevision() function, the programs would have had to be rewritten in each line where the affected functions are
used, and the program recompiled.

The revision control function initializes the DLL so that the functions are interpreted according to the format of the revision
you wrote and used to compiled your program. This function is new in revision 3.3. To take advantage of it, the function must
be added to your program and the program recompiled.

The function works by interpreting the UL function call from your program and filling in any arguments needed to run with the
new revision. For example, the function cbAConvertData() had the argument BoardNum added in Revision 3.3.

n The two revisions of the function look like this:

Rev 3.2:

int cbAConvertData(long NumPoints, unsigned ADData[], int ChanTags[])

Rev 3.3:

int cbAConvertData(int BoardNum, long NumPoints, unsigned ADData[], int ChanTags[])

If your program has declared you are running code written for revision 3.2, and you call this function, the argument
BoardNum is ignored. If you want the benefits afforded by BoardNum, you must rewrite your program with the new argument
and declare revision 3.3 (or higher) in cbDeclareRevision().

If a revision less than 3.2 is declared, revision 3.2 is assumed.

Page 373 of 700

cbGetRevision() function
Gets the revision level of Universal Library DLL and the VXD.

Function Prototype
C/C++

int cbGetRevision(float* DLLRevNum, float* VXDRevNum);

Visual Basic

Function cbGetRevision(DLLRevNum!, VXDRevNum!) As Long

Arguments
DLLRevNum

Place holder for the revision number of Library DLL.

VXDRevNum

Place holder for the revision number of Library VXD.

Returns

n Error code, if revision levels of VXD and DLL are incompatible.

Page 374 of 700

cbFileAInScan() function
Scans a range of A/D channels and stores the samples in a disk file. cbFileAInScan() reads the specified number of A/D samples at
the specified sampling rate from the specified range of A/D channels from the board. If the A/D board has programmable gain, it
sets the gain to the specified range.

The collected data is returned to a file in binary format. Use cbFileRead() to load data from that file into an array. See board-
specific information to determine if this function is supported on your board.

Function Prototype
C/C++

int cbFileAInScan(int BoardNum, int LowChan, int HighChan, long Count, long *Rate, int Range, char
*FileName, unsigned Options)

Visual Basic

Function cbFileAInScan(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&, ByVal Count&, Rate&, ByVal
Range&, ByVal FileName$, ByVal Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. The specified board must have an A/D. BoardNum
may be 0 to 99.

LowChan

First A/D channel of scan

HighChan

Last A/D channel of scan

The maximum allowable channel depends on which type of A/D board is being used. For boards with both single ended and
differential inputs, the maximum allowable channel number also depends on how the board is configured (for example, eight
channels for differential, 16 for single-ended).

Count

Specifies the total number of A/D samples that will be collected. If more than one channel is being sampled, the number of
samples collected per channel is equal to Count / (HighChan-LowChan+1).

Rate

Sample rate in samples per second (Hz) per channel. The maximum sampling rate depends on the A/D board that is being
used (see Rate explanation in cbAInScan()).

Range

If the selected A/D board does not have a programmable range feature, this argument is ignored. Otherwise set the Range
argument to any range that is supported by the selected A/D board. Refer to board-specific information for a list of the
supported A/D ranges of each board.

FileName

The name of the file in which to store the data. If the file doesn't exist, it will be created.

Options

Bit fields that control various options. Refer to the constants in the Options argument values section below.

Returns

n Error code or 0 if no errors.

n Rate – the actual sampling rate

Page 375 of 700

../../Misc/Supported_A_D_Ranges.htm

Options argument values

Notes

n OVERRUN Error - (Error code 29) This error indicates that the data was not written to the file as fast as the data was
sampled. Consequently some data was lost. The value returned from cbFileGetInfo() in TotalCount is the number of points
that were successfully collected.

Important!

In order to understand the functions, read the board-specific information contained in the Universal Library User's Guide. We also
urge you to examine and run one or more of the example programs supplied prior to attempting any programming of your own.
Following this advice may save you hours of frustration, and wasted time.

This note, which appears elsewhere, is especially applicable to this function. Now is the time to read the board-specific information
for your board. We suggest that you make a copy of that page to refer to as you read this manual and examine the example
programs.

EXTCLOCK If this option is used, conversions are controlled by the signal on the trigger input line rather
than by the internal pacer clock. Each conversion is triggered on the appropriate edge of
the trigger input signal (refer to board-specific information in the Universal Library User's
Guide). Additionally, the Rate argument is ignored. The sampling rate is dependent on the
trigger signal.

EXTTRIGGER If this option is specified, the sampling does not begin until the trigger condition is met.

On many boards, this trigger condition is programmable (refer to the cbSetTrigger()
function and board-specific information for details) and can be programmed for rising or
falling edge or an analog level.

On other boards, only polled gate triggering is supported. Assuming active high operation,
data acquisition commences immediately if the trigger input is high. If the trigger input is
low, acquisition is held off until it goes high. Acquisition continues until NumPoints& samples
are taken, regardless of the state of the trigger input. For polled gate triggering, this option
is most useful if the signal is a pulse with a very low duty cycle (trigger signal in TTL low
state most of the time) to hold off triggering until the pulse occurs.

DTCONNECT Samples are sent to the DT-Connect port if the board is equipped with one.

Page 376 of 700

cbFileGetInfo() function
Returns information about a streamer file. When cbFileAInScan() or cbFilePretrig() fills the streamer file, information is stored about
how the data was collected (sample rate, channels sampled etc.). This function returns that information. Refer to board-specific
information in the Universal Library User's Guide to determine if your board supports cbFileAInScan() and/or cbFilePretrig().

Function Prototype
C/C++

int cbFileGetInfo(char *FileName, short *LowChan, short *HighChan, long *PretrigCount, long
*TotalCount, long *Rate, int *Range)

Visual Basic

Function cbFileGetInfo(ByVal FileName$, LowChan%, HighChan%, PretrigCount&, TotalCount&, Rate&, Range&)
As Long

Arguments
FileName

Name of the streamer file.

LowChan

Variable to return LowChan to.

HighChan

Variable to return HighChan to.

PretrigCount

Variable to return PretrigCount to.

TotalCount

Variable to return TotalCount to.

Rate

Variable to return sampling rate to.

Range

Variable to return A/D range code to.

Returns

n Error code or 0 if no errors.

n LowChan – low A/D channel of the scan.

n HighChan – high A/D channel of the scan.

n TotalCount – total number of points collected.

n PretrigCount – number of pre-trigger points collected.

n Rate – sampling rate when data was collected.

n Range – Range of A/D when data was collected.

Page 377 of 700

cbFilePretrig() function
Scan a range of channels continuously while waiting for a trigger. Once the trigger occurs, return the specified number of samples
including the specified number of pre-trigger samples to a disk file. This function waits for a trigger signal to occur on the Trigger
Input. Once the trigger occurs, it returns the specified number (TotalCount) of A/D samples including the specified number of pre-
trigger points. It collects the data at the specified sampling rate (Rate) from the specified range (LowChan-HighChan) of A/D
channels from the specified board. If the A/D board has programmable gain then it sets the gain to the specified range. The
collected data is returned to a file. See board specific info to determine if this function is supported by your board.

Function Prototype
C/C++

int cbFilePretrig(int BoardNum, int LowChan, int HighChan, long *PretrigCount, long *TotalCount, long
*Rate, int Range, char *FileName, unsigned Options)

Visual Basic

Function cbFilePretrig(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&, PretrigCount&, TotalCount&,
Rate&, ByVal Range&, ByVal FileName$, ByVal Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. The specified board must have an A/D and
pretrigger capability. BoardNum may be 0 to 99.

LowChan

First A/D channel of the scan.

HighChan

Last A/D channel of the scan.

The maximum allowable channel depends on which type of A/D board is being used. For boards that have both single ended
and differential inputs the maximum allowable channel number also depends on how the board is configured Refer to board-
specific information for the maximum number of channels allowed in differential and single ended modes.

PretrigCount

Specifies the number of samples before the trigger that will be returned. PretrigCount must be less than 16000 and
PretrigCount must also be less than TotalCount - 512.

If the trigger occurs too early, then fewer than the requested number of pre-trigger samples will be collected. In that case a
TOOFEW error will occur. The PretrigCount will be set to indicate how many samples were collected and the post trigger
samples will still be collected.

TotalCount

Specifies the total number of samples that will be collected and stored in the file. TotalCount must be greater than or equal to
PretrigCount + 512. If the trigger occurs too early then fewer than the requested number of samples will be collected. In that
case a TOOFEW error will occur. The TotalCount will be set to indicate how many samples were actually collected.

Rate

Sample rate in samples per second (Hz) per channel. The maximum sampling rate depends on the A/D board that is being
used. This is the rate at which scans are triggered. If you are sampling 4 channels, 0 - 3, then specifying a rate of 10,000
scans per second (10 kHz) will result in the A/D converter rate of 40 kHz: 4 channels at 10,000 samples per channel per
second. This is different from some software where you specify the total A/D chip rate. In those systems, the per channel
rate is equal to the A/D rate divided by the number of channels in a scan. This argument also returns the value of the actual
set. This may be different from the requested rate because of pacer limitations.

Range

If the selected A/D board does not have a programmable range feature, this argument is ignored. Otherwise, set the Range
argument to any range that is supported by the selected A/D board. Refer to board specific information for a list of the
supported A/D ranges of each board.

FileName

The name of the file in which to store the data. If the file doesn't exist, it will be created.

Options

Bit fields that control various options. Refer to the constants in the Options argument values section below.

Returns

n Error code or 0 if no errors

n PretrigCount – actual number of pre-trigger samples collected.

Page 378 of 700

../../Misc/Supported_A_D_Ranges.htm

n TotalCount – actual number of samples collected.

n Rate – the actual sampling rate.

Options argument values

Notes

n OVERRUN Error - (Error code 29): This error indicates that the data was not written to the file as fast as the data was
sampled. Consequently some data was lost. The value in TotalCount will be the number of points that were successfully
collected.

EXTCLOCK If this option is used then conversions will be controlled by the signal on the trigger input
line rather than by the internal pacer clock. Each conversion will be triggered on the
appropriate edge of the trigger input signal (refer to board-specific information in the
Universal Library User's Guide). When this option is used the Rate argument is ignored. The
sampling rate is dependent on the trigger signal.

DTCONNECT Samples are sent to the DT-Connect port if the board is equipped with one.

Page 379 of 700

cbFileRead() function
Reads data from a streamer file. When cbFileAInScan() or cbFilePretrig() fills the streamer file, this function returns the content of
that file. Refer to information on your board in the Universal Library User's Guide to determine if your board supports cbFileAInScan
() and/or cbFilePretrig().

Function Prototype
C/C++

int cbFileRead(char *FileName, long FirstPoint, long *NumPoints, int *DataBuffer)

Visual Basic

Function cbFileRead(ByVal FileName$, ByVal FirstPoint&, NumPoints&, DataBuffer%) As Long

Arguments
FileName

Name of the streamer file.

FirstPoint

Index of the first point to read.

NumPoints

Number of points to read from the file.

DataBuffer

Pointer to the data buffer that data will be read into.

Returns

n Error code or 0 if no errors

n DataBuffer – data read from file.

n NumPoints – number of points actually read.

NumPoints may be less than the requested number of points if an error occurs.

Notes

n Data format – The data is returned as 16 bits. The 16 bits may represent 12 bits of analog, 12 bits of analog plus 4 bits of
channel, or 16 bits of analog. Use cbAConvertData() to correctly load the data into an array.

n Loading portions of files – The file may contain much more data than can fit in DataBuffer. In those cases, use NumPoints and
FirstPoint to read a selected piece of the file into DataBuffer. Call cbFileGetInfo() first to find out how many points are in the
file.

Page 380 of 700

cbDaqInScan() function
Scans analog, digital, counter, and temperature input channels synchronously, and stores the samples in an array. This function
only works with boards that support synchronous input.

Function Prototype
C/C++

int cbDaqInScan(int BoardNum, short ChanArray[], short ChanTypeArray[], short GainArray[], int
ChanCount, long* Rate, long *PretrigCount, long *TotalCount, int MemHandle, int Options);

Visual Basic

Function cbDaqInScan(ByVal BoardNum&, ChanArray%, ChanTypeArray%, GainArray%, ByVal ChanCount&,
CBRate&, PretrigCount&, CBCount&, ByVal MemHandle&, ByVal Options&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The specified board must support synchronous input.

ChanArray

Array containing channel values. Valid channel values are analog input channels, digital ports, counter input channels, and
temperature input channels of the device.

ChanTypeArray

Array containing channel types. Each element of this array defines the type of the corresponding element in the ChanArray.
Set to one of the constants in the "ChanTypeArray argument values" section below.

GainArray

Array containing A/D range codes. If the corresponding element in the ChanArray is not an analog input channel, the range
code for this channel is ignored.

ChanCount

Number of elements in each of the three arrays - ChanArray, ChanTypeArray, and GainArray.

Rate

The sample rate at which samples are acquired, in samples per second per channel.

Rate also returns the value of the actual rate set, which may be different from the requested rate because of pacer
limitations.

PretrigCount

Sets the number of pre-trigger samples to collect. Specifies the number of samples to collect before the trigger occurs. This
function won't run in pre-trigger mode if PreTrigCount is set to zero. PreTrigCount is ignored if the EXTTRIGGER option is not
specified.

PreTrigCount also returns the value of the actual pre-trigger count set, which may be different from the requested pre-trigger
count, because pre-trigger count must be a multiple of ChanCount.

PreTrigCount must be evenly divisible by the number of channels being scanned (ChanCount). If it is not, this function
adjusts the number (up) to the next valid value, and returns that value to the PreTrigCount argument.

TotalCount

Total number of samples to collect. Specifies the total number of samples to collect and store in the buffer. TotalCount must
be greater than PreTrigCount.

TotalCount also returns the value of the actual total count set, which may be different from the requested total count because
total count must be a multiple of ChanCount.

TotalCount must be evenly divisible by the number of channels being scanned (ChanCount). If it is not, this function adjusts
the number (down) to the next valid value, and returns that value to the TotalCount argument.

MemHandle

Handle for the Windows buffer to store data. This buffer must have been previously allocated with the cbWinBufAlloc()
function.

Options

Bit fields that control various options. This field may contain any combination of non-contradictory choices in the "Options
argument values" section below.

Returns

Page 381 of 700

n Error code or 0 if no errors

n Rate – Actual sampling rate used.

n PreTrigCount – Actual pre-trigger count used.

n TotalCount – Actual total count used.

n MemHandle – Collected data returned via the Windows buffer.

ChanTypeArray argument values

ChanTypeArray flag values

Options argument values

ANALOG Analog input channel.

DIGITAL8 8-bit digital input port.

DIGITAL16 16-bit digital input port. (FIRSTPORTA only)

CTR16 16-bit counter.

CTR32LOW Lower 16-bits of a 32-bit counter.

CTR32HIGH Upper 16-bits of a 32-bit counter.

CJC CJC channel.

TC Thermocouple channel.

The cbGetTCValues() function can be used to convert raw thermocouple data to data on a
temperature scale (CELSIUS, FAHRENHEIT, or KELVIN). Note: If at least one TC channel is
listed in the channel array, and averaging is enabled for that channel, the averaging will be
applied to all of the channels listed in the channel array.

SETPOINTSTATUS The setpoint status register. This is a bit field indicating the state of each of the setpoints. A
"1" indicates that the setpoint criteria has been met.

SETPOINT_ENABLE Enables a setpoint. When this option is specified, it must be OR'ed with the ChanTypeArray
argument values.

You set the setpoint criteria with the cbDaqSetSetpoints() function. The number of channels
set with the SETPOINT_ENABLE flag must match the number of setpoints set by the
cbDaqSetSetpoints() function's SetpointCount argument.

BACKGROUND When the BACKGROUND option is used, control returns immediately to the next line in your
program, and the data collection into the buffer continues in the background. If the
BACKGROUND option is not used, the cbDaqInScan() function does not return control to your
program until all of the requested data has been collected and returned to the buffer.

Use cbGetStatus() with DAQIFUNCTION to check on the status of the background operation.
Use cbStopBackground() with DAQIFUNCTION to terminate the background process before it
has completed. Execute cbStopBackground() after normal termination of all background
functions, in order to clear variables and flags.

CONTINUOUS This option puts the function in an endless loop. Once it collects the required number of
samples, it resets to the start of the buffer and begins again. The only way to stop this
operation is by using cbStopBackground() with DAQIFUNCTION. Normally this option should be
used in combination with BACKGROUND so that your program will regain control.

EXTCLOCK If this option is used, conversions will be controlled by the signal on the external clock input
rather than by the internal pacer clock. Each conversion will be triggered on the appropriate
edge of the clock input signal. When this option is used the Rate argument is ignored. The
sampling rate is dependent on the clock signal. Options for the board will default to a transfer
mode that will allow the maximum conversion rate to be attained unless otherwise specified.

EXTTRIGGER If this option is specified, the sampling will not begin until the trigger condition is met (refer to
the cbDaqSetTrigger() function).

HIGHRESRATE Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified, the
rate at which samples are acquired is in "samples per second per channel" (refer to the Rate
argument above).

Page 382 of 700

cbDaqOutScan() function
Outputs values synchronously to analog output channels and digital output ports. This function only works with boards that support
synchronous output.

Function Prototype
C/C++

int cbDaqOutScan(int BoardNum, short ChanArray[], short ChanTypeArray[], short GainArray[], int
ChanCount, long* Rate, long Count, int MemHandle, int Options);

Visual Basic

Function cbDaqOutScan(ByVal BoardNum&, ChanArray%, ChanTypeArray%, GainArray%, ByVal ChanCount&,
CBRate&, ByVal CBCount&, ByVal MemHandle&, ByVal Options&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The specified board must support synchronous output.

ChanArray

Array containing channel values. Valid channel values are analog output channels and digital ports.

ChanTypeArray

Array containing channel types. Each element of this array defines the type of the corresponding element in the ChanArray.
Set to one of the constants in the "ChanTypeArray argument values" section below.

GainArray

Array containing D/A range codes. If the corresponding element in the ChanArray is not an analog output channel, the range
code for this channel is ignored. If the board does not have programmable gain, this parameter is ignored, and therefore can
be set to null.

ChanCount

Number of elements in each of the three arrays - ChanArray, ChanTypeArray, and GainArray.

Rate

Sample rate in scans per second. Rate also returns the value of the actual rate set, which may be different from the
requested rate because of pacer limitations.

Count

Sets the total number of values to output. Count also returns the value of the actual count set, which may be different from
the requested total count because count must be a multiple of the channel count.

MemHandle

Handle for the Windows buffer from which data will be output. This buffer must have been previously allocated with the
cbWinBufAlloc() function and data values loaded (for example using cbWinArrayToBuf().

Options

Bit fields that control various options. This field may contain any combination of non-contradictory choices in the "Options
argument values" section below.

Returns

n Error code or 0 if no errors

n Rate – Actual sampling rate used.

ChanTypeArray argument values

ANALOG Analog output channel.

DIGITAL16 16-bit digital output port. (FIRSTPORTA only)

Page 383 of 700

Options argument values

ADCCLOCK When this option is used, the data output operation will be paced by the ADC clock.

ADCCLOCKTRIG If this option is used, the data output operation will be triggered upon the start of the ADC
clock.

BACKGROUND When this option is used, the output operations will begin running in the background and
control will immediately return to the next line of your program. Use cbGetStatus() with the
DAQOFUNCTION option to check the status of background operation. Use the
cbStopBackground() function with the DAQOFUNCTION option to terminate background
operations before they are completed. Execute cbStopBackground() with DAQOFUNCTION
after normal termination of all background functions in order to clear variables and flags.

CONTINUOUS This option puts the function in an endless loop. Once it outputs the specified number
(Count) of output values, it resets to the start of the buffer and begins again. The only way
to stop this operation is by calling cbStopBackground() with DAQOFUNCTION. This option
should only be used in combination with BACKGROUND so that your program can regain
control.

EXTCLOCK If this option is used, conversions will be paced by the signal on the external clock input
rather than by the internal pacer clock. Each conversion will be triggered on the appropriate
edge of the clock input signal.

When this option is used, the Rate argument is ignored. The sampling rate is dependent on
the clock signal. Options for the board will default to transfer types that allow the maximum
conversion rate to be attained unless otherwise specified.

NONSTREAMEDIO This option allows non-streamed data output to be generated to a specified output channel.

In this mode, the aggregate size of data output buffer must be less than or equal to the size
of the internal data output FIFO on the Measurement Computing device. This allows the data
output buffer to be loaded into the device's internal output FIFO.

Once the sample updates are transferred (or downloaded) to the device, the device is
responsible for outputting the data. While the size is limited, and the output buffer cannot be
changed once the output is started, this mode has the advantage being able to continue
data output without having to periodically feed output data through the program to the
device.

Page 384 of 700

cbDaqSetSetpoints() function
Configures up to 16 detection setpoints associated with the input channels within a scan group. This function only works with boards
that support synchronous input.

Function Prototype
C/C++

int cbDaqSetSetpoints(int BoardNum, float *LimitAArray, float *LimitBArray, float *reserved, int
*SetpointFlagsArray, int *SetpointOutputArray, float *Output1Array, float *Output2Array, float
*OutputMask1Array, float *OutputMask2Array, int SetpointCount);

Visual Basic

Function cbDaqSetSetpoints(ByVal BoardNum&, LimitAArray!, LimitBArray!, Reserved!, SetpointFlagsArray&,
SetpointOutputArray&, Output1Array!, Output2Array!, OutputMask1Array!, OutputMask2Array!, ByVal
SetpointCount&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The specified board must support synchronous input.

LimitAArray

Array containing the limit A values for the input channels used for the setpoint. Limit A specifies a value used to determine if
the setpoint criteria are met.

LimitBArray

Array containing the limit B values for the input channels used for the setpoint. Limit B specifies a value used to determine if
the setpoint criteria are met.

Reserved

Reserved for future use.

SetpointFlagsArray

Array containing the setpoint flags. Set to one of the constants in the SetpointFlagsArray argument values section below.

SetpointOutputArray

Array containing output sources. Set to one of the constants in the SetpointOutputArray argument values section below.

Output1Array

Array containing the values for the output channels used for the setpoint.

Output2Array

Array containing the values for the output channels used for the setpoint.

OutputMask1Array

Array containing the output masks for output value 1 (for FIRSTPORTC only).

OutputMask2Array

Array containing the output masks for output value 2 (for FIRSTPORTC only).

SetpointCount

Number of setpoints to configure (0 to 16). Set to 0 to disable the setpoints.

Returns

n Error code or 0 if no errors

Page 385 of 700

SetpointFlagsArray argument values

SetpointOutputArray argument values

Flag Description

SF_EQUAL_LIMITA Setpoint criteria: The input channel = limit A.

SF_LESSTHAN_LIMITA Setpoint criteria: The input channel < limit A.

SF_GREATERTHAN_LIMITB Setpoint criteria: The input channel >limit B.

SF_INSIDE_LIMITS Setpoint criteria: The input channel > limit A and < limit B.

SF_OUTSIDE_LIMITS Setpoint criteria: The input channel < limit A and > limit B.

SF_HYSTERESIS Setpoint criteria: If the input channel > limit A then output value 1.

If the input channel < limit B then output value 2.

SF_UPDATEON_TRUEONLY If the criteria is met then output value 1.

SF_UPDATEON_TRUEANDFALSE If the criteria is met then output value 1, else output value 2.

Output source Description

SO_NONE Perform no outputs.

SO_FIRSTPORTC Output to FIRSTPORTC when the criteria is met.

SO_DIGITALPORT Output to digital port when the criteria is met.

SO_DAC0 Output to DAC0 when the criteria is met. You must have a device with DAC0.

SO_DAC1 Output to DAC1 when the criteria is met. You must have a device with DAC1.

SO_DAC2 Output to DAC2 when the criteria is met. You must have a device with DAC2.

SO_DAC3 Output to DAC3 when the criteria is met. You must have a device with DAC3.

SO_TMR0 Output to timer 0 when the criteria is met.

SO_TMR1 Output to timer 1 when the criteria is met.

Page 386 of 700

cbDaqSetTrigger() function
Selects the trigger source and sets up its parameters. This trigger is used to initiate or terminate an acquisition using the
cbDaqInScan() function if the EXTTRIGGER option is selected. This function only works with boards that support synchronous
output.

Function Prototype
C/C++

int cbDaqSetTrigger(int BoardNum, int TrigSource, int TrigSense, int TrigChan, int ChanType, int Gain,
float Level, float Variance, int TrigEvent);

Visual Basic

Function cbDaqSetTrigger(ByVal BoardNum&, ByVal TrigSource&, ByVal TrigSense&, ByVal TrigChan&, ByVal
ChanType&, ByVal Gain&, ByVal Level!, ByVal Variance!, ByVal TrigEvent&) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The board must support synchronous output.

TrigSource

Specifies the type of triggering based on the external trigger source. Set to one of the constants specified in TrigSource
argument values section below.

TrigSense

Specifies the trigger sensitivity. The trigger sensitivity normally defines the way in which a trigger event is detected based
upon the characteristics of the trigger input signal. However, it often defines the way in which the trigger input signal(s)
should be compared to the trigger level parameter value. Set to of the constants specified in TrigSense argument values
section below.

TrigChan

Specifies the trigger channel. The trigger channel must be a configured channel in the channel array (refer to cbDaqInScan
()).

ChanType

Specifies the channel type and should match the channel type setting for the trigger channel configured using the
cbDaqInScan() function.

Gain

Specifies the trigger channel gain code. If the device has programmable gain, this argument should match the gain code
setting when the channel is configured using the cbDaqInScan() function. The Gain parameter is ignored if TrigChan is not an
analog channel.

Level

A single precision floating point value which represents, in engineering units, the level at or around which the trigger event
should be detected.

This option is used for trigger types that depend on an input channel comparison to detect the start trigger or stop trigger
event.

The actual level at which the trigger event is detected depends upon trigger sensing and variability. Refer to the Trigger
Levels section below for more information.

Variance

A single-precision floating point value which represents, in engineering units, the amount that the trigger event can vary from
the Level parameter.

While the TrigSense parameter indicates the direction of the input signal relative to the Level parameter, the Variance
parameter specifies the degree to which the input signal can vary relative to the Level parameter.

TrigEvent

Specifies the trigger event type. Valid values indicate either a start trigger event (START_EVENT)or a stop trigger event
(STOP_EVENT).

START_EVENT: The start trigger event defines the conditions under which post-trigger acquisition data collection should be
initiated or triggered. The start trigger event can vary in complexity from starting immediately, to starting on complex
channel value definitions.

STOP_EVENT: The stop trigger event signals the current data acquisition process to terminate. The stop event can be as
simple as that of a scan count, or as complex as involving a channel value level condition.

Returns

Page 387 of 700

n Error code or 0 if no errors

TrigSource argument values

TrigSense argument values

Trigger levels

The actual level at which the trigger event is detected depends upon trigger sensing and variability. The various ranges of possible
values for the Level parameter based on the trigger source are listed here:

n TRIG_ANALOG_HW: The voltage used to define the trigger level. Trigger detection is performed in hardware.

n TRIG_ANALOG_SW: The voltage used to define the trigger level. Trigger detection is performed in software.

n TRIG_DIGPATTERN: Sets the bit pattern for the digital channel trigger. Choices are:

0.0 (no bits set): 255.0 (all bits set) for 8-bit digital ports.

0.0 (no bits set): 65,535.0 (all bits set) for 16-bit digital ports.

n TRIG_COUNTER: Selects either Pulse or Totalize counter values (0.0 65,535).

n TRIG_IMMEDIATE: Ignored

n TRIG_SCANCOUNT: Ignored

TRIG_IMMEDIATE Start trigger event only. Acquisition begins immediately upon invocation the cbDaqInScan()
function. No pre-trigger data acquisition is possible with this trigger type.

TRIG_EXTTTL Start trigger event only. Acquisition begins on the selectable edge of an external TTL signal.
No pre-trigger data acquisition is possible with this trigger type.

TRIG_ANALOGHW Start trigger event only. Data acquisition begins upon a selectable criteria of the input signal
(above level, below level, rising edge, etc.) TrigChan must be defined as the first channel in
the channel scan group. No pre-trigger data acquisition is possible with this trigger type.

TRIG_ANALOGSW Post-trigger data acquisition begins upon a selectable criteria of the input signal (above
level, below level, rising edge, etc.)

TRIG_DIGPATTERN Post-trigger data acquisition beings upon receiving a specified digital pattern on the
specified digital port.

TRIG_COUNTER Post-trigger data acquisition begins upon detection of specified counter criteria.

TRIG_SCANCOUNT Stop trigger event only. Stops collecting post-trigger data when the specified number of
post-trigger scans are completed.

RISING_EDGE Triggers when the signal goes from low to high (TTL trigger) or rises through a specified
level (hardware analog, software analog, and counter).

FALLING_EDGE Triggers when the signal goes from high to low (TTL trigger) or falls through a specified
level (hardware analog, software analog, and counter).

ABOVE_LEVEL Triggers when the signal is above a specified level (hardware analog, software analog,
counter, and digital pattern).

BELOW_LEVEL Triggers when the signal is below a specified level (hardware analog, software analog,
counter, and digital pattern).

EQ_LEVEL Triggers when the signal equals a specified level (hardware analog, software analog,
counter, and digital pattern).

NE_LEVEL Triggers when the signal does not equal a specified level (hardware analog, software
analog, counter, and digital pattern).

Page 388 of 700

Trigger start and stop criteria

The table below lists the trigger start and stop criteria based on the selected trigger type and sensitivity.

Trigger Start/Stop
Source
(TrigSource)

Trigger Sensitivity
(TrigSense)

Trigger Start/Stop Criteria

TRIG_ANALOGHW

(Start trigger event
only)

RISING_EDGE Triggers when the signal value < (Level – Variance). Then, the
signal value > Level.

FALLING_EDGE Triggers when the signal value > (Level + Variance). Then, the
signal value < Level.

ABOVE_LEVEL Triggers when the signal value > (Level).

BELOW_LEVEL Triggers when the signal value < (Level).

TRIG_ANALOGSW RISING_EDGE Triggers/stops when the signal value < (Level – Variance). Then,
the signal value > Level.

FALLING_EDGE Triggers/stops when the signal value > (Level + Variance). Then,
the signal value < Level.

ABOVE_LEVEL Triggers/stops when the signal value > (Level).

BELOW_LEVEL Triggers/stops when the signal value < (Level).

EQ_LEVEL Triggers/stops when the (Level – Variance) < signal value < (Level
+ Variance).

NE_LEVEL Triggers/stops when the signal value < (Level – Variance) OR when
the signal value > (Level + Variance).

TRIG_DIGPATTERN ABOVE_LEVEL Triggers/stops when the (digital port value AND (bitwise) Variance)
> (Level AND (bitwise) Variance).

BELOW_LEVEL Triggers/stops when the (digital port value AND (bitwise) Variance)
< (Level AND (bitwise) Variance).

EQ_LEVEL Triggers/stops when the (digital port value AND (bitwise) Variance)
= (Level AND (bitwise) Variance).

NE_LEVEL Triggers/stops when the (digital port value AND (bitwise) Variance) !
= (Level AND (bitwise) Variance).

TRIG_COUNTER RISING_EDGE Triggers/stops when the counter channel < (Level Level – Variance).
Then, the counter channel > Level.

FALLING_EDGE Triggers/stops when the counter channel > (Level + Variance).
Then, the counter channel < Level.

ABOVE_LEVEL Triggers/stops when the counter channel > (Level – Variance).

BELOW_LEVEL Triggers/stops when the counter channel < (Level + Variance).

EQ_LEVEL Triggers/stops when (Level – Variance) < counter channel < (Level
+ Variance).

NE_LEVEL Triggers/stops when the counter channel < (Level – Variance) OR
when the counter channel > (Level + Variance).

Page 389 of 700

cbTIn() function
Changed R3.3 ID

Reads an analog input channel, linearizes it according to the selected temperature sensor type, if required, and returns the
temperature in units determined by the Scale argument. The CJC channel, the gain, and sensor type, are read from the InstaCal
configuration file, and should be set by running InstaCal.

Function Prototype
C/C++

int cbTIn(int BoardNum, int Chan, int Scale, float *TempVal, int Options)

Visual Basic

Function cbTIn(ByVal BoardNum&, ByVal Chan&, ByVal Scale&, TempVal!, ByVal Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

Chan

Input channel to read.

Scale

Specifies the temperature scale that the input will be converted to. Choices are CELSIUS, FAHRENHEIT, KELVIN, VOLTS, and
NOSCALE.

TempVal

The temperature in units determined by the Scale argument is returned here.

Options

Bit fields that control various options. Refer to the constants in the "Options argument values" section below.

Returns

n Error code or 0 if no errors

n TempVal – Temperature returned here

Options argument values

Refer to the board-specific information in the Universal Library User's Guide to determine if your hardware supports these
options.

Notes
Scale options

n Specify the NOSCALE option to retrieve raw data from the device. When NOSCALE is specified, calibrated data is returned,
although a cold junction compensation (CJC) correction factor is not applied to the returned values.

n Specify the VOLTS option to read the voltage input of a thermocouple.

Refer to board-specific information in the Universal Library User's Guide to determine if your hardware supports these options.

Using CIO-EXP boards

For CIO-EXP boards, the channel number is calculated using the following formula, where:

ADChan is the A/D channel that is connected to the multiplexer.

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the multiplexer board.

Chan = (ADChan × 16) + (16 + MuxChan)

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember that DAS08 channels
are numbered 0, 1, 2, 3, 4, 5, 6 and 7). If you connect a thermocouple to channel 5 of the EXP16, the value for Chan would be
(0 × 16) + (16 + 5)= 0 + 21 = 21.

FILTER When selected, a smoothing function is applied to temperature readings, very much like the
electrical smoothing inherent in all hand held temperature sensor instruments. This is the
default. When selected, 10 samples are read from the specified channel and averaged. The
average is the reading returned. Averaging removes normally distributed signal line noise.

NOFILTER If you use the NOFILTER option then the readings will not be smoothed and you will see a
scattering of readings around a mean.

Page 390 of 700

CJC channel

The CJC channel is set in the InstaCal installation and configuration program. If you have multiple EXP boards, the Universal
Library will apply the CJC reading to the linearization formula in the following manner:

n If you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will use the CJC temp reading
from that channel.

n If you left the CJC channel for the EXP board that the channel you are reading is on to NOT SET, the library will use the CJC
reading from the next lower EXP board with a CJC channel selected.

For example: You have four CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You choose CIO-EXP16 #1
(connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7, AND, you leave the CIO-EXP16's 2, 3 and 4
CJC channels to NOT SET. Result: The CIO-EXP boards will all use the CJC reading from CIO-EXP16 #1, connected to channel 7 for
linearization. It is important to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

Specific Errors

If an OUTOFRANGE or OPENCONNECTION error occurs, the value returned in TempVal is -9999.0. If a NOTREADY error occurs, the
value returned in TempVal is -9000.

Important!

For an EXP board connected to an A/D board that does not have programmable gain (DAS08, DAS16, DAS16F), the A/D board
range is read from the configuration file (cb.cfg). In most cases, set hardware-selectable ranges to ±5 V for thermocouples, and to
0 to 10 V for RTDs. Refer to the board-specific information in the Universal Library User's Guide or in the user manual for your
board. If the board has programmable gains, the cbTIn() function sets the appropriate A/D range.

Page 391 of 700

cbTInScan() function
Changed R3.3 ID

Reads a range of channels from an analog input board, linearizes them according to temperature sensor type, if required, and
returns the temperatures to an array in units determined by the Scale argument. The CJC channel, the gain, and temperature
sensor type are read from the configuration file. Use the InstaCal configuration program to change any of these options.

Function Prototype
C/C++

int cbTInScan(int BoardNum, int LowChan, int HighChan, int Scale, float DataBuffer[], int Options)

Visual Basic

Function cbTInScan(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&, ByVal Scale&, DataBuffer!, ByVal
Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

LowChan

Low channel of the scan.

HighChan

High channel of the scan.

Scale

Specifies the temperature scale that the input will be converted to. Choices are CELSIUS, FAHRENHEIT, KELVIN, VOLTS, and
NOSCALE.

DataBuffer

The temperature is returned in units determined by the Scale argument. Each element in the array corresponds to a channel
in the scan. DataBuffer must be at least large enough to hold HighChan – LowChan + 1 temperature values.

Options

Bit fields that control various options. Refer to the constants in the Options argument values section below.

Returns

n Error code or 0 if no errors

n DataBuffer[] - Temperature values in units determined by the Scale argument are returned here for each channel in the
scan.

Options argument values

Refer to the board-specific information in the Universal Library User's Guide to determine if your hardware supports these
options.

Notes
Scale options

n Specify the NoScale option to retrieve raw data from the device. When NoScale is specified, calibrated data is returned,
although a cold junction compensation (CJC) correction factor is not applied to the returned values.

n Specify the Volts option to read the voltage input of a thermocouple.

Refer to board-specific information in the Universal Library User's Guide to determine if your hardware supports these options.

FILTER When selected, a smoothing function is applied to temperature readings, very much like the electrical
smoothing inherent in all hand held temperature sensor instruments. This is the default. When selected,
10 samples are read from the specified channel and averaged. The average is the reading returned.
Averaging removes normally distributed signal line noise.

NOFILTER If you use the NOFILTER option then the readings will not be smoothed and you will see a scattering of
readings around a mean.

Page 392 of 700

Using CIO-EXP boards

For CIO-EXP boards, the channel number is calculated using the following formula:

Chan = (ADChan × 16) + (16 + MuxChan)

where:

ADChan is the A/D channel that is connected to the multiplexer.

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the multiplexer board.

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember that DAS08 channels are
numbered 0, 1, 2, 3, 4, 5, 6 and 7). If you connect a thermocouple to channel 5 of the EXP16, the value for Chan would be (0 × 16)
+ (16 + 5)= 0 + 21 = 21.

CJC channel

The CJC channel is set in the InstaCal installation and configuration program. If you have multiple EXP boards, the Universal
Library will apply the CJC reading to the linearization formula in the following manner:

n If you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will use the CJC temp reading
from that channel.

n If you left the CJC channel for the EXP board that the channel you are reading is on to NOT SET, the library will use the CJC
reading from the next lower EXP board with a CJC channel selected.

For example: You have four CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You choose CIO-EXP16 #1
(connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7, AND, you leave the CIO-EXP16's 2, 3 and 4
CJC channels to NOT SET. Result: The CIO-EXP boards will all use the CJC reading from CIO-EXP16 #1, connected to channel 7 for
linearization. As you can see, it is important to keep the CIO-EXP boards in the same case and out of any breezes to ensure a
clean CJC reading.

Specific Errors

For most boards, if an OUTOFRANGE or OPENCONNECTION error occurs, the value in the array element associated with the channel
causing the error returned will be -9999.0.

Important!
For an EXP board connected to an A/D board that does not have programmable gain (DAS08, DAS16, DAS16F), the A/D board
range is read from the configuration file (cb.cfg). In most cases, set hardware-selectable ranges to ±5 V for thermocouples, and to
0 to 10 V for RTDs. Refer to the board-specific information in the Universal Library User's Guide or in the user manual for your
board. If the board has programmable gains, the cbTIn() function sets the appropriate A/D range.

Page 393 of 700

cbWinBufAlloc() function
Allocates a Windows global memory buffer which can be used with the scan functions, and returns a memory handle for it.

Most devices return data in a 16-bit format. For these devices, the buffer can be created using cbWinBufAlloc(). Some devices
return data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the
data. In these cases, determine if the buffer needs to be created using cbWinBufAlloc32() or cbWinBufAlloc64(). See hardware-
specific information to determine the type of buffer needed. If not specifically mentioned, use cbWinBufAlloc().

Function Prototype
C/C++

HGLOBAL cbWinBufAlloc(long NumPoints)

Visual Basic

Function cbWinBufAlloc(ByVal NumPoints&) As Long

Arguments
NumPoints

The size of the buffer to allocate. Specifies how many data points (16-bit integers, NOT bytes) can be stored in the buffer.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other functions in the library, this function does not return an error code. It returns a Windows global memory
handle which can then be passed to the scan functions in the library. If an error occurs the handle will come back as 0 to
indicate that the buffer was not allocated.

Page 394 of 700

cbWinBufAlloc32() function
Allocates a Windows global memory buffer for use with the scan functions, and returns a memory handle for the buffer.

Most devices return data in a 16-bit format. For these devices, the buffer can be created using cbWinBufAlloc(). Some devices
return data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the
data. In these cases, determine if the buffer needs to be created using cbWinBufAlloc32() or cbWinBufAlloc64(). See hardware-
specific information to determine the type of buffer needed. If not specifically mentioned, use cbWinBufAlloc().

Function Prototype
C/C++

HGLOBAL cbWinBufAlloc32(long NumPoints)

Visual Basic

Function cbWinBufAlloc32(ByVal NumPoints&) As Long

Arguments
NumPoints

The size of the buffer to allocate. Specifies how many data points (32-bit integers, NOT bytes) can be stored in the buffer.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other functions in the library, this function does not return an error code. It returns a Windows global memory
handle which can then be passed to the scan functions in the library. If an error occurs, the handle will come back as 0 to
indicate that the buffer was not allocated.

Page 395 of 700

cbWinBufAlloc64() function
Allocates a Windows global memory buffer large enough to hold double precision data values, and returns a memory handle for the
buffer.

Function Prototype
C/C++

HGLOBAL cbWinBufAlloc64(long NumPoints);

Visual Basic

Function cbWinBufAlloc64(ByVal NumPoints&) As Long

Arguments
NumPoints

The size of the buffer to allocate. Specifies the number of double precision values (8-byte or 64-bit) that the buffer will hold.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other functions in the library, this function does not return an error code. It returns a Windows global memory
handle which can then be passed to the scan functions in the library. If an error occurs, the handle will come back as 0 to
indicate that the buffer was not allocated.

Page 396 of 700

cbWinBufFree() function
Frees a Windows global memory buffer which was previously allocated with cbWinBufAlloc(), cbWinBufAlloc32(), or cbWinBufAlloc64
().

Function Prototype
C/C++

int cbWinBufFree(int MemHandle)

Visual Basic

Function cbWinBufFree(ByVal MemHandle&) As Long

Arguments
MemHandle

A Windows memory handle. This must be a memory handle that was returned by cbWinBufAlloc(), cbWinBufAlloc32(), or
cbWinBufAlloc64() when the buffer was allocated.

Returns

n Error code or zero if no errors.

Page 397 of 700

cbWinArrayToBuf() function
Copies data from an array into a Windows memory buffer.

Function Prototype
C/C++

int cbWinArrayToBuf(unsigned short *DataArray, int MemHandle, long FirstPoint, long Count)

Visual Basic

Function cbWinArrayToBuf(DataArray%, ByVal MemHandle&, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
DataArray

The array containing the data to be copied.

MemHandle

This must be a memory handle that was returned by cbWinBufAlloc() when the buffer was allocated. The data will be copied
into this buffer.

FirstPoint

Index of first point in memory buffer where data will be copied to.

Count

Number of data points to copy.

Returns

n Error code or zero if no errors.

Notes

n This function copies data from an array to a Windows global memory buffer. This would typically be used to initialize the
buffer with data before doing an output scan. Using the FirstPoint and Count arguments it is possible to fill a portion of the
buffer. This can be useful if you want to send new data to the buffer after a BACKGROUND+CONTINUOUS output scan has
been started – for example, during circular buffering.

Although this function is available to Windows C, it is not necessary since it is possible to manipulate the memory buffer
directly by casting the MemHandle returned from cbWinBufAlloc() to the appropriate type. This method avoids having to copy
the data from an array to a memory buffer.

Refer to the following example:

long Count= 1000;

unsigned short *DataArray=NULL;

int MemHandle = 0;

/*allocate the buffer and cast it to an unsigned short*/

MemHandle = cbWinBufAlloc(Count);

DataArray = (unsigned short*)MemHandle;

/*calculate and store the waveform*/

for(int i=0; i<Count; ++i)

DataArray[i] = 2047*(1.0 + sin(6.2832*i/Count));

/*output the waveform*/

cbAOutScan(......,MemHandle,...);

/*free the buffer and NULL the pointer*/

cbWinBufFree(MemHandle);

DataArray = NULL;

Page 398 of 700

cbWinBufToArray() function
Copies data from a Windows memory buffer into an array.

Function Prototype
C/C++

int cbWinBufToArray(int MemHandle, unsigned short* DataArray, long FirstPoint, long Count)

Visual Basic

Function cbWinBufToArray(ByVal MemHandle&, DataArray%, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
MemHandle

This must be a memory handle that was returned by cbWinBufAlloc() when the buffer was allocated. The buffer should
contain the data that you want to copy.

DataArray

The array that the data is copied to.

FirstPoint

Index of the first point in the memory buffer that data is copied from.

Count

Number of data points to copy.

Returns

n Error code or zero if no errors.

Notes

n This function copies data from a Windows global memory buffer to an array. This would typically be used to retrieve data
from the buffer after executing an input scan function.

Using the FirstPoint and Count argument it is possible to copy only a portion of the buffer to the array. This can be useful if you
want foreground code to manipulate previously collected data while a BACKGROUND scan continues to collect new data.

Although this function is available to Windows C programs, it is not necessary, since it is possible to manipulate the memory buffer
directly by casting the MemHandle returned from cbWinBufAlloc() to the appropriate type. This method avoids having to copy the
data from the memory buffer to an array.

Refer to the following example:

/*declare and initialize the variables*/

long Count=1000;

unsigned short *DataArray=NULL;

int MemHandle=0;

/*allocate the buffer and cast it to a pointer to an unsigned short*/

MemHandle = cbWinBufAlloc(Count);

DataArray = (unsigned short*)MemHandle;

/*Scan the waveform data*/

cbAInScan(......,MemHandle,...);

/*print the results*/

for(int i=0; i<Count; ++i)

printf("Data[%d]=%d\n", i, DataArray[i])

/*free the buffer and NULL the pointer*/

cbWinBufFree(MemHandle);

DataArray = NULL;

Page 399 of 700

cbWinBufToArray32() function
Copies 32-bit data from a Windows memory buffer into an array.

Function Prototype
C/C++

int cbWinBufToArray32(int MemHandle, unsigned long* DataArray, long FirstPoint, long Count)

Visual Basic

Function cbWinBufToArray32(ByVal MemHandle&, DataArray&, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
MemHandle

The memory handle that was returned by cbWinBufAlloc32() when the buffer was allocated. The buffer should contain the
data that you want to copy.

DataArray

The array that the data is copied to.

FirstPoint

The index of the first point in the memory buffer that data is copied from.

Count

The number of data points to copy.

Returns

n Error code or zero if no errors.

Notes

n You can copy only a portion of the buffer to the array using the FirstPoint and Count argument. This is useful if you want
foreground code to manipulate previously collected data while a BACKGROUND scan continues to collect new data.

n Although this function is available to Windows C programs, it is not necessary, since you can manipulate the memory buffer
directly by casting the MemHandle returned from cbWinBufAlloc32() to the appropriate type. This method avoids having to
copy the data from the memory buffer to an array.

Refer to the following example:

/*declare and initialize the variables*/

long Count = 1000;

unsigned short *DataArray = NULL;

int MemHandle = 0;

/*allocate the buffer and cast it to a pointer to an unsigned long*/

MemHandle = cbWinBufAlloc32(Count);

DataArray = (unsigned long*)MemHandle;

/*scan in the data*/

cbCInScan(......,MemHandle,...);

/*print the results*/

for(int i=0; i<Count; ++i)

printf("Data[%d]=%d\n", i, DataArray[i]);

/*free the buffer and NULL the pointer*/

cbWinBufFree(MemHandle);

DataArray = NULL;

Page 400 of 700

cbScaledWinArrayToBuf() function
Copies double precision values from an array into a Windows memory buffer.

Function Prototype
C/C++

int cbScaledWinArrayToBuf(double *DataArray, HGLOBAL MemHandle, long StartPt, long Count);

Visual Basic

function cbScaledWinArrayToBuf(DataArray#, ByVal MemHandle&, ByVal FirstPoint&, ByVal CBCount&) As Long

Arguments
DataArray

The array containing the data to be copied.

MemHandle

This must be a memory handle that was returned by cbScaledWinBufAlloc() when the buffer was allocated. The data will be
copied into this buffer.

FirstPoint

Index of the first point in the memory buffer where the data will be copied.

Count

Number of data points to copy.

Returns

n Error code or zero if no errors.

Notes

n This function is used in conjunction with the SCALEDATA scan option and cbScaledWinBufAlloc().

Page 401 of 700

cbScaledWinBufAlloc() function
Allocates a Windows global memory buffer large enough to hold scaled data obtained from scan operations in which the
SCALEDATA scan option is selected, and returns a memory handle for the buffer.

Function Prototype
C/C++

int cbScaledWinBufAlloc(int NumPoints);

Visual Basic

Function cbScaledWinBufAlloc(ByVal NumPoints&) As Long

Arguments
NumPoints

The size of the buffer to allocate. Specifies the number of double precision values (8-byte or 64-bit) that the buffer will hold.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n This function is used in conjunction with the SCALEDATA scan option and cbScaledWinBufToArray() or
cbScaledWinArrayToBuf().

n Unlike most other functions in the library, this function does not return an error code. It returns a Windows global memory
handle which can then be passed to the scan functions in the library. If an error occurs, the handle will come back as 0 to
indicate that the buffer was not allocated.

Page 402 of 700

cbScaledWinBufToArray() function
Copies double precision values from a Windows memory buffer into an array.

Function Prototype
C/C++

int cbScaledWinBufToArray(int MemHandle, double* DataArray, long FirstPoint, long Count);

Visual Basic

Function cbScaledWinBufToArray(ByVal MemHandle&, DataArray#, ByVal FirstPoint&, ByVal Count&) As Long

Arguments
MemHandle

The memory handle that was returned by cbScaledWinBufAlloc() when the buffer was allocated. The buffer should contain the
data that you want to copy.

DataArray

A pointer to the start of the destination array to which the data samples are copied.

FirstPoint

The buffer index of the first sample to copy from the buffer.

Count

The number of samples to copy into DataArray.

Returns

n Error code or zero if no errors.

Notes

n This function is used in conjunction with the SCALEDATA scan option and cbScaledWinBufAlloc().

Page 403 of 700

cbDeviceLogin() function
Opens a device session with a shared device.

Function Prototype
C/C++

int cbDeviceLogin(int BoardNum, char* UserName, char* Password);

Visual Basic

Function cbDeviceLogin(ByVal BoardNum&, UserName$, Password$) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

UserName

A null-terminated string that identifies the user name used to log in to a device session.

Password

A null-terminated string that identifies the password used to log in to a device session.

Returns

n Error code or 0 if no errors.

Notes

n If the user name or password is invalid, the function returns INVALIDLOGIN.

n If the session is already opened by another user, the function returns SESSIONINUSE.

Page 404 of 700

cbDeviceLogout() function
Releases the device session with a shared device.

Function Prototype
C/C++

int cbDeviceLogout(int BoardNum);

Visual Basic

Function cbDeviceLogout(ByVal BoardNum) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

Returns

n Error code or 0 if no errors.

Page 405 of 700

cbDisableEvent function
Disables one or more event conditions and disconnects their user-defined handlers.

Function Prototype
C/C++

int cbDisableEvent(int BoardNum, unsigned EventType)

Visual Basic

Function cbDisableEvent(ByVal BoardNum&, ByVal EventType&) as Long

Arguments
BoardNum

The board number used to indicate which device's event handling will be disabled. BoardNum may be 0 to 99. Refers to the
number associated with the board when it was installed with InstaCal.

EventType

Specifies one or more event conditions to disable. More than one event type can be specified by bitwise OR'ing the event
types. Note that specifying an event that has not been enabled is benign and will not cause any errors. Refer to
cbEnableEvent() for valid EventType settings.

To disable all events in a single call, use ALL_EVENT_TYPES.

Returns

n Error code or 0 if no errors

Notes

n For most event types, this function cannot be called while any background operations (cbAInScan(), cbAPretrig(), or
cbAOutScan()) are active. Perform a cbStopBackground before calling cbDisableEvent(). However, for
ON_EXTERNAL_INTERRUPT events, you can call cbDisableEvent() while the board is actively generating events.

Important!

In order to understand the functions, refer to the board-specific information in the Universal Library User's Guide and also in the
Readme files installed with the Universal Library. We also urge you to examine and run one or more of the example programs
supplied prior to attempting any programming of your own. Following this advice may save you hours of frustration, and wasted
time.

This note, which appears elsewhere, is especially applicable to this function. Now is the time to read the board specific information
for your board. We suggest that you make a copy of that page to refer to as you read this manual and examine the example
programs.

Page 406 of 700

cbEnableEvent() function
Binds one or more event conditions to a user-defined callback function. Upon detection of an event condition, the user-defined
function is invoked with board- and event-specific data. Detection of event conditions occurs in response to interrupts. Typically,
this function is used in conjunction with interrupt driven processes such as cbAInScan(), cbAPretrig(), or cbAOutScan().

Function Prototype
C/C++

int cbEnableEvent(int BoardNum, unsigned EventType, unsigned EventParam, void* CallbackFunc, void*
UserData)

Visual Basic

Function cbEnableEvent(ByVal BoardNum&, ByVal EventType&, ByVal EventParam&, ByVal CallbackFunc&, ByRef
UserData as Any) as Long

Arguments
BoardNum

The board number used to indicate which device will generate the event conditions. BoardNum may be 0 to 99. Refers to the
number associated with the board when it was installed with InstaCal.

EventType

Specifies one or more event conditions that will be bound to the user-defined callback function. More than one event type can
be specified by bitwise OR'ing the event types. Refer to the constants in the EventType argument values below.

EventParam

Additional data required to specify some event conditions, such as an ON_DATA_AVAILABLE event or
ON_EXTERNAL_INTERRUPT event.

For ON_DATA_AVAILABLE events, EventParam is used to determine the minimum number of samples to acquire during an
analog input scan before generating the event. For ON_EXTERNAL_INTERRUPT events, EventParam is used to latch digital bits
on supported hardware by setting it to one of the constants in the EventParam argument values section below.

Most event conditions ignore this value.

CallbackFunc

The address of or pointer to the user-defined callback function to handle the above event type(s). This function must be
defined using the standard call (__stdcall) calling convention. Consequently, Visual Basic programs must define their callback
functions in standard modules (.bas) and cannot be object methods. C++ programs can define this callback function as either
a global function or as a static member function of a class (note that static members do NOT have access to instance specific
data).

Refer to the "User Callback function" for proper function syntax.

UserData

The address of or pointer to user-defined data that will be passed to the user-defined callback function. This parameter is
NOT dereferenced by the library or its drivers; as a consequence, a NULL pointer can be supplied.

Returns

n Error code or 0 if no errors

Page 407 of 700

EventType argument values

EventParam argument values

Notes

n This function cannot be called while any background operations (cbAInScan(), cbAPretrig(), or cbAOutScan()) are active. If a
background operation is in progress when cbEnableEvent() is called, the function returns an ALREADYACTIVE error. Perform
a cbStopBackground() call before calling cbEnableEvent().

n Events will not be generated faster than the user callback function can handle them. If an event type becomes multi-signaled
before the event handler returns, events are merged. The event handler is called once per event type, and is supplied with
the event data corresponding to the latest event. When more than one event type is generated, the event handler for each
event type is called in the same order in which they are enabled.

n Events are generated while handling board-generated interrupts. Therefore, using cbStopBackground() to abort background
operations does not generate ON_END_OF_AI_SCAN or ON_END_OF_AO_SCAN events. However, the event handlers can be
called immediately after calling cbStopBackground().

n cbEnableEvent() is intended for use with Windows applications. Use with console applications can produce unpredictable
results.

ON_DATA_AVAILABLE Generates an event whenever the number of samples acquired during an analog input
scan increases by EventParam samples or more. Note that for BLOCKIO scans,
events will be generated on packet transfers; for example, even if EventParam is set
to 1, events will only be generated every packet-size worth of data (256 samples for
the PCI-DAS1602) for aggregate rates greater than 1 kHz for the default cbAInScan()
mode.

For cbAPretrig(), the first event is not generated until a minimum of EventParam
samples after the pretrigger.

ON_END_OF_AI_SCAN Generates an event upon completion or fatal error of cbAInScan() or cbAPretrig().

Some devices, such as the USB-1208FS and USB-1408FS, will generate an end of
scan event after cbStopBackground is called, but most devices do not. Handle post-
scan tasks directly after calling cbStopBackground.

ON_END_OF_AO_SCAN Generates an event upon completion or fatal error of cbAOutScan().

Some devices, such as the USB-1208FS and USB-1408FS, will generate an end of
scan event after cbStopBackground is called, but most devices do not. Handle post-
scan tasks directly after calling cbStopBackground.

ON_EXTERNAL_INTERRUPT For some digital and counter boards, generates an event upon detection of a pulse at
the External Interrupt pin.

ON_PRETRIGGER For cbAPretrig(), generates an event upon detection of the first trigger.

ON_SCAN_ERROR Generates an event upon detection of a driver error during BACKGROUND input and
output scans. This includes OVERRUN, UNDERRUN, and TOOFEW errors.

LATCH_DI Returns the data that was latched in at the most recent interrupt edge.

LATCH_DO Latches out the data most recently written to the hardware.

Page 408 of 700

cbFlashLED() function
Causes the LED on a USB device to flash.

Function Prototype
C/C++

int cbFlashLED(int BoardNum);

Visual Basic

Function cbFlashLED(ByVal BoardNum&) as Long

Argument
BoardNum

The board number of the USB device whose LED will flash.

Note

After calling cbFlashLED(), wait a few seconds before calling additional functions, or execution of the next function may fail.

Page 409 of 700

cbFromEngUnits() function
Converts a single precision voltage (or current) value in engineering units to an integer count value. This function is typically used
to obtain a data value from a voltage value for output to a D/A with functions such as cbAOut().

Function Prototype
C/C++

int cbFromEngUnits(int BoardNum, int Range, float EngUnits, unsigned short *DataVal)

Visual Basic

Function cbFromEngUnits(ByVal BoardNum&, ByVal Range&, ByVal EngUnits!, DataVal%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. This function uses the board number to determine
the resolution and polarity values to use in the conversion. BoardNum may be 0 to 99.

Range

The voltage (or current) range to use for the conversion to counts. When using this function to obtain a value to send to a
D/A board, keep in mind that some D/A boards have programmable voltage ranges, and others set the voltage range via
switches on the board. In either case, the desired range must be passed to this function.

Refer to board-specific information in the Universal Library User's Guide for a list of the supported A/D ranges of each board.

EngUnits

The single precision voltage (or current) value to use for the conversion to counts. Set the value to be within the range
specified by the Range argument.

DataVal

The function returns an integer count to this variable that is equivalent to the EngUnits argument using the resolution of the
D/A on the board referenced by BoardNum (if any).

Returns

n Error code or 0 if no errors.

n DataVal – the integer count equivalent to EngUnits is returned here.

Notes

n This function is not supported for hardware with resolution greater than 16 bits.

The default resolution of this function is 12 bits. If the device referenced by BoardNum has neither analog input nor analog
output, the result is a 12 bit conversion.

If the device referenced by BoardNum has both analog input and analog output, the resolution and transfer function of the
D/A converter on the device is used.

Page 410 of 700

../../Misc/Supported_A_D_Ranges.htm

cbGetBoardName() function
Returns the board name of a specified board.

Function Prototype
C/C++

int cbGetBoardName(int BoardNum, char *BoardName)

Visual Basic

Function cbGetBoardName(ByVal BoardNum&, ByVal BoardName$) As Long

Arguments
BoardNum

Refers either to the number associated with a board when it was installed with InstaCal, GETFIRST, or GETNEXT. BoardNum
may be 0 to 99, or GETFIRST or GETNEXT.

BoardName

A null-terminated string variable that the board name will be returned to. This string variable must be pre-allocated to be at
least as large as BOARDNAMELEN. This size is guaranteed to be large enough to hold the longest board name string. Refer
also to the board type codes in the "Measurement Computing Device IDs" section.

Returns

n Error code or 0 if no errors.

n BoardName – return string containing the board name.

Notes
There are two distinct ways of using this function:

n Pass a board number as the BoardNum argument. The string that is returned describes the board type of the installed board.

n Set BoardNum to GETFIRST or GETNEXT to get a list of all board types that are supported by the library. Set BoardNum to
GETFIRST to get the first board type in the list of supported boards. Subsequent calls with Board=GETNEXT returns each of
the other board types supported by the library. When you reach the end of the list, BoardName is set to an empty string.
Refer to the ulgt04 example program for more details.

Page 411 of 700

cbGetStatus() function
Returns the status about the background operation currently running.

Function Prototype
C/C++

int cbGetStatus(int BoardNum, int *Status, long *CurCount, long *CurIndex, int FunctionType)

Visual Basic

Function cbGetStatus(ByVal BoardNum&, Status%, CurCount&, CurIndex&, FunctionType&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with the InstaCal. BoardNum may be 0 to 99.

Status

Status indicates whether or not a background process is currently executing.

CurCount

The CurCount argument specifies how many points have been input or output since the Background process started. Use it to
gauge how far along the operation is towards completion. Generally, CurCount returns the total number of samples
transferred between the DAQ board and the Windows data buffer at the time cbGetStatus() was called.

When you set both the CONTINUOUS and BACKGROUND options, CurCount's behavior depends on the board model. Refer to
the board-specific information in the Universal Library User's Guide for the behavior of your board.

With recent MCC DAQ designs, the CurCount argument continually increases in increments of the packet size as Windows'
circular data buffer recycles, until it reaches 231. Since the Count argument is a signed integer, at 2,147,483,647 + 1, the
Count rolls back to a negative number (-2,147,483,647). The Count argument resumes incrementing, eventually reaching 0
and increasing back up to 2,147,483,647.

The CurIndex argument is usually more useful than the CurCount argument in managing data collected when you set both
the CONTINUOUS and BACKGROUND options.

CurIndex

The CurIndex argument is an index into the Windows data buffer. This index points to the start of the last completed channel
scan that was transferred between the DAQ board and the Windows data buffer. If no points in the buffer have been
transferred, CurIndex equals –1 in most cases.

For CONTINUOUS operations, CurIndex rolls over when the Windows data buffer is full. This rollover indicates that "new" data
is now overwriting "old" data. Your goal is to process the old data before it gets overwritten. You can keep ahead of the data
flow by copying the old data out of the buffer before new data overwrites it.

The CurIndex argument can help you access the most recently transferred data. Your application does not have to process
the data exactly when it becomes available in the buffer – in fact, you should avoid doing so unless absolutely necessary. The
CurIndex argument generally increments by the packet size, but in some cases the CurIndex increment can vary within the
same scan. One instance of a variable increment is when the packet size is not evenly divisible by the number of channels.

You should determine the best size of the "chunks" of data that your application can most efficiently process, and then
periodically check on the CurIndex argument value to determine when that amount of additional data has been transferred.

Refer to the Universal Library User's Guide for information on your board, particularly when using Pre-Trigger.

FunctionType

Specifies which scan to retrieve status information about. Refer to the FunctionType argument values section below.

Returns

n Error code or 0 if no errors

n Status – Returns the status of the operation:

0 – a background process is not currently executing.

1 – a background process is currently executing.

n CurCount – Returns the current number of samples collected.

n CurIndex – Returns the Current sample index.

FunctionType argument values

AIFUNCTION Specifies analog input scans started with cbAInScan() or cbAPretrig().

AOFUNCTION Specifies analog output scans started with cbAOutScan().

Page 412 of 700

DIFUNCTION Specifies digital input scans started with cbDInScan().

DOFUNCTION Specifies digital output scans started with cbDOutScan().

CTRFUNCTION Specifies counter background operations started with cbCStoreOnInt() or cbCInScan().

DAQIFUNCTION Specifies a synchronous input scan started with cbDaqInScan().

DAQOFUNCTION Specifies a synchronous output scan started with cbDaqOutScan().

Page 413 of 700

cbGetTCValues() function
Converts raw thermocouple data collected using the cbDaqInScan() function to data on a temperature scale (Celsius, Fahrenheit, or
Kelvin).

Function Prototype
C/C++

int cbGetTCValues(int BoardNum, short *ChanArray, short *ChanTypeArray, int ChanCount, int MemHandle,
int FirstPoint, long Count, int Scale, float *TempValArray)

Visual Basic

Function cbGetTCValues (ByVal BoardNum&, ChanArray%, ChanTypeArray%, ByVal ChanCount&, ByVal
MemHandle&, ByVal FirstPoint&, ByVal Count&, ByVal CBScale&, TempValArray!) As Long

Arguments
BoardNum

The board number used to collect the data. BoardNum may be 0 to 99. Refers to the number associated with the board used
to collect the data when it was installed with InstaCal. The specified board must support synchronous input.

ChanArray

Array containing channel values. Valid channel values are analog and temperature input channels and digital ports.
ChanArray must match the channel array used with the cbDaqInScan() function.

ChanTypeArray

Array containing channel types. Each element of this array defines the type of the corresponding element in the ChanArray.
ChanTypeArray must match the channel type settings used with the cbDaqInScan() function

ChanCount

Number of elements in ChanArray.

MemHandle

This must be a memory handle that was returned by cbWinBufAlloc() when the buffer was allocated. The buffer should
contain the data that you want to convert.

FirstPoint

The index into the raw data memory buffer that holds the first sample of the first channel to be converted. The index into the
raw memory is (FirstPoint x ChanCount) so that converted data always starts with the first channel specified in the scan. For
example, if FirstPoint is 14 and the number of channels is 8, the index of the first converted sample is 112.

Count

The number of samples per channel to convert to engineering units. Count should not exceed Windows buffer size /
ChanCount – FirstPoint.

Scale

Specifies the temperature scale that the input will be converted to. Choices are CELSIUS, FAHRENHEIT and KELVIN.

TempArray

The array to hold the converted data. This array must be allocated by the user, and must be large enough to hold count
samples x the number of temperature channels.

Returns

n Error code or 0 if no errors

n TempValArray – Converted data.

Page 414 of 700

cbInByte() function
Reads a byte from a hardware register on a board.

Function Prototype
C/C++

int cbInByte(int BoardNum, int PortNum)

Visual Basic

Function cbInByte(ByVal BoardNum&, ByVal PortNum&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this argument to the offset for the desired register. This function takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

Returns

n The current value of the specified register.

Notes

n cbInByte() is used to read 8 bit ports. cbInWord() is used to read 16-bit ports.

This function was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 415 of 700

cbInWord() function
Reads a word from a hardware register on a board.

Function Prototype
C/C++

int cbInWord(int BoardNum, int PortNum)

Visual Basic

Function cbInWord(ByVal BoardNum&, ByVal PortNum&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this argument to the offset for the desired register. This function takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

Returns

n The current value of the specified register

Notes

n cbInByte() is used to read 8 bit ports. cbInWord() is used to read 16-bit ports.

This function was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 416 of 700

cbOutByte() function
Writes a byte to a hardware register on a board.

Function Prototype
C/C++

int cbOutByte(int BoardNum, int PortNum, int PortVal)

Visual Basic

Function cbOutByte(ByVal BoardNum&, ByVal PortNum&, ByVal PortVal%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this argument to the offset for the desired register. This function takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

PortVal

Value that is written to the register.

Returns

n Error code or 0 if no errors

Notes

n cbOutByte() is used to write to 8 bit ports. cbOutWord() is used to write to 16-bit ports.

This function was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 417 of 700

cbOutWord() function
Writes a word to a hardware register on a board.

Function Prototype
C/C++

int cbOutWord(int BoardNum, int PortNum, int PortVal)

Visual Basic

Function cbOutByte(ByVal BoardNum&, ByVal PortNum&, ByVal PortVal%) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

PortNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this argument to the offset for the desired register. This function takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

PortVal

Value that is written to the register.

Returns

n Error code or 0 if no errors

Notes

n cbOutByte() is used to write to 8 bit ports. cbOutWord() is used to write to 16-bit ports.

This function was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 418 of 700

cbRS485() function
Sets the direction of RS-485 communications port buffers.

Function Prototype
C/C++

int cbRS485(int BoardNum, int Transmit, int Receive)

Visual Basic

Function cbRS485(ByVal BoardNum&, ByVal Transmit&, ByVal Receive&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

Transmit

Set to ENABLED or DISABLED (CBENABLED or CBDISABLED in Visual Basic). The transmit RS-485 line driver is turned on.
Data written to the RS-485 UART chip is transmitted to the cable connected to that port.

Receive

Set to ENABLED or DISABLED (CBENABLED or CBDISABLED in Visual Basic). The receive RS-485 buffer is turned on. Data
present on the cable connected to the RS-485 port is received by the UART chip.

Returns

n Error code or 0 if no errors

Notes

n You can simultaneously enable or disable the transmit and receive buffers. If both are enabled, data written to the port is
also received by the port. For a complete discussion of RS485 network construction and communication, refer to the CIO-
COM485 or PCM-COM485 hardware manual.

Page 419 of 700

cbStopBackground() function
Stops one or more subsystem background operations that are in progress for the specified board. Use this function to stop any
function that is running in the background. This includes any function that was started with the BACKGROUND option, as well as
cbCStoreOnInt() (which always runs in the background).

Execute cbStopBackground() after normal termination of all background functions to clear variables and flags.

Function Prototype
C/C++

int cbStopBackground(int BoardNum, int FunctionType)

Visual Basic

Function cbStopBackground(ByVal BoardNum&, ByVal FunctionType&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

FunctionType

Specifies which background operation to stop. Specifies which scan to retrieve status information about. Refer to the
FunctionType argument values section below.

Returns

n Error code or 0 if no errors

FunctionType argument values

AIFUNCTION Specifies analog input scans started with cbAInScan() or cbAPretrig().

AOFUNCTION Specifies analog output scans started with cbAOutScan().

DIFUNCTION Specifies digital input scans started with cbDInScan().

DOFUNCTION Specifies digital output scans started with cbDOutScan().

CTRFUNCTION Specifies counter background operations started with cbCStoreOnInt() or cbCInScan().

DAQIFUNCTION Specifies a synchronous input scan started with cbDaqInScan().

DAQOFUNCTION Specifies a synchronous output scan started with cbDaqOutScan().

Page 420 of 700

cbTEDSRead() function
Reads data from a TEDS sensor into an array.

Function Prototype
C/C++

int cbTEDSRead(int BoardNum, int Chan, BYTE* DataBuffer, long *Count, int Options)

Visual Basic

Function cbTEDSRead(ByVal BoardNum&, ByVal Chan&, DataBuffer, CBCount&, ByVal Options&) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. BoardNum may be 0 to 99.

Chan

A/D channel number.

DataBuffer

Pointer to the data array.

Count

Number of data points to read.

Options

Reserved for future use.

Returns

n Error code or 0 if no errors.

n Count - The actual number of data points read.

Options argument values

Default

Reserved for future use.

Page 421 of 700

cbToEngUnits() function
Converts an integer count value to an equivalent single precision voltage (or current) value. This function is typically used to obtain
a voltage value from data received from an A/D with functions such as cbAIn().

Function Prototype
C/C++

int cbToEngUnits(int BoardNum, int Range, unsigned short DataVal, float *EngUnits)

Visual Basic

Function cbToEngUnits(ByVal BoardNum&, ByVal Range&, ByVal DataVal%, EngUnits!) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. This function uses the board number to determine
the resolution and polarity values to use for the conversion. BoardNum may be 0 to 99.

Range

Voltage (or current) range to use for the conversion to engineering units. When using this function to obtain engineering units
from a value received from an A/D board, keep in mind that some A/D boards have programmable voltage ranges, and
others set the voltage range via switches on the board. In either case, the desired range must be passed to this function.

Refer to board-specific information in the Universal Library User's Guide for a list of the supported A/D ranges of each board.

DataVal

An integer count value (typically, one returned from an A/D board).

EngUnits

The single precision voltage (or current) value that is equivalent to DataVal is returned to this variable. The value will be
within the range specified by the Range argument using the resolution of the A/D on the board referenced by BoardNum (if
any).

Returns

n Error code or 0 if no errors.

n EngUnits – the engineering units value equivalent to DataVal is returned to this variable.

Notes

n This function is not supported for hardware with resolution greater than 16 bits.

n The default resolution of this function is 12 bits, so if the device referenced by BoardNum has neither analog input nor analog
output, the result will be a 12 bit conversion.

n If the device referenced by BoardNum has both analog input and analog output, the resolution and transfer function of the
A/D converter on the device is used.

Page 422 of 700

../../Misc/Supported_A_D_Ranges.htm

cbToEngUnits32() function
Converts an integer count value to an equivalent double precision voltage (or current) value.

Function Prototype
C/C++

int cbToEngUnits32(int BoardNum, int Gain, unsigned long DataValue, double *EngUnits);

Visual Basic

Function cbToEngUnits32(ByVal BoardNum&, ByVal Gain&, ByVal DataValue&, EngUnits#) As Long

Arguments
BoardNum

The number associated with the board when it was installed with InstaCal. This function uses the board number to determine
the resolution and polarity values to use for the conversion. BoardNum may be 0 to 99.

Gain

Voltage (or current) range to convert to engineering units. When using this function to obtain engineering units from a value
received from an A/D board, keep in mind that some A/D boards have programmable voltage ranges, and others set the
voltage range via switches on the board. In either case, the desired range must be passed to this function.

Refer to board-specific information in the Universal Library User's Guide for a list of the supported A/D ranges of each board.

DataValue

An integer count value (typically, one returned from an A/D board) to convert to engineering units.

EngUnits

The double precision voltage (or current) value that is equivalent to DataValue is returned to this variable. The value will be
within the range specified by the Range argument using the resolution of the A/D on the board referenced by BoardNum (if
any).

Returns

n Error code or 0 if no errors.

n EngUnits – the engineering units value equivalent to DataValue is returned to this variable.

Notes

n This function is typically used to obtain a voltage (or current) value from data received from an A/D with functions such as
cbAIn32().

n This function should be used for devices with a resolution of 20-bits or more.

The default resolution of this function is 32 bits, so if the device referenced by BoardNum has neither analog input nor analog
output, the result will be a 32 bit conversion.

If the device referenced by BoardNum has both analog input and analog output, the resolution and transfer function of the
A/D converter on the device is used.

Page 423 of 700

../../Misc/Supported_A_D_Ranges.htm

User Callback function
The User Callback function is called as an argument of the cbEnableEvent() function. You create the function using the prototype
shown below. You call the function by passing either it's address or a pointer to the function to the CallbackFunc argument of the
cbEnableEvent() function.

Callback function prototype
C/C++

void __stdcall CallbackFunc(int BoardNum, unsigned EventType, unsigned EventData, void* UserData);

Visual Basic

Sub CallbackFunc(ByVal BoardNum&, ByVal EventType&, ByVal EventData&, ByRef UserData as UserDataType)

where UserDataType is the data type of the UserData argument passed to cbEnableEvent().

Arguments
BoardNum

Indicates which board caused the event.

EventType

Indicates which event occurred.

EventData

Board-specific data associated with this event. Returns the value of the EventType as listed in the "EventData argument
values" section below.

UserData

The pointer or reference to data supplied by the UserData parameter in cbEnableEvent(). Note that before use, this
parameter must be cast to the same data type as passed in to cbEnableEvent().

EventData argument values

EventType Value of EventData

ON_DATA_AVAILABLE The number of samples acquired since the start of the scan.

ON_END_OF_AI_SCAN The total number of samples acquired upon the scan completion or end.

ON_END_OF_AO_SCAN The total number of samples output upon the scan completion or end.

ON_EXTERNAL_INTERRUPT The number of interrupts generated since enabling the ON_EXTERNAL_INTERRUPT event.

ON_PRETRIGGER The number of pretrigger samples available at the time of pretrigger.

This value is invalid for some boards when a TOOFEW error occurs. Refer to board details.

ON_SCAN_ERROR The error code of the scan error.

Page 424 of 700

UL for .NET Class Library Overview
The Microsoft .NET platform provides a framework that allows for the development of Windows applications using a wide range of
new programming languages. These languages include VB .NET, C#, managed C++, JScript, and any other language that is
compliant with the .NET Common Language Runtime (CLR). The CLR is a multi-language execution environment.

The interface to the Universal Library consists of standard "C" functions. These functions are not CLR-compliant. Therefore, the
Universal Library for .NET was developed. This library enables the various .NET programming languages to call into the Universal
Library.

The Universal Library for .NET consists of a set of classes. For the most part, the methods within each class have a corresponding
function in the standard UL. Each UL for .NET method has virtually the same parameter set as their UL counterparts.

MccDaq namespace
The MccDaq namespace is a logical naming scheme for grouping related types. The .NET Framework uses a hierarchical naming
scheme for grouping types into logical categories of related functionality. The namespace contains the classes and enumerated
constants by which your UL for .NET applications can access the Universal Library data types and functions.

MccDaq classes
The MccDaq namespace contains five main classes:

n MccBoard class

n ErrorInfo class

n MccService class

n GlobalConfig class

n DataLogger class

The MccDaq namespace also contains the following four secondary classes:

n cBoardConfig: Contains all of the members for setting and getting board-level configuration.

n cCtrConfig: Contains all of the members for setting and getting the counter-level configuration of a board.

n cDioConfig: Contains all of the members for getting the digital configuration of a board.

n cExpansionConfig: Contains all of the members for setting and getting expansion board configuration.

These secondary classes include methods that are accessible from properties of the MccBoard class.

MccDaq enumerated constants
The MccDaq Namespace contains enumerated values which are used by many of the methods available from the MccDaq classes.
Click here for a list of the enumerated values.

Page 425 of 700

cBoardConfig_Class.htm
cCtrConfig_Class.htm
cDioConfig_Class.htm
cExpansionConfig_Class.htm

DataLogger class
Contains all of the members for reading and converting binary log files.

The DataLogger class is a member of the MccDaq namespace. Refer to the "UL for .NET Class Library Overview" for an explanation
of the MccDaq namespace.

Property and methods
The DataLogger class provides one property to get a reference to the file name associated with the current instance of the
DataLogger.

The DataLogger class includes 14 methods used to read and convert the data contained in a binary log file. These methods are
equivalents of the function calls used in the standard Universal Library. The methods have virtually the same parameter set as their
UL counterparts.

n FileName property - Returns the file name associated with an instance of the DataLogger class.

n ConvertFile() - Converts a binary log file to a comma-separated values (.CSV) text file or another text file format that you
specify.

n GetAIChannelCount() - Retrieves the total number of analog channels that were logged in a binary file.

n GetAIInfo() - Retrieves the channel number and unit value of each analog input channel logged in a binary file.

n GetCJCInfo() - Retrieves the number of CJC temperature channels that were logged.

n GetDIOInfo() - Retrieves the number of digital I/O channels logged in a binary file.

n GetFileInfo() - Retrieves the version level and byte size of a binary file.

n GetFileName() - Retrieves the name of the nth file in the directory containing binary log files.

n GetPreferences() - Retrieves API preference settings for time stamp data, analog temperature data, and CJC temperature
data. Returns the default values unless changed using SetPreferences().

n GetSampleInfo() - Retrieves the sample interval, sample count, and the date and time of the first data point in a binary file.

n ReadAIChannels() - Retrieves analog input data from a binary file, and stores the values in an array.

n ReadCJCChannels() - Retrieves CJC temperature data from a binary file, and stores the values in an array.

n ReadDIOChannels() - Retrieves digital I/O channel data from a binary file, and stores the values in an array.

n ReadTimeTags() - Retrieves date and time values logged in a binary file. This method stores date values in the dateTags
array, and time values in the timeTags array.

n SetPreferences() - Sets preferences for returned time stamp data, analog temperature data, and CJC temperature data.

Page 426 of 700

ErrorInfo class
Contains all of the members for storing and reporting error codes and messages. This class also includes error code enumerated
constants, which define the error number and associated message that can be returned when you call a method.

Most UL for .NET methods return ErrorInfo objects. Error information is stored internally on the return from calling the low-level UL
function. The error is reported when the user calls the class library methods.

The ErrorInfo class is a member of the MccDaq namespace. Refer to the "UL for .NET Class Library Overview" for an explanation of
the MccDaq namespace.

Properties and methods
The ErrorInfo class includes the following properties that you can use to examine error information.

n Message - Gets the text of the error message associated with an error constant.

n Value - Gets the error constant associated with an ErrorInfo object.

n LogToFile - When set true, records time-stamped error codes to a file.

Enumerated constants
ErrorCode

Lists the named constants for all error codes.

The error number and associated error constant are listed below. Click on the name of an error constant to display an
explanation of the error message. Use the vertical scroll bar to view all of the error constants.

Error 0-99

0 NoErrors

1 BadBoard

2 DeadDigitalDev

3 DeadCounterDev

4 DeadDaDev

5 DeadAdDev

6 NotDigitalConf

7 NotCounterConf

8 NotDaConf

9 NotAdConf

10 NotMuxConf

11 BadPortNum

12 BadCounterDevNum

13 BadDaDevNum

14 BadSampleMode

15 BadInt

16 BadAdChan

17 BadCount

18 BadCntrConfig

19 BadDaVal
20 BadDaChan

22 AlreadyActive

23 PageOverrun

24 BadRate

25 CompatMode

26 TrigState

27 AdStatusHung

28 TooFew

29 OverRun

Error 100-203

100 NotDosFunc

101 RangeMismatch

102 ClockTooSlow

103 BadCalFactors

104 BadConfigType

105 BadConfigItem

106 NoPcmciaBoard

107 NoBackground

108 StringTooShort

109 ConvertExtMem

110 BadEuAdd

111 Das16JrRateWarning

112 Das08TooLowRate

114 AmbigSensorOnGp

115 NoSensorTypeOnGp

116 NoConversionNeeded

117 NoExtContinuous

118 InvalidPretrigConvert

119 BadCtrReg

120 BadTrigThreshold

121 BadPcmSlotRef

122 AmbigPcmSlotRef

123 BadSensorType

126 CfgFileNotFound

127 NoVddInstalled

128 NoWindowsMemory

129 OutOfDosMemory

130 ObsoleteOption

131 NoPcmRegKey

Error 300-1008

300 InternalErr32

304 CfgFileReadFailure

305 CfgFileWriteFailure

308 CfgFileCantOpen

325 BadRtdConversion

326 NoPciBios

327 BadPciIndex

328 NoPciBoard

334 CantInstallInt

339 CantMapPCMCis

344 NoMoreFiles

345 BadFileNumber

347 LossOfData

348 InvalidBinaryFile

400-499 PcmciaErrs

500-599 Internal DOS error

600-699 Internal Windows error

603 WinCannotEnableInt

605 WinCannotDisableInt

606 WinCantPageLockBuffer

630 NoPCMCard

801 InvalidGainArrayLength

802 InvalidDimensionOLength

1000 NotTEDSSensor

1001 InvalidTEDSSensor

1002 CalibrationFailed

1003 BitUsedForTerminalCountStatus

1004
PortUsedForTerminalCountStatus

Page 427 of 700

Page 428 of 700

GlobalConfig class
Contains all of the members for getting global board configuration information.

The GlobalConfig class is a member of the MccDaq namespace. Refer to the "UL for .NET Class Library Overview" for an
explanation of the MccDaq namespace.

Properties and methods
The GlobalConfig class includes three properties that you can use to examine global board configuration information.

n NumBoards - Returns the maximum number of boards you can install at one time.

n NumExpBoards - Returns the maximum number of expansions boards allowed to be installed on the board.

n Version - This information is used by the library to determine compatibility.

Each of these properties is typed as an integer.

Page 429 of 700

MccBoard class
The MccBoard class provides access to all of the methods for data acquisition and properties providing board information and
configuration for a particular board.

The MccBoard class is a member of the MccDaq namespace. Refer to the "UL for .NET Class Library Overview" for an explanation of
the MccDaq namespace.

Class constructors
The MccBoard class provides two constructors; one which accepts a board number parameter and one with no arguments.

The following code examples demonstrate how to create a new instance of the MccBoard class using the latter version with a
default board number of 0.

VB .NET

Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard()

C# .NET

private MccDaq.MccBoard DaqBoard;

DaqBoard = new MccDaq.MccBoard();

The following code examples create a new instance of the MccBoard class with the board number passed to it.

VB .NET

Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard(BoardNumber)

C# .NET

private MccDaq.MccBoard DaqBoard;

DaqBoard = new MccDaq.MccBoard(BoardNumber);

Class Properties
The MccBoard class includes six properties that you can use to examine or change the configuration of your board. The
configuration information for all boards is stored in the CB.CFG file, and is loaded from CB.CFG by all programs that use the
library.

n BoardName

n BoardNum

n BoardConfig

n CtrConfig

n DioConfig

n ExpansionConfig

Class Methods
The MccBoard class includes over 100 methods for data acquisition. The MccBoard class methods are equivalents of the function
calls used in the standard Universal Library. The MccBoard class methods have virtually the same parameter set as their UL
counterparts.

n Analog I/O Methods

n Configuration Methods and Properties

n Counter Methods

n DataLogger Methods and Property

n Digital I/O Methods

n Error Handling Methods and Properties

n Memory Board Methods

n Revision Control Methods

n Streamer File Methods

n Synchronous I/O Methods

Page 430 of 700

n Temperature Input Methods

n Windows Memory Management Methods

n Miscellaneous Methods

Page 431 of 700

MccService class
Contains all of the members for calling utility UL functions.

The MccService class is a member of the MccDaq namespace. Refer to the "UL for .NET Class Library Overview" for an explanation
of the MccDaq namespace.

Methods
The MccService class contains ten static methods. You do not need to create an instance of the MccService class to call these
methods.

n DeclareRevision() - Declares the revision number of the Universal Library for .NET with which the program was written.

n ErrHandling() - Sets the method of reporting and handling errors for all function calls.

n FileGetInfo() - Reads streamer file information on how much data is in the file, and the conditions under which it was collected
(sampling rate, channels, etc.).

n FileRead() - Reads a selected number of data points from a streamer file into an array.

n GetBoardName() - Returns the board name of a specified board.

n GetRevision() - Returns the revision number of the Universal Library DLL and SSVXD.

n WinArrayToBuf() - Copies data from an array to a Windows buffer.

n WinBufAlloc() - Allocates a Windows memory buffer.

n WinBufAlloc32() - Allocates a Windows memory buffer for use with 32-bit scan functions.

n WinBufAlloc64() - Allocates a Windows memory buffer large enough to hold double precision data values.

n WinBufFree() - Free a Windows buffer.

n WinBufToArray() - Copies data from a Windows buffer to an array.

n WinBufToArray32() - Copies 32-bit data from a Windows buffer to an array.

n ScaledWinBufAlloc() - Allocates a Windows global memory buffer large enough to hold scaled data obtained from scan
operations in which the ScaleData scan option is selected.

n ScaledWinBufToArray() - Copies double-precision values from a Windows buffer to an array.

Page 432 of 700

ACalibrateData() method
Calibrates the raw data collected by AInScan() from boards with real time software calibration when the real time calibration has
been turned off. The AInScan() method can return either raw A/D data or calibrated data, depending on whether or not the
NoCalibrateData option was used.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function ACalibrateData(ByVal numPoints As Integer, ByVal range As MccDaq.Range, ByVal adData As
Short()) As MccDaq.ErrorInfo

Public Function ACalibrateData(ByVal numPoints As Integer, ByVal range As MccDaq.Range, ByVal adData As
System.UInt16()) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ACalibrateData(int numPoints, MccDaq.Range range, short[] adData)

public MccDaq.ErrorInfo ACalibrateData(int numPoints, MccDaq.Range range, ushort[] adData)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function ACalibrateData(ByVal numPoints As Integer, ByVal range As MccDaq.Range, ByRef adData As
Short) As MccDaq.ErrorInfo

Public Function ACalibrateData(ByVal numPoints As Integer, ByVal range As MccDaq.Range, ByRef adData As
System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ACalibrateData(int numPoints, MccDaq.Range, ref ushort adData)

public MccDaq.ErrorInfo ACalibrateData(int numPoints, MccDaq.Range range, ref short adData)

Parameters
numPoints

The number of samples to convert.

range

The programmable gain/range used when the data was collected. Refer to board specific information for a list of the
supported A/D ranges of each board.

adData

Reference to data array.

Returns

n An ErrorInfo object that indicates the status of the operation.

n adData - Converted data

Notes

n When collecting data using AInScan() with the NoCalibrateData option, use this method to calibrate the data after it is
collected.

The name of the array must match that used in AInScan() or WinBufToArray().

Applying software calibration factors in real time on a per-sample basis eats up machine cycles. If your CPU is slow, or if
processing time is at a premium, withhold calibration until after the acquisition run is complete. Turning off real-time software
calibration saves CPU time during a high-speed acquisition run.

n Processor speed is a factor for DMA transfers and for real-time software calibration. Processors of less than 150 MHz Pentium
class may impose speed limits below the capability of the board (refer to board-specific information.) If your processor is less
than a 150 MHz Pentium, and you need an acquisition speed in excess of 200 kHz, use the NoCalibrateData option to a turn
off real-time software calibration and save CPU time. After the acquisition is run, calibrate the data with ACalibrateData().

Page 433 of 700

javascript:hhctrl.TextPopup(ACalibrateData,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ACalibrateData,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ACalibrateData,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ACalibrateData,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

AConvertData() method
Converts the raw data collected by AInScan() into 12-bit A/D values. The AInScan() method can return either raw A/D data or
converted data, depending on whether or not the ConvertData option is used. For many 12-bit A/D boards, the raw data is a 16-bit
value that contains a 12-bit A/D value and a 4-bit channel tag (refer to board-specific information in the Universal Library User's
Guide). The data returned to adData consists of just the 12-bit A/D value. The data returned to chanTags consists of just the
channel numbers.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AConvertData(ByVal numPoints As Integer, ByVal adData As Short(), ByVal chanTags As
Short()) As MccDaq.ErrorInfo

Public Function AConvertData(ByVal numPoints As Integer, ByVal adData As System.UInt16(), ByVal
chanTags As System.UInt16()) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AConvertData(int numPoints, short[] adData, short[] chanTags)

public MccDaq.ErrorInfo AConvertData(int numPoints, ushort[] adData, ushort[] chanTags)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As Short, ByRef chanTags As
Short) As MccDaq.ErrorInfo

Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As System.UInt16, ByRef chanTags
As System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AConvertData(int numPoints, ref ushort adData, out ushort chanTags)

public MccDaq.ErrorInfo AConvertData(int numPoints, ref short adData, out short chanTags)

Parameters
numPoints

Number of samples to convert

adData

Reference to start of data array

chanTags

Reference to start of channel tag array

Returns

n An ErrorInfo object that indicates the status of the operation.

n adData - converted data

n chanTags - channel tags, if available

Notes

n When collecting data using AInScan() without the ConvertData option, use this method to convert the data after it has been
collected. There are cases where the ConvertData option is not allowed. For example - if you are using both the DmaIo and
Background option with AInScan() on some devices, the ConvertData option is not allowed. In those cases, this method
should be used to convert the data after the data collection is complete.

n For some boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number. This method pulls each
data point apart and puts the A/D value into the adData array and the channel number into the chanTags array.

n 12-bit A/D boards: The name of the array must match that used in AInScan(). Upon returning from AConvertData(), the
adData array contains only 12-bit A/D data.

Page 434 of 700

javascript:hhctrl.TextPopup(AConvertData,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(AConvertData,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(AConvertData,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(AConvertData,termfont,10,10,000,000)

AConvertPreTrigData() method
For products with pretrigger implemented in hardware (most products), this function converts the raw data collected by APretrig().
The APretrig() method can return either raw A/D data or converted data, depending on whether or not the ConvertData option was
used. The raw data is not in the correct order as it is collected. After the data collection is completed, it must be rearranged into the
correct order. This method also orders the data, starting with the first pretrigger data point and ending with the last post-trigger
point.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AConvertPretrigData(ByVal preTrigCount As Integer, ByVal totalCount As Integer, ByVal
adData As Short(), ByVal chanTags As Short()) As MccDaq.ErrorInfo

Public Function AConvertPretrigData(ByVal preTrigCount As Integer, ByVal totalCount As Integer, ByVal
adData As System.UInt16(), ByVal chanTags As System.UInt16()) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AConvertPretrigData(int preTrigCount, int totalCount, short[] adData, short[]
chanTags)

public MccDaq.ErrorInfo AConvertPretrigData(int preTrigCount, int totalCount, ushort[] adData, ushort[]
chanTags)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function AConvertPretrigData(ByVal preTrigCount As Integer, ByVal totalCount As Integer, ByRef
adData As Short, ByRef chanTags As Short) As MccDaq.ErrorInfo

Public Function AConvertPretrigData(ByVal preTrigCount As Integer, ByVal totalCount As Integer, ByRef
adData As System.UInt16, ByRef chanTags As System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AConvertPretrigData(int preTrigCount, int totalCount, ref ushort adData, out
ushort chanTags)

public AConvertPretrigData(int preTrigCount, int totalCount, ref short adData, out short chanTags)

Parameters
preTrigCount

Number of pre-trigger samples (this value must match the value returned by the PretrigCount parameter in the APretrig()
method).

totalCount

Total number of samples that were collected.

adData

Reference to data array (must match array name used in APretrig() method).

chanTags

A pointer to the start of the channel tag array (if available). Returns NULL if using a 16-bit board or if channel tags are not
available. Refer to the note regarding 16-bit A/D boards below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n adData - converted data

Notes

n When you collect data with APretrig() and you don't use the ConvertData option, you must use this method to convert the
data after it is collected. There are cases where the ConvertData option is not allowed: for example, if you use the
Background option with APretrig() on some devices, the ConvertData option is not allowed. In those cases this method should
be used to convert the data after the data collection is complete.

Page 435 of 700

javascript:hhctrl.TextPopup(AConvertPretrigData,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(AConvertPretrigData,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(AConvertPretrigData,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(AConvertPretrigData,termfont,10,10,000,000)

n 12-Bit A/D boards: On some 12-bit boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number.
This method pulls each data point apart and puts the A/D value into the adData and the channel number into the chanTags
array.

Upon returning from AConvertPretrigData(), adData array contains only 12-bit A/D data.

n 16-Bit A/D boards: This method is for use with 16-bit A/D boards only insofar as ordering the data. No channel tags are
returned.

The name of the ADData array must match that used in AInScan() or WinBufToArray().

n VB .Net Programmers: After the data is collected with APretrig(), it must be copied to a BASIC array with WinBufToArray().

Important: The entire array must be copied, which includes the extra 512 samples needed by APretrig(). Example code is
provided here:

SampleCount& = 10000

Dim A_D_Data%(SampleCount& + 512)

Dim Chan_Tags%(SampleCount& + 512)

APretrig%(LowChan, HighChan, PretrigCount&, SampleCount&...)

WinBufToArray%(MemHandle%, A_D_Data%, SampleCount& + 512)

AConvertPretrigData%(Pretrig_Count&, SampleCount&, A_D_Data%, Chan_Tags%)

Page 436 of 700

AIn() method
Reads an A/D input channel, and returns a 16-bit integer value. This method reads the specified A/D channel from the specified
board. If the specified A/D board has programmable gain then it sets the gain to the specified range. The raw A/D value is
converted to an A/D value and returned to dataValue.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AIn(ByVal channel As Integer, ByVal range As MccDaq.Range, ByRef dataValue As Short) As
MccDaq.ErrorInfo

Public Function AIn(ByVal channel As Integer, ByVal range As MccDaq.Range, ByRef dataValue As
System.UInt16) As MccDaq.ErrorInfo

C# .NET

MccDaq.ErrorInfo AIn(int channel, MccDaq.Range range, out ushort dataValue)

public MccDaq.ErrorInfo AIn(int channel, MccDaq.Range range, out short dataValue)

Parameters
channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured. For example, a USB-1608GX device has 8 differential or 16 single-ended analog input channels. Expansion boards
also support this method, so this parameter can contain values up to 272. See board specific information for EXP boards if
you are using an expansion board.

range

A/D range code. If the selected A/D board does not have a programmable gain feature, this parameter is ignored. If the A/D
board does have programmable gain, set the range parameter to the desired A/D range. Refer to board specific information
for a list of the supported A/D ranges of each board.

dataValue

Reference to data value.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataValue - The value of the A/D sample.

Page 437 of 700

javascript:hhctrl.TextPopup(AIn,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(AIn,termfont,10,10,000,000)
javascript:void(0)

AIn32() method
Reads an A/D input channel from the specified board, and returns a 32-bit integer value. If the specified A/D board has
programmable gain then it sets the gain to the specified range. The raw A/D value is converted to an A/D value and returned to
DataValue. In general, this function should be used with devices with a resolution higher than 16-bits.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AIn32(ByVal channel As Integer, ByVal range As MccDaq.Range, ByRef dataValue As
Integer, ByVal options As Integer) As MccDaq.ErrorInfo

Public Function AIn32(ByVal channel As Integer, ByVal range As MccDaq.Range, ByRef dataValue As
UInteger, ByVal options As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AIn32(int channel, MccDaq.Range range, out uint dataValue, int options)

public MccDaq.ErrorInfo AIn32(int channel, MccDaq.Range range, out int dataValue, int options)

Parameters
channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured. For example, a USB-2416 device has 16 differential or 32 single-ended analog input channels. Expansion boards
also support this method, so this parameter can contain values up to 272. See board specific information for EXP boards if
you are using an expansion board.

range

A/D range code. If the selected A/D board does not have a programmable gain feature, this parameter is ignored. If the A/D
board does have programmable gain, set the range parameter to the desired A/D range. Refer to board specific information
for a list of the supported A/D ranges of each board.

dataValue

Pointer or reference to data value.

options

Reserved for future use.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataValue - The value of the A/D sample.

Page 438 of 700

javascript:hhctrl.TextPopup(AIn32,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(AIn32,termfont,10,10,000,000)
javascript:void(0)

AInScan() method
Scans a range of A/D channels and stores the samples in an array. AInScan() reads the specified number of A/D samples at the
specified sampling rate from the specified range of A/D channels from the specified board. If the A/D board has programmable
gain, then it sets the gain to the specified range. The collected data is returned to the data array.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AInScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal memHandle As IntPtr, ByVal options
As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AInScan(int lowChan, int highChan, int numPoints,ref int rate, MccDaq.Range
range, IntPtr memHandle, MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function AInScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal memHandle As Integer, ByVal options
As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AInScan(int lowChan, int highChan, int numPoints, ref int rate, MccDaq.Range
range, int memHandle, MccDaq.ScanOptions options)

Parameters
lowChan

First A/D channel of the scan. When ALoadQueue() is used, the channel count is determined by the total number of entries in
the channel gain queue. lowChan is ignored.

highChan

Last A/D channel of the scan. When ALoadQueue() is used, the channel count is determined by the total number of entries in
the channel gain queue. highChan is ignored.

low / high Channel # - The maximum allowable channel depends on which type of A/D board is being used. For boards that
have both single ended and differential inputs the maximum allowable channel number also depends on how the board is
configured. For example, a USB-1208FS has four channels for differential, eight for single-ended.

numPoints

Number of A/D samples to collect. Specifies the total number of A/D samples to collect. If more than one channel is being
sampled, then the number of samples collected per channel is equal to count ÷ (highChan – lowChan + 1).

rate

The rate at which samples are acquired, in samples per second per channel.

For example, sampling four channels, 0-3, at a rate of 10,000 scans per second (10 kilohertz (kHz)) results in an A/D
converter rate of 40 kHz: four channels at 10,000 samples per channel per second. With other software, you specify the total
A/D chip rate. In those systems, the per channel rate is equal to the A/D rate divided by the number of channels in a scan.

The channel count is determined by the lowChan and highChan parameters. Channel Count = (highChan - lowChan + 1).

When ALoadQueue() is used, the channel count is determined by the total number of entries in the channel gain queue.
lowChan and highChan are ignored.

rate also returns the value of the actual rate set, which may be different from the requested rate because of pacer
limitations.

range

A/D range code. If the selected A/D board does not have a programmable range feature, this parameter is ignored.
Otherwise, set the range parameter to any range that is supported by the selected A/D board. Refer to board-specific
information for a list of the supported A/D ranges of each board.

memHandle

Handle for Windows buffer to store data. This buffer must have been previously allocated with WinBufAllocEx(),
WinBufAlloc32Ex(), or ScaledWinBufAllocEx().

Page 439 of 700

javascript:hhctrl.TextPopup(AInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(AInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

options

Bit fields that control various options. Refer to the constants in the "options parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n rate - actual sampling rate used.

n memHandle - collected A/D data returned via the Windows buffer.

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (variable = MccDaq.ScanOptions.SingleIo, variable =
MccDaq.ScanOptions.DmaIo, etc.).

Transfer method
options

The following four options determine how data is transferred from the board to PC memory.
If none of these options are specified (recommended), the optimum sampling mode is
automatically chosen based on board type and sampling speed. Use the default method
unless you have a reason to select a specific transfer method.

n SingleIo

A/D transfers to memory are initiated by an interrupt. One interrupt per conversion.
Rates attainable using SingleIo are PC-dependent and generally less than 10 kHz.

n DmaIo

A/D transfers are initiated by a DMA request.

n BlockIo

A/D transfers are handled in blocks (by REP-INSW for example).

BlockIo is not recommended for slow acquisition rates.

If the rate of acquisition is very slow, (for example less than 200 Hz), BlockIo is
probably not the best choice for transfer mode. The reason for this is that status for the
operation is not available until one packet of data has been collected (typically 512
samples). The implication is that if acquiring 100 samples at 100 Hz using BlockIo, the
operation will not complete until 5.12 seconds has elapsed.

n BurstIo

Allows higher sampling rates for sample counts up to full FIFO. Data is collected into the
local FIFO. Data transfers to the PC are held off until after the scan is complete. For
Background scans, the count and index returned by GetStatus() remain 0 and the
status equals Running until the scan finishes. When the scan is complete and the data is
retrieved, the count and index are updated and the status equals Idle.

BurstIo is the default mode for non-Continuous fast scans (aggregate sample rates
above 1000 Hz) with sample counts up to full-FIFO. To avoid the BurstIo default, specify
BlockIo. BurstIo is not a valid option for most boards. It is used mainly for USB
products.

BURSTIO is not a valid option for most boards. It is used mainly for USB products.

Background If the Background option is not used, the AInScan() method will not return control to your
program until all of the requested data has been collected and returned to the buffer. When
the Background option is used, control will return immediately to the next line in your
program and the data collection from the A/D into the buffer will continue in the
background. Use GetStatus() with AiFunction to check on the status of the background
operation. Alternatively, some boards support EnableEvent() for event notification of
changes in status of Background scans. Use StopBackground() with AiFunction to stop the
background process before it has completed. StopBackground() should be executed after
normal termination of all background methods in order to clear variables and flags.

BurstMode Enables burst mode sampling. Scans from lowChan to highChan are clocked at the
maximum A/D rate between samples in order to minimize channel to channel skew. Scans
are initiated at the rate specified by the rate parameter.

BurstMode is not recommended for use with the SingleIo option. If this combination is used,
the count value should be set as low as possible, preferably to the number of channels in
the scan. Otherwise, overruns may occur.

ConvertData This option is used to align data, either within each byte (in the case of some 12-bit devices)
or within the buffer (see the APreTrig() method). Only the former case applies for AInScan.
The data stored on some 12-bit devices is offset in the devices data register. For these
devices, the ConvertData option converts the data to 12-bit A/D values by shifting the data
to the first 12 bits within the byte. For devices that store the data without an offset and for
all 16-bit devices, this option is ignored.

Use of ConvertData is recommended unless one of the following two conditions exist: 1) On
some devices, ConvertData may not be specified if you are using the Background option

Page 440 of 700

javascript:void(0)

and DMA transfers. In this case, if data conversion is required, use AConvertData() to re-
align the data. 2) Some 12-bit boards store the data as a 12-bit A/D value and a 4-bit
channel number. Using ConvertData will strip out the channel number from the data. If you
prefer to store the channel number as well as the data, call AConvertData() to retrieve the
data and the channel number from the buffer after the data acquisition to the buffer is
complete.

Continuous This option puts the method in an endless loop. Once it collects the required number of
samples, it resets to the start of the buffer and begins again. The only way to stop this
operation is with StopBackground(). Normally this option should be used in combination with
Background so that your program will regain control.

numPoints parameter settings in Continuous mode: For some DAQ hardware,
numPoints must be an integer multiple of the packet size. Packet size is the amount of data
that a DAQ device transmits back to the PC's memory buffer during each data transfer.
Packet size can differ among DAQ hardware, and can even differ on the same DAQ product
depending on the transfer method.

In some cases, the minimum value for the numPoints parameter may change when the
Continuous option is used. This can occur for several reasons; the most common is that in
order to trigger an interrupt on boards with FIFOs, the circular buffer must occupy at least
half the FIFO. Typical half-FIFO sizes are 256, 512 and 1,024.

Another reason for a minimum numPoints value is that the buffer in memory must be
periodically transferred to the user buffer. If the buffer is too small, data is overwritten
during the transfer resulting in garbled data.

Refer to board-specific information in the Universal Library User's Guide for packet size
information for your particular DAQ hardware.

DTConnect All A/D values will be sent to the A/D board's DT-Connect port. This option is incorporated
into the ExtMemory option. Use DTConnect only if the external board is not supported by
the Universal Library.

ExtClock If this option is used then conversions will be controlled by the signal on the external clock
input rather than by the internal pacer clock. Each conversion will be triggered on the
appropriate edge of the clock input signal (refer to the board-specific information contained
in the Universal Library User's Guide). In most cases, when this option is used the rate
parameter is ignored. The sampling rate is dependent on the clock signal. Options for the
board will default to a transfer mode that will allow the maximum conversion rate to be
attained unless otherwise specified.

In some cases, such as with the PCI-DAS4020/12, an approximation of the rate is used to
determine the size of the packets to transfer from the board. Set the rate parameter to an
approximate maximum value.

SingleIo is recommended for slow external clock rates: If the rate of the external
clock is very slow (for example less than 200 Hz) and the board you are using supports
BlockIo, you may want to include the SingleIo option. This is because the status for the
operation is not available until one packet of data has been collected (typically 512
samples). The implication is that, if acquiring 100 samples at 100 Hz using BlockIo (the
default for boards that support it if ExtClock is used), the operation will not complete until
5.12 seconds has elapsed.

ExtMemory Causes the command to send the data to a connected memory board via the DT-Connect
interface rather than returning the data to the buffer. Data for each call to this method will
be appended unless MemReset() is called. The data should be unloaded with the MemRead()
method before collecting new data. When ExtMemory option is used, the reference to the
buffer (memHandle) may be set to null or 0. Continuous option cannot be used with
ExtMemory. Do not use ExtMemory and DtConnect together. The transfer modes DmaIo,
SingleIo and BlockIo have no meaning when used with this option.

ExtTrigger If this option is specified, the sampling will not begin until the trigger condition is met. On
many boards, this trigger condition is programmable (refer to SetTrigger() and to board-
specific info for details). On other boards, only 'polled gate' triggering is supported.
Assuming active high operation, data acquisition will commence immediately if the trigger
input is high. If the trigger input is low, acquisition will be held off until it goes high, and then
continue until numPoints samples are taken, regardless of the state of the trigger input.

This option is most useful if the signal is a pulse with a very low duty cycle (trigger signal in
TTL low state most of the time) so that triggering will be held off until the occurrence of the
pulse.

HighResRate Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
rate parameter above).

NoCalibrateData Turns off real-time software calibration for boards which are software calibrated, by
applying calibration factors to the data on a sample by sample basis as it is acquired.
Examples are the PCM-DAS16/330 and PCM-DAS16x/12.

Turning off software calibration saves CPU time during a high speed acquisition run. This
may be required if your processor is less than a 150 MHz Pentium and you desire an
acquisition speed in excess of 200 kHz. These numbers may not apply to your system. Only

Page 441 of 700

Caution!

You will generate an error if you specify a total A/D rate beyond the capability of the board. For example, if you specify LowChan =
0, HighChan = 7 (8 channels total), and Rate = 20,000, and you are using a CIO-DAS16/JR, you will get an error – you have
specified a total rate of 8*20,000 = 160,000, but the CIO-DAS16/JR is capable of converting only 120,000 samples per second.

The maximum sampling rate depends on the A/D board that is being used. It is also dependent on the sampling mode options.

Important!

In order to understand the functions, you must read the board-specific information contained in the in the Universal Library User's
Guide. Examine and run the example programs before attempting your own program. Following this advice will save you hours of
frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this function. Refer to the board-specific information for your
hardware in the Universal Library User's Guide. We suggest that you make a copy of that page for reference as you read this
manual and examine the example programs.

trial will tell for sure. DO NOT use this option if you do not have to. If this option is used, the
data must be calibrated after the acquisition run with the ACalibrateData() method.

NoToDints Disables the system's time-of-day interrupts for the duration of the scan. These interrupts
are used to update the systems real time clock and are also used by various other
programs.

These interrupts can limit the maximum sampling speed of some boards - particularly the
PCM-DAS08. If the interrupts are turned off using this option, the real-time clock will fall
behind by the length of time that the scan takes.

RetrigMode Re-arms the trigger after a trigger event is performed. With this mode, the scan begins
when a trigger event occurs. When the scan completes, the trigger is re-armed to acquire
the next the batch of data. You can specify the number of samples in the scan for each
trigger event (described below). The RetrigMode option can be used with the Continuous
option to continue arming the trigger until StopBackground() is called.

You can specify the number of samples to acquire with each trigger event. This is the
trigger count (retrigCount). Use SetAdRetrigCount() to set the trigger count. If you specify a
trigger count that is either zero or greater than the value of the AInScan() numPoints
argument, the trigger count is set to the value of numPoints.

Specify the Continuous option with the trigger count set to zero to fill the buffer with
numPoints samples, re-arm the trigger, and refill the buffer upon the next trigger.

ScaleData Converts raw scan data — to voltage, temperature, and so on, depending upon the selected
channel sensor category — during the analog input scan, and puts the scaled data directly
into the user buffer. The user buffer should have been allocated with ScaledWinBufAllocEx
().

Page 442 of 700

ALoadQueue() method
Loads the A/D board's channel/gain queue. This method only works with A/D boards that have channel/gain queue hardware.

Some products do not support channel/gain queue, and some that do support it are limited on the order of elements, number of
elements, and gain values that can be included, etc. Please refer to the device-specific information in the Universal Library User's
Guide for details of your particular product.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function ALoadQueue(ByVal chanArray As Short(), ByVal gainArray As MccDaq.Range(), ByVal count
As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ALoadQueue(short[] chanArray, MccDaq.Range[] gainArray, int count)

Parameters
chanArray

Array containing channel values. This array should contain all of the channels that will be loaded into the channel gain queue.

gainArray

Array containing A/D range values. This array should contain each of the A/D ranges that are loaded into the channel gain
queue.

count

Number of elements in chanArray and gainArray or 0 to disable channel/gain queue. Specifies the total number of
channel/gain pairs that will be loaded into the queue.

chanArray and gainArray should contain at least count elements. Set count = 0 to disable the board's channel/gain queue.
The maximum value is specific to the queue size of the A/D boards channel gain queue.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n Normally the AInScan() method scans a fixed range of channels (from lowChan to highChan) at a fixed A/D range. If you
load the channel gain queue with this method then all subsequent calls to AInScan() will cycle through the channel/gain pairs
that you have loaded into the queue.

Page 443 of 700

javascript:hhctrl.TextPopup(ALoadQueue,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ALoadQueue,termfont,10,10,000,000)
javascript:void(0)

AOut() method
Sets the value of a D/A output.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AOut(ByVal channel As Integer, ByVal range As MccDaq.Range, ByVal dataValue As Short)
As MccDaq.ErrorInfo

Public Function AOut(ByVal channel As Integer, ByVal range As MccDaq.Range, ByVal dataValue As
System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AOut(int channel, MccDaq.Range range, ushort dataValue)

public MccDaq.ErrorInfo AOut(int channel, MccDaq.Range range, short dataValue)

Parameters
channel

D/A channel number. The maximum allowable channel depends on which type of D/A board is being used.

range

D/A range code. The output range of the D/A channel can be set to any of those supported by the board. If the D/A board
does not have programmable ranges then this parameter is ignored.

dataValue

Value to set D/A to. Must be in the range 0 - N where N is the value 2Resolution – 1 of the converter.

Exception: using 16-bit boards with Basic range is –32,768 to 32,767. Refer to the discussion on 16-bit values using a signed
integer data type for more information.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n Simultaneous Update Boards: If you set the simultaneous update jumper for simultaneous operation, use AOutScan() for
simultaneous update of multiple channels. AOut() always writes the D/A data then reads the D/A, which causes the D/A
output to be updated.

Page 444 of 700

javascript:hhctrl.TextPopup(AOut,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(AOut,termfont,10,10,000,000)
javascript:void(0)

AOutScan() method
Outputs values to a range of D/A channels. This method can be used for paced analog output on hardware that supports paced
output. It can also be used to update all analog outputs at the same time when the Simultaneous option is used.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function AOutScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal memHandle As IntPtr, ByVal options
As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AOutScan(int lowChan, int highChan, int numPoints, ref int rate, MccDaq.Range
range, IntPtr memHandle, MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function AOutScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal memHandle As Integer, ByVal options
As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo AOutScan(int lowChan, int highChan, int numPoints, ref int rate, MccDaq.Range
range, int memHandle, MccDaq.ScanOptions options)

Parameters
lowChan

First D/A channel of scan.

highChan

Last D/A channel of scan.

lowChan/highChan: The maximum allowable channel depends on which type of D/A board is being used.

numPoints

Number of D/A values to output. Specifies the total number of D/A values that will be output. Most D/A boards do not support
timed outputs. For these boards, set the count to the number of channels in the scan.

rate

Sample rate in scans per second. For many D/A boards the rate is ignored and can be set to NotUsed. For D/A boards with
trigger and transfer methods which allow fast output rates, such as the CIO-DAC04/12-HS, rate should be set to the D/A
output rate (in scans/sec). This parameter also returns the value of the actual rate set. This value may be different from the
user specified rate because of pacer limitations.

If supported, this is the rate at which scans are triggered. If you are updating 4 channels, 0-3, then specifying a rate of
10,000 scans per second (10 kHz) will result in the D/A converter rates of 10 kHz: (one D/A per channel). The data transfer
rate is 40,000 words per second; 4 channels * 10,000 updates per scan.

The maximum update rate depends on the D/A board that is being used, and the sampling mode options.

range

D/A range code. The output range of the D/A channel can be set to any of those supported by the board. If the D/A board
does not have a programmable gain, then this parameter is ignored.

memHandle

Handle for Windows buffer from which data is output. This buffer must have been previously allocated with the WinBufAlloc()
method and data values loaded (perhaps using WinArrayToBuf().

options

Bit fields that control various options. Refer to the constants in the options Parameter Values section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n Rate - actual sampling rate used.

Page 445 of 700

javascript:hhctrl.TextPopup(AOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(AOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(AOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(AOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (variable = MccDaq.ScanOptions.Continuous, variable =
MccDaq.ScanOptions.Background, etc.).

Caution!

You will generate an error if you specify a total D/A rate beyond the capability of the board. For example: If you specify lowChan =
0, highChan = 3 (four channels total), and rate = 100,000 and you are using a cSBX-DDA04, you will get an error. You have
specified a total rate of 4*100,000 = 400,000. The cSBX-DDA04 is rated to 330,000 updates per second.

The maximum update rate depends on the D/A board that is being used. It is also dependent on the sampling mode options.

ADCClock Paces the data output operation using the ADC clock.

ADCClockTrig Triggers a data output operation when the ADC clock starts.

Background This option may only be used with boards which support interrupt, DMA or REP-INSW
transfer methods. When this option is used the D/A operations will begin running in the
background and control will immediately return to the next line of your program. Use
GetStatus() with AoFunction to check the status of background operation. Alternatively,
some boards support EnableEvent() for event notification of changes in status of
Background scans. Use StopBackground() with AoFunction to terminate background
operations before they are completed. StopBackground() should be executed after normal
termination of all background methods in order to clear variables and flags.

Continuous This option may only be used with boards which support interrupt, DMA or REP INSW
transfer methods. This option puts the method in an endless loop. Once it outputs the
specified number (numPoints) of D/A values, it resets to the start of the buffer and begins
again. The only way to stop this operation is by calling StopBackground() with AoFunction.
This option should only be used in combination with Background so that your program can
regain control.

ExtClock If this option is used then conversions will be paced by the signal on the external clock input
rather than by the internal pacer clock. Each conversion will be triggered on the appropriate
edge of the clock input signal (refer to board-specific information contained in the Universal
Library Users Guide). When this option is used the Rate parameter is ignored. The sampling
rate is dependent on the clock signal. Options for the board will default to transfer types
that allow the maximum conversion rate to be attained unless otherwise specified.

ExtTrigger If this option is specified the sampling will not begin until the trigger condition is met. On
many boards, this trigger condition is programmable (see SetTrigger() method and board-
specific information in the UL Users Guide for details).

NonStreamedIO When this option is used, you can output non-streamed data to a specific DAC output
channel. The aggregate size of the data output buffer must be less than or equal to the size
of the internal data output FIFO in the device. This allows the data output buffer to be
loaded into the device's internal output FIFO. Once the sample updates are transferred or
downloaded to the device, the device is responsible for outputting the data. You can't make
any changes to the output buffer once the output begins.

With NonStreamedIO mode, you do not have to periodically feed output data through the
program to the device for the data output to continue. However, the size of the buffer is
limited.

NonStreamedIO can only be used with the number of samples (numPoints) set equal to the
size of the FIFO or less.

RetrigMode Re-arms the trigger after a trigger event is performed. With this mode, the scan begins
when a trigger event occurs. When the scan completes, the trigger is re-armed to generate
the next the batch of data. You can specify the number of samples to generate for each
trigger event (described below). The RetrigMode option can be used with the Continuous
option to continue arming the trigger until StopBackground() is called.

You can specify the number of samples to generate with each trigger event. This is the
trigger count (retrigCount). Use SetDACRetrigCount() to set the trigger count. If you specify
a trigger count that is either zero or greater than the value of the numPoints argument, the
trigger count will be set to the value of numPoints.

ScaleData Gets scaled data, such as voltage, temperature, and so on, from the user buffer, and
converts it to raw data. The user buffer should have been allocated with ScaledWinBufAlloc
().

Simultaneous When this option is used (if the board supports it and the appropriate switches are set on
the board) all of the D/A voltages will be updated simultaneously when the last D/A in the
scan is updated. This generally means that all the D/A values will be written to the board,
then a read of a D/A address causes all D/As to be updated with new values
simultaneously.

Page 446 of 700

javascript:void(0)

APreTrig() method
Waits for a trigger to occur and then returns a specified number of analog samples before and after the trigger occurred. If only
'polled gate' triggering is supported, the trigger input line (refer to the User's Guide for the hardware) must be at TTL low before
this method is called, or a TrigState error will occur. The trigger occurs when the trigger condition is met. Refer to the SetTrigger()
method for more details.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function APretrig(ByVal lowChan As Integer, ByVal highChan As Integer, ByRef pretrigCount As
Integer, ByRef totalCount As Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal
memHandle As IntPtr, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo APretrig(int lowChan, int highChan, ref int pretrigCount, ref int
totalCount,ref int rate, MccDaq.Range range, IntPtr memHandle, MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function APretrig(ByVal lowChan As Integer, ByVal highChan As Integer, ByRef pretrigCount As
Integer, ByRef totalCount As Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal
memHandle As Integer, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo APretrig(int lowChan, int highChan, ref int pretrigCount, ref int totalCount,
ref int rate, MccDaq.Range range, int memHandle, MccDaq.ScanOptions options)

Parameters
lowChan

First A/D channel of scan.

highChan

Last A/D channel of scan.

lowChan/highChan: The maximum allowable channel depends on which type of A/D board is being used. For boards with both
single-ended and differential inputs, the maximum allowable channel number also depends on how the board is configured
(for example, eight channels for differential inputs, 16 for single-ended inputs).

pretrigCount

Number of pre-trigger A/D samples to collect. Specifies the number of samples to collect before the trigger occurs.

For products using a hardware implementation of pretrigger (most products), pretrigCount must be less than the (totalCount
– 512). For these devices, if the trigger occurs too early, fewer than the requested number of pre-trigger samples are
collected, and a TOOFEW error occurs. The pretrigCount is set to indicate how many samples were actually collected. The
post trigger samples will still be collected.

For software implementations of pretrigger, pretrigCount must be less than totalCount. For these devices, triggers that occur
before the requested number of pre-trigger samples are collected are ignored. See board-specific information.

totalCount

Total number of A/D samples to collect. Specifies the total number of samples that will be collected and stored in the buffer.

For products using a hardware implementation of pretrigger (most products), totalCount must be greater than or equal to the
pretrigCount + 512. If the trigger occurs too early, fewer than the requested number of samples will be collected, and a
TooFew error will occur. The totalCount will be set to indicate how many samples were actually collected.

For software implementations of pretrigger, totalCount must be greater than pretrigCount. For these devices, triggers that
occur before the requested number of pre-trigger samples are collected are ignored. See board-specific information.

totalCount must be evenly divisible by the number of channels being scanned. If it is not, this method will adjust the number
(down) to the next valid value and return that value to the totalCount parameter.

pretrigCount must also be evenly divisible by the number of channels being scanned. If it is not, this function will adjust the
number (up) to the next valid value and return that value to the pretrigCount parameter.

rate

Sample rate in scans per second.

range

Page 447 of 700

javascript:hhctrl.TextPopup(APretrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(APretrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(APretrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(APretrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

A/D Range code. If the selected A/D board does not have a programmable gain feature, this parameter is ignored.
Otherwise, set to any range that is supported by the selected A/D board. Refer to board specific information for a list of the
supported A/D ranges of each board.

memHandle

Handle for Windows buffer to store data. This buffer must have been previously allocated with the WinBufAlloc() method.

For hardware trigger types, the buffer referenced by memHandle must be big enough to hold at least totalCount + 512
integers.

options

Bit fields that control various options. Refer to the constants in the options Parameter Values section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n pretrigCount - Number of pre-trigger samples.

n totalCount - Total number of samples collected.

n rate - actual sampling rate.

n memHandle - Collected A/D data returned via the Windows buffer.

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (variable = MccDaq.ScanOptions.DtConnect, variable =
MccDaq.ScanOptions.ExtMemory, etc.).

Background If the Background option is not used, the APretrig() method will not return to your program
until all of the requested data has been collected and returned to the buffer. When the
Background option is used, control returns immediately to the next line in your program,
and the data collection from the A/D into the buffer will continue in the background. Use
GetStatus() with AiFunction to check on the status of the background operation.
Alternatively, some boards support EnableEvent() for event notification of changes in status
of BACKGROUND scans. Use StopBackground() with AiFunction to terminate the background
process before it has completed.

Call StopBackground() after normal termination of all background methods to clear
variables and flags.

For hardware trigger types, you cannot use the ConvertData option in combination with the
Background option for this method. To correctly order and parse the data, use
AConvertPretrigData() after the function completes.

ConvertData For hardware trigger types, the data is collected into a "circular" buffer. The ConvertData
option is used to align data within the buffer when the data acquisition is complete. This
option is ignored for all 16-bit devices, and for 12-bit devices that store the data without an
offset (refer to AInScan()). Note that you can also call AConvertPretrigData() to align data
within the buffer when the data acquisition is complete.

>Use of ConvertData is recommended unless one of the following two conditions exist: 1)
On some devices, ConvertData may not be specified if you are using the Background option
and DMA transfers. In this case, if data conversion is required, use AConvertData() to re-
align the data. 2) Some 12-bit boards store the data as a 12-bit A/D value and a 4-bit
channel number. Using ConvertData will strip out the channel number from the data. If you
prefer to store the channel number as well as the data, call AConvertData() to retrieve the
data and the channel number from the buffer after the data acquisition to the buffer is
complete.

The ConvertData option is not required for software triggered types.

ExtClock This option is available only for boards that have separate inputs for external pacer and
external trigger. See your hardware manual or refer to the board-specific information in the
UL Users Guide.

ExtMemory Causes this method to send the data to a connected memory board via the DT-Connect
interface rather than returning the data to the buffer. If you use this option to send the data
to a MEGA-FIFO memory board, then you must use MemReadPretrig() to later read the pre-
trigger data from the memory board. If you use MemRead(), the data will NOT be in the
correct order.

Every time this option is used, it overwrites any data already stored in the memory board.
All data should be read from the board (with MemReadPretrig()) before collecting any new
data. When this option is used, the memHandle parameter is ignored. The MEGA-FIFO
memory must be fully populated in order to use the APretrig() method with the ExtMemory
option.

DTConnect When the DtConnect option is used with this method the data from ALL A/D conversions is
sent out the DT-Connect interface. While this method is waiting for a trigger to occur, it will

Page 448 of 700

javascript:void(0)

Important!

For hardware trigger types, the buffer referenced by memHandle must be big enough to hold at least totalCount + 512 integers.

send data out the DT-Connect interface continuously. If you have a Measurement
Computing memory board plugged into the DT-Connect interface, then you should use the
ExtMemory option rather than this option.

Page 449 of 700

ATrig() method
Waits for a specified analog input channel to go above or below a specified value. ATrig() continuously reads the specified channel
and compares its value to trigValue. Depending on whether trigType is set to TrigAbove or TrigBelow, it waits for the first A/D
sample that is above or below trigValue. The first sample that meets the trigger criteria is returned to dataValue.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function ATrig(ByVal chan As Integer, ByVal trigType As MccDaq.TriggerType, ByVal trigValue As
Short, ByVal range As MccDaq.Range, ByRef dataValue As Short) As MccDaq.ErrorInfo

Public Function ATrig(ByVal chan As Integer, ByVal trigType As MccDaq.TriggerType, ByVal trigValue As
System.UInt16, ByVal range As MccDaq.Range, ByRef dataValue As System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ATrig(int chan, MccDaq.TriggerType trigType, short trigValue, MccDaq.Range
range, out short dataValue)

public MccDaq.ErrorInfo ATrig(int chan, MccDaq.TriggerType trigType, ushort trigValue, MccDaq.Range
range, out ushort dataValue)

Parameters
chan

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured. For example a CIO-DAS1600 has eight channels for differential inputs and 16 channels for single-ended inputs.

trigType

MccDaq.TriggerType.TrigAbove or MccDaq.TriggerType.TrigBelow. Specifies whether to wait for the analog input to be above
or below the specified trigger value.

trigValue

The threshold value that all A/D values are compared to. Must be in the range 0 – 4,095 for 12-bit A/D boards, or 0-65,535
for 16-bit A/D boards. Refer to your BASIC manual for information on signed BASIC integer data types.

range

Gain code. If the selected A/D board does not have a programmable gain feature, this parameter is ignored. Otherwise, set
to any range that is supported by the selected A/D board. Refer to board specific information for a list of the supported A/D
ranges of each board.

dataValue

Returns the value of the first A/D sample to meet the trigger criteria.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataValue - value of the first A/D sample to match the trigger criteria.

Notes

n Ctrl-C will not terminate the wait for an analog trigger that meets the specified condition. There are only two ways to
terminate this call: satisfy the trigger condition, or to reset the computer.

Caution!
Use caution when using this method in Windows programs. All active windows will lock on the screen until the trigger condition is
satisfied. All keyboard and mouse activity will also lock until the trigger condition is satisfied.

Page 450 of 700

javascript:hhctrl.TextPopup(ATrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(ATrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

VIn() method
Reads an A/D input channel, and returns a single precision voltage value. If the specified A/D board has programmable gain, then
this function sets the gain to the specified range. The voltage value is returned to dataValue.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function VIn(ByVal channel As Integer, ByVal range As MccDaq.Range, ByRef dataValue As Single,
ByVal options as MccDaq.VInOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo VIn(System.Int32 channel, MccDaq.Range range, System.Single dataValue,
MccDaq.VInOptions options)

Parameters
channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured.

range

A/D range code. If the board has a programmable gain, it will be set according to this parameter value.

Keep in mind that some A/D boards have a programmable gain feature, and others set the gain via switches on the board. In
either case, the range that the board is configured for must be passed to this method. Refer to board-specific information in
the Universal Library User's Guide for a list of the supported A/D ranges of each board.

dataValue

A reference to the data value.

options

Reserved for future use.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataValue - The value in volts of the A/D sample.

options parameter values

Default Reserved for future use.

Page 451 of 700

javascript:hhctrl.TextPopup(VIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(VIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

VIn32() method
Reads an A/D input channel, and returns a double precision voltage value. If the specified A/D board has programmable gain, then
this function sets the gain to the specified range. The voltage value is returned to dataValue.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function VIn32(ByVal channel As Integer, ByVal range As MccDaq.Range, ByRef dataValue As Double,
ByVal options As MccDaq.VInOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo VIn32(int channel, MccDaq.Range range, out double dataValue, MccDaq.VInOptions
options)

Parameters
channel

A/D channel number. The maximum allowable channel depends on which type of A/D board is being used. For boards with
both single ended and differential inputs, the maximum allowable channel number also depends on how the board is
configured.

range

A/D range code. If the board has a programmable gain, it will be set according to this parameter value.

Keep in mind that some A/D boards have a programmable gain feature, and others set the gain via switches on the board. In
either case, the range that the board is configured for must be passed to this method. Refer to board-specific information in
the Universal Library User's Guide for a list of the supported A/D ranges of each board.

dataValue

A reference to the data value.

options

Reserved for future use.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataValue - The value in volts of the A/D sample.

options parameter values

Default Reserved for future use.

Page 452 of 700

javascript:hhctrl.TextPopup(VIn32,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(VIn32,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

VOut() method
Sets the value of a D/A channel. This method cannot be used for current output.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function VOut(ByVal channel As Integer, ByVal range As MccDaq.Range, ByVal dataValue As Single,
ByVal options As MccDaq.VOutOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo VOut(System.Int32 channel, MccDaq.Range range, System.Single dataValue,
MccDaq.VOutOptions options)

Parameters
channel

The D/A channel number. The maximum allowable channel depends on which type of D/A board is being used.

range

The D/A range code. If the device has a programmable gain, it is set according to this parameter value. If the range
specified isn't supported, the function return a BADRANGE error.

If the gain is fixed or manually selectable, make sure that this parameter matches the gain configured for the device. If it
doesn't, the output voltage will not match the voltage specified in the dataValue parameter.

dataValue

The voltage value to be written.

options

Reserved for future use.

Returns

n An ErrorInfo object that indicates the status of the operation.

options parameter values

Default Reserved for future use.

Page 453 of 700

javascript:hhctrl.TextPopup(VOut,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(VOut,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

BoardConfig property
Represents an instance of the cBoardConfig class. Use this property to call the board configuration methods.

Member of the MccBoard class.

Property prototype
VB .NET

Public ReadOnly Property BoardConfig As MccDaq.cBoardConfig

C# .NET

public MccDaq.cBoardConfig BoardConfig [get]

Methods
Over 20 UL for .NET configuration methods are accessible only from the BoardConfig property. Before you call any of these
methods, you need to create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard

MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call a method from the BoardConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.BoardConfig.GetBoardType(MyBoardType)

Page 454 of 700

../../Classes/cBoardConfig_Class.htm

BoardConfig.DACUpdate() method
Updates the voltage values on analog output channels. This method is usually called after a SetDACUpdateMode() method call with
its configVal parameter set to 1 (on command).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype
VB .NET

Public Function DACUpdate() As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DACUpdate()

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 455 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetAdRetrigCount() method
Gets the number of samples to acquire during each trigger event when ScanOptions.RetrigMode is enabled.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetAdRetrigCount(ByRef retrigCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetAdRetrigCount(System.Int32 retrigCount)

Parameters
retrigCount

Specifies the number of samples to acquire for each trigger event when RetrigMode is set.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 456 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetBaseAdr() method
Gets the base address used by the Universal Library to communicate with a board. This is recommended for use only with ISA bus
boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetBaseAdr(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetBaseAdr(int devNum, out int configVal)

Parameters
devNum

Number of the base address to return (PCI boards may have several address ranges).

configVal

The board's base address.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 457 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetBoardType() method
Gets the unique number (device ID) assigned to the board (between 0 and 8000h) indicating the type of board installed.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetBoardType(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetBoardType(out int configVal)

Parameters
configVal

Returns a number indicating the board type.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 458 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetCiNumDevs() method
Gets the number of counter devices on the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetCiNumDevs(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetCiNumDevs(out int configVal)

Parameters
configVal

Returns the number of counter devices.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 459 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetClock() method
Gets the counter's clock frequency in MHz (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0 for not supported.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetClock(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetClock(out int configVal)

Parameters
configVal

C lock frequency in MHz.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 460 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDACRetrigCount() method
Gets the number of samples to generate during each trigger event when ScanOptions.RetrigMode is enabled.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDACRetrigCount(ByRef retrigCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDACRetrigCount(System.Int32 retrigCount)

Parameters
retrigCount

Specifies the number of samples to generate for each trigger event when RetrigMode is set.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 461 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDACStartup() method
Returns the board's configuration register STARTUP bit setting. Refer to SetDACStartup() Notes section for more information.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDACStartup(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDACStartup(int devNum, out int configVal)

Parameters
devNum

The number of the DAC channel whose startup bit setting you want to get.

configVal

Returns the setting of the startup bit (0 or 1).

Returns

n An ErrorInfo object that indicates the status of the operation.

n configVal - Returns 0 if the startup bit is disabled, or 1 if the startup bit is enabled.

Page 462 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDACUpdateMode() method
Returns the update mode for a digital-to-analog converter (DAC).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDACUpdateMode(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDACUpdateMode(out int configVal)

Parameters
configVal

Returns a number indicating the DAC update mode (0 = immediate, 1 = on command).

Returns

n An ErrorInfo object that indicates the status of the operation.

n configVal - If configVal returns 0, the DAC update mode is immediate. Values written with AOut() or AOutScan() are
automatically output by the DAC channels.

If configVal returns 1, the DAC update mode is set to on command. Values written with AOut() or AOutScan() are not output
by the DAC channels until a DACUpdate() method call is made.

Page 463 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDeviceId() method
Returns the name that identifies the instance of a device.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDeviceId(ByRef configVal As String, ByRef maxLen As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDeviceId(System.String configVal, System.Int32 maxLen)

Parameters
configVal

Returns a string containing the name that identifies the device.

maxLen

Specifies the maximum number of bytes to read, and returns the number of bytes that were actually read.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 464 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDeviceNotes() method
Returns the device notes that are stored in the device's memory.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype
VB .NET

Public Function GetDeviceNotes(ByVal start As Integer, ByRef configVal As String, ByRef maxLen As Integer) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDeviceNotes(System.Int32 start , System.String configVal, System.Int32 maxLen)

Parameters
start

The start address of the device's memory to begin reading.

maxLen

Specifies the maximum number of bytes to read. Returns the number of bytes that were actually read.

configVal

Returns a string containing the name that identifies the device.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 465 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDiNumDevs() method
Gets the number of digital devices on the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDiNumDevs(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDiNumDevs(out int configVal)

Parameters
configVal

Returns the number of digital devices.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 466 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDmaChan() method
Gets the DMA channel (0, 1, or 3) set for the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDmaChan(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDmaChan(out int configVal)

Parameters
configVal

Returns DMA channel. 0, 1, or 3.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 467 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetDtBoard() method
Gets the number of the board with the DT-Connect interface used to connect to external memory boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetDtBoard(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDtBoard(out int configVal)

Parameters
configVal

Returns the board number of the board that the external memory board is connected to.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 468 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetIntLevel() method
Gets the interrupt level set for the board (0 for none, or 1 to 15).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetIntLevel(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetIntLevel(out int configVal)

Parameters
configVal

Returns the interrupt level (0 for none, or 1 – 15).

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 469 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetNumAdChans() method
Gets the number of A/D channels.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetNumAdChans(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetNumAdChans(out int configVal)

Parameters
configVal

Returns the number of A/D channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 470 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetNumDaChans() method
Gets the number of D/A channels.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetNumDaChans(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetNumDaChans(out int configVal)

Parameters
configVal

Returns the number of D/A channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 471 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetNumExps() method
Gets the number of expansion boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetNumExps(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetNumExps(out int configVal)

Parameters
configVal

Returns the number of expansion boards attached to the board.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 472 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetNumIoPorts() method
Gets the number of I/O ports used by the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetNumIoPorts(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetNumIoPorts(out int configVal)

Parameters
configVal

Returns the number of I/O ports used by the board.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 473 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetPanID() method
Returns the Personal Area Network (PAN) identifier for wireless communication.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetPANID(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetPANID(System.Int32 configVal)

Parameters
configVal

Returns a number from 0 to 65,534 that identifies the Personal Area Network used for wireless communication.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 474 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetRange() method
Gets the selected voltage range. For switch-selectable gains only.

If the selected A/D board does not have a programmable gain feature, this method returns the range as defined by the installed
InstaCal settings. If InstaCal and the board are installed correctly, the range returned corresponds to the input range set by
switches on the board. Refer to board-specific information for a list of the A/D ranges supported by each board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetRange(ByRef configVal As MccDaq.Range) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetRange(out MccDaq.Range configVal)

Parameters
configVal

Returns the selected voltage range. Refer to board-specific information for a list of valid settings.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 475 of 700

classes\class_overview.htm#cboardconfig
javascript:void(0)
javascript:void(0)
javascript:void(0)

BoardConfig.GetRFChannel() method
Returns the RF channel number that a wireless device uses to communicate.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetRFChannel(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetRFChannel(System.Int32 configVal)

Parameters
configVal

Returns the number (from 12 to 23) of the RF channel selected for wireless communication.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 476 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetRSS() method
Returns the signal strength in dBm of a signal received by a remote device.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetRSS(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetRSS(System.Int32 configVal)

Parameters
configVal

Returns the received signal strength in dBm of the remote device. In general, values are negative.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 477 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetUsesExps() method
Gets the True/False value indicating support of expansion boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetUsesExps(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetUsesExps(out int configVal)

Parameters
configVal

Returns True if the board supports expansion boards, or False if the board does not support expansion boards.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 478 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.GetWaitState() method
Gets the value of the wait state jumper (1-enabled, 0-disabled).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function GetWaitState(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetWaitState(out int configVal)

Parameters
configVal

Returns the wait state of the board.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 479 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetAdRetrigCount() method
Sets the number of samples to acquire during each trigger event when ScanOptions.RetrigMode is enabled.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetAdRetrigCount(ByRef retrigCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetAdRetrigCount(System.Int32 retrigCount)

Parameters
retrigCount

Specifies the number of samples to acquire per trigger event when RetrigMode is set. Set to zero to use the value of the
numPoints argument of the scan function.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 480 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetBaseAdr() method
Sets the base address used by the Universal Library to communicate with a board. This is recommended for use only with ISA bus
boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetBaseAdr(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetBaseAdr(int deveNum, int configVal)

Parameters
devNum

Number of the base address to configure (should always be 0 – can't configure PCI base addresses).

configVal

Sets the base address of the board.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 481 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetClock() method
Sets the counter's clock source by the frequency (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0 for not supported.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetClock(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetClock(int configVal)

Parameters
configVal

Sets the clock frequency in MHz.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 482 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetDACStartup() method
Sets the board's configuration register STARTUP bit to 0 or 1 to enable/disable the storing of digital-to-analog converter (DAC)
startup values. Each time the DAC board is powered up, the stored values are written to the DACs. New DAC start-up values are
stored in memory by calling AOut() or AOutScan() after calling SetDacStartup() with the argument set to 1. Refer to the "Notes"
section below for more information.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetDACStartup(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetDACStartup(int configVal)

Parameters
configVal

Set to 0 to disable, or 1 to enable the storing of startup values for the channel.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n Use the SetDACStartup() method to store the DAC values you would like each DAC channel to be set to each time the board
is powered up.

n To store the current DAC values as start-up values, call SetDACStartup() with a configVal value of 1. Then, each time you
call AOut() or AOutScan(),the value written for each channel is stored in NV RAM. The last value written to a particular
channel while SetDACStartup() is set to 1 is the value that channel will be set to at power up. Call SetDACStartup() again
with a configVal value of 0 to stop storing values in NV RAM.

Example

DacBoard.BoardConfig.SetDACStartup(1);

for (int i =1; i <8; i++)

{

DacBoard.AOut(i, BIP5VOLTS, DACValue[i]);

}

DacBoard.BoardConfig.SetDACStartup(chanNum, 0);

Page 483 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetDACRetrigCount() method
Sets the number of samples to generate during each trigger event when ScanOptions.RetrigMode is enabled.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetDACRetrigCount(ByRef retrigCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetDACRetrigCount(System.Int32 retrigCount)

Parameters
retrigCount

Specifies the number of samples to generate per trigger event when RetrigMode is set. Set to zero to use the value of the
numPoints argument of the scan function.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 484 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetDACUpdateMode() method
Sets the update mode for a digital-to-analog converter (DAC).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetDACUpdateMode(ByVal devNum as Integer, ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetDACUpdateMode(int devNum, int configVal)

Parameters
devNum

Number of the channel whose update mode you want set.

configVal

When set to 0, the DAC update mode is immediate. Values written with AOut() or AOutScan() are automatically output by the
DAC channels.

When set to 1, the DAC update mode is on command. Values written with AOut() or AOutScan() are not output by the DAC
channel(s) until a DACUpdate() method call is made.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 485 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetDeviceId() method
Sets the name that identifies the instance of a device.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetDeviceId(ByVal configVal As String, ByRef maxLen As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetDeviceId(System.String configVal, System.Int32 maxLen)

Parameters
configVal

Sets the string that contains the name identifying a device.

maxLen

Specifies the maximum number of bytes to write, and returns the number of bytes that were actually written. For WLS Series
devices, the string can contain up to 20 characters.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 486 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetDeviceNotes() method
Sets the device notes to store in the device's memory.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetDeviceNotes(ByVal start As Integer, ByVal configVal As String, ByRef maxLen As
Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetDeviceNotes(System.Int32 start, System.String configVal, System.Int32
maxLen)

Parameters
start

The start address of the device's memory to begin writing.

maxLen

Specifies the maximum number of bytes to write, and returns the number of bytes that were actually written. For WLS Series
devices, the string can contain up to 20 characters.

configVal

The text to store in the device's memory.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 487 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetDmaChan() method
Sets the DMA channel (0, 1 or 3).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetDmaChan(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetDmaChan(int configVal)

Parameters
configVal

Sets the DMA channel to 0, 1 or 3.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 488 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetIntLevel() method
Sets the interrupt level: 0 for none, or 1 to 15. Recommended for use only with ISA bus boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetIntLevel(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetIntLevel(int configVal)

Parameters
configVal

Sets the interrupt level. Valid settings are 0 for none, or 1 – 15.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 489 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetNumAdChans() method
Sets the number of A/D channels available on the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetNumAdChans(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetNumAdChans(int configVal)

Parameters
configVal

Sets the number of A/D channels on the board. Check board-specific info for valid numbers. Note that this setting affects the
single-ended/differential input mode of boards for which this setting is programmable.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 490 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetPanID() method
Sets the Personal Area Network (PAN) identifier used for wireless communication.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetPANID(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetPANID(System.Int32 configVal)

Parameters
configVal

Sets the number (from 0 to 65,534) that identifies the Personal Area Network used for wireless communication.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 491 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetRange() method
Sets the selected voltage range. For use with boards for which the range is manually selected.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetRange(ByVal configVal As MccDaq.Range) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetRange(MccDaq.Range configVal)

Parameters
configVal

Range code.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 492 of 700

classes\class_overview.htm#cboardconfig
javascript:void(0)
javascript:void(0)

BoardConfig.SetRFChannel() method
Sets the RF channel number used for wireless communications.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetRFChannel(ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetRFChannel(System.Int32 configVal)

Parameters
configVal

Sets the number of the RF channel to use for wireless communications. Valid channel numbers are 12 to 23.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 493 of 700

classes\class_overview.htm#cboardconfig

BoardConfig.SetWaitState() method
Sets the value of the Wait State jumper.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function Prototype
VB .NET

Public Function SetWaitState(ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetWaitState(int configVal)

Parameters
configVal

Sets the wait state on the board (1 = enabled, 0 = disabled).

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 494 of 700

classes\class_overview.htm#cboardconfig

BoardNum property
Number of the board associated with an instance of the MccBoard class.

Member of the MccBoard class.

Property prototype
VB .NET

Public ReadOnly Property BoardNum As Integer

C# .NET

public int BoardNum [get]

Page 495 of 700

CtrConfig property
Represents an instance of the cCtrConfig class. Use this property to call counter chip configuration methods.

Member of the MccBoard class.

Property prototype
VB .NET

Public ReadOnly Property CtrConfig As MccDaq.cCtrConfig

C# .NET

public MccDaq.cCtrConfig CtrConfig [get]

Methods
The GetCtrType() configuration method is accessible only from the CtrConfig property. Before you call this method, you need to
create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard

MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call this method from the CtrConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.CtrConfig.GetCtrType(MyCtrNum, MyCtrType)

Page 496 of 700

classes\class_overview.htm#cctrconfig

CtrConfig.GetCtrType() method
Gets the value that indicates the counter type.

Member of the cCtrConfig class. Accessible from the MccBoard.CtrConfig property.

Function Prototype
VB .NET

Public Function GetCtrType(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetCtrType(int devNum, out int configVal)

Parameters
devNum

Number of the counter device.

configVal

Returns the counter type, where: 1 = 8254, 2 = 9513, 3 = 8536, 4 = 7266, 5 = event counter, 6 = scan counter, 7 = timer
counter, 8 = quadrature counter, and 9 = pulse counter.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 497 of 700

classes\class_overview.htm#cctrconfig

DioConfig property
Represents an instance of the cDioConfig class. Use this property to call various digital I/O configuration methods.

Member of the MccBoard class.

Property prototype
VB .NET

Public ReadOnly Property DioConfig As MccDaq.cDioConfig

C# .NET

public MccDaq.cDioConfig DioConfig [get]

Methods
Six configuration methods are accessible only from the DioConfig property. Before you call any of these methods, you need to
create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard

MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call these methods from the DioConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.DioConfig.GetNumBits(MyDevNum, MyNumBits)

Page 498 of 700

DioConfig.GetConfig() method
Gets the configuration of a digital device (digital input or digital output).

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function Prototype
VB .NET

Public Function GetConfig(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetConfig(int devNum, out int configVal)

Parameters
devNum

Number of the digital device.

configVal

Current configuration (1 = DigitalOut, 2 = DigitalIn).

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 499 of 700

classes\class_overview.htm#cdioconfig

DioConfig.GetCurVal method
Gets the current value of digital outputs.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function Prototype
VB .NET

Public Function GetCurVal(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetCurVal(int devNum, out int configVal)

Parameters
devNum

Number of the digital device.

configVal

Current value of the digital output.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 500 of 700

classes\class_overview.htm#cdioconfig

DioConfig.GetDevType() method
Gets the device type of the digital port (AUXPORT, FIRSTPORTA, etc.).

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function Prototype
VB .NET

Public Function GetDevType(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDevType(int devNum, out int configVal)

Parameters
devNum

Number of the digital device.

configVal

Constant that indicates the type of device (AUXPORT, FIRSTPORTA, etc.).

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 501 of 700

classes\class_overview.htm#cdioconfig

DioConfig.GetDInMask() method
Determines the bits on a specified port that are configured for input.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype
VB .NET:

Public Function GetDInMask(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET:

public MccDaq.ErrorInfo GetDInMask(int devNum, out int configVal)

Parameters
devNum

Number of the port whose input bit configuration you want to determine.

configVal

Returns the bit configuration of the specified port. Any of the lower eight bits that return a value of 1 are configured for input.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes
Use GetDInMask() with the GetDOutMask() method to determine if an AuxPort is configurable. If you apply both methods to the
same port, and both configVal parameters returned have input and output bits that overlap, the port is not configurable. You can
determine overlapping bits by ANDing both parameters.

For example, the PCI-DAS08 has seven bits of digital I/O (four outputs and three inputs). For this board, the configVal parameter
returned by GetDInMask()is always 7 (0000 0111), while the configVal parameter returned by GetDOutMask() is always 15 (0000
1111). When you And both configVal parameters together, you get a non-zero number (7). Any non-zero number indicates that
input and output bits overlap for the specified port, and that port is a non-configurable AuxPort.

Page 502 of 700

classes\class_overview.htm#cdioconfig

DioConfig.GetDOutMask() method
Determines the bits on a specified port that are configured for output.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function Prototype
VB .NET

Public Function GetDOutMask(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDOutMask(int devNum, out int configVal)

Parameters
devNum

Number of the port whose output bit configuration you want to determine.

configVal

Returns the bit configuration of the specified port. Any of the lower eight bits that return a value of 1 are configured for
output.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes
Use GetDOutMask() with the GetDInMask() method to determine if an AuxPort is configurable. If you apply both methods to the
same port, and both configVal parameters returned have input and output bits that overlap, the port is not configurable. You can
determine overlapping bits by ANDing both parameters.

For example, the PCI-DAS08 has seven bits of digital I/O (four outputs and three inputs). For this board, the configVal parameter
returned by GetDInMask()is always 7 (0000 0111), while the configVal parameter returned by GetDOutMask() is always 15 (0000
1111). When you And both configVal parameters together, you get a non-zero number (7). Any non-zero number indicates that
input and output bits overlap for the specified port, and that port is a non-configurable AuxPort.

Page 503 of 700

classes\class_overview.htm#cdioconfig

DioConfig.GetNumBits() method
Gets the number of bits in the digital port.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function Prototype
VB NET

Public Function GetNumBits(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# ..NET

public MccDaq.ErrorInfo GetNumBits(int devNum, out int configVal)

Parameters
devNum

Number of the digital device.

configVal

Number of bits in the digital port.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 504 of 700

classes\class_overview.htm#cdioconfig

ExpansionConfig property
Represents an instance of the cExpansionConfig class. Use this property to call various expansion board configuration methods.

Member of the MccBoard class.

Property prototype
VB .NET

Public ReadOnly Property ExpansionConfig As MccDaq.cExpansionConfig

C# .NET

public MccDaq.cExpansionConfig ExpansionConfig [get]

Methods
Over a dozen configuration methods are accessible only from the ExpansionConfig property. Before you call any of these methods,
you need to create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard

MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call these methods from the ExpansionConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.ExpansionConfig.GetBoardType(MyExpNum, MyExpType)

Page 505 of 700

ExpansionConfig.GetBoardType()
Gets the expansion board type.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetBoardType(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetBoardType(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Returns a number indicating the expansion board type. Refer to "Measurement Computing Device IDs" for more information.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 506 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetCjcChan() method
Gets the channel that the CJC is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetCjcChan(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetCjcChan(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number indicating the channel on the A/D board that the CJC is connected to.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 507 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetMuxAdChan1() method
Gets the first A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetMuxAdChan1(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetMuxAdChan1(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number indicating the first A/D channel that the EXP board is connected to.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 508 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetMuxAdChan2() method
Gets the second A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetMuxAdChan2(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetMuxAdChan2(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number indicating the second A/D channel that the EXP board is connected to.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 509 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetNumExpChans() method
Gets the number of expansion board channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetNumExpChans(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetNumExpChans(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number of channels on the expansion board.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 510 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetRange1() method
Gets the range/gain of the low 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetRange1(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetRange1(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Returns the range (gain) of the low 16 channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 511 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetRange2() method
Gets the range/gain of the high 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetRange2(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetRange2(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Returns the range (gain) of the high 16 channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 512 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.GetThermType() method
Gets the type of thermocouple configuration for the board (J, K, E, T, R, S, and B types).

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function GetThermType(ByVal devNum As Integer, ByRef configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetThermType(int devNum, out int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number indicating the type of thermocouple configured for the board. (J = 1, K = 2, T = 3, E = 4, R = 5, S = 6, B = 7,
Platinum .00392 = 257, Platinum .00391 = 258, Platinum .00385 = 259, Copper .00427 = 260, Nickel/Iron .00581 = 261,
Nickel/Iron .00527 = 262).

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 513 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.SetCjcChan() method
Sets the channel that the CJC is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function SetCjcChan(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetCjcChan(int devNum, int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number that sets the A/D channel to connect to the CJC.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 514 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.SetMuxAdChan1() method
Sets the first A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function SetMuxAdChan1(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetMuxAdChan1(int devNum, int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number that sets the first A/D channel that the EXP board is connected to.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 515 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.SetMuxAdChan2() method
Sets the second A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function SetMuxAdChan2(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetMuxAdChan2(int devNum, int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number that sets the second A/D channel that the EXP board is connected to.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 516 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.SetRange1() method
Sets the range/gain of the low 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function SetRange1(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetRange1(int devNum, int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number that sets the range (gain) of the low 16 channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 517 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.SetRange2() method
Sets the range/gain of the high 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function SetRange2(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetRange2(int devNum, int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number that sets the range (gain) of the high 16 channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 518 of 700

classes\class_overview.htm#cexpansionconfig

ExpansionConfig.SetThermType() method
Sets the type of thermocouple configuration for the board (J, K, E, T, R, S, and B types).

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig property.

Function Prototype
VB .NET

Public Function SetThermType(ByVal devNum As Integer, ByVal configVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetThermType(int devNum, int configVal)

Parameters
devNum

Number of the expansion board.

configVal

Number that sets the type of thermocouple configured for the board. (J = 1, K = 2, T = 3, E = 4, R = 5, S = 6, B = 7,
Platinum .00392 = 257, Platinum .00391 = 258, Platinum .00385 = 259, Copper .00427 = 260, Nickel/Iron .00581 = 261,
Nickel/Iron .00527 = 262).

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 519 of 700

classes\class_overview.htm#cexpansionconfig

GetSignal() method
Retrieves the configured Auxiliary or DAQ Sync connection and polarity for the specified timing and control signal.

This method is intended for advanced users. Except for the SYNC_CLK input, you can easily view the settings for the timing and
control signals using InstaCal.

Member of the MccBoard class.

Note: This method is not supported by all board types. Refer to the board-specific information contained in the Universal Library
User's Guide.

Function Prototype
VB .NET

Public Function GetSignal(ByVal direction As MccDaq.SignalDirection, ByVal signalType As
MccDaq.SignalType, ByVal index As Integer, ByRef connectionPin As MccDaq.ConnectionPin, ByRef
signalPolarity As MccDaq.SignalPolarity) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetSignal(MccDaq.SignalDirection direction, MccDaq.SignalType signalType, int
index, out MccDaq.ConnectionPin connectionPin, out MccDaq.SignalPolarity signalPolarity)

Parameters
direction

Specifies whether to retrieve the source (MccDaq.SignalDirection.SignalIn) or destination (MccDaq.SignalDirection.SignalOut)
of the specified signal.

signalType

Signal type whose connection is to be retrieved. See SelectSignal for valid signal types.

index

Indicates which connection to reference when there is more than one connection associated with the output signal type. When
querying output signals, increment this value until BadIndex is returned or 0 is returned via the connection parameter to
determine all the output connectionPins for the specified output Signal. The first connectionPin is indexed by 0.

For input signals (direction= MccDaq.SignalDirection.SignalIn), always set index to 0.

connectionPin

The specified connection is returned through this variable. Note that this is set to 0 if no connection is associated with the
signalType, or if the index is set to an invalid value. Refer to the SelectSignal() method's "direction, connectionPin, and
polarity parameter values" section for expected return values.

signalPolarity

Holds the polarity for the associated signalType and connectionPin.

For output signals assigned an AuxOut connectionPin, the return value is either MccDaq.SignalPolarity.Inverted or
MccDaq.SignalPolarity.NonInverted.

For AdcConvert, DacUpdate, AdcTbSrc and DacTbSrc input signals, the return value is either
MccDaq.SignalPolarity.PositiveEdge or MccDaq.SignalPolarity.NegativeEdge.

All other signals return 0.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n The above timing and control configuration information can also be viewed and edited inside InstaCal: Open InstaCal, click
on the board, and press the "Configure…" button or menu item. If the board supports DAQ Sync and Auxiliary Input/Output
signal connections, a button labeled "Advanced Timing & Control Configuration" displays. Press this button to open a display
for viewing and modifying the above timing and control signals.

Page 520 of 700

javascript:hhctrl.TextPopup(GetSignal,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(GetSignal,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

NumBoards property
Returns the maximum number of boards you can install at one time.

Member of the GlobalConfig class.

Property prototype
VB .NET

Public Shared ReadOnly Property NumBoards As Integer

C# .NET

public int NumBoards [get]

Page 521 of 700

NumExpBoards property
Returns the maximum number of expansion boards you can install on a board.

Member of the GlobalConfig class.

Property prototype
VB .NET

Public Shared ReadOnly Property NumExpBoards As Integer

C# .NET

public static int NumExpBoards [get]

Page 522 of 700

SelectSignal() method
Configures timing and control signals to use specific Auxiliary or DAQ Sync connections as a source or destination.

This method is intended for advanced users. Except for the SyncClk input, you can easily configure all the timing and control
signals using InstaCal.

Member of the MccBoard class.

Note: SelectSignal() is not supported by all board types. Refer to the board-specific information contained in the Universal Library
User's Guide for details.

Function Prototype
VB .NET

Public Function SelectSignal(ByVal direction As MccDaq.SignalDirection, ByVal signalType As
MccDaq.SignalType, ByVal connectionPin As MccDaq.ConnectionPin, ByVal polarity As
MccDaq.SignalPolarity) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SelectSignal(MccDaq.SignalDirection direction, MccDaq.SignalType signal,
MccDaq.ConnectionPin connectionPin,MccDaq.SignalPolarity polarity)

Parameters
direction

Direction of the specified signal type to be assigned a connector pin. For most signal types, this should be either SignalIn or
SignalOut.

For the SyncClk, AdcTbSrc and DacTbSrc signals, the external source can also be disabled by specifying Disabled(=0), such
that it is neither input nor output.

Set it in conjunction with the signalType, connectionPin, and polarity parameters. Refer to the "direction, connectionPin, and
polarity parameter values" section below.

signalType

Signal type to be associated with a connector pin. Set it to one of the constants in the "signalType parameter values" section
below.

connectionPin

Designates the connector pin to associate the signal type and direction. Since individual pin selection is not allowed for the
DAQ-Sync connectors, all DAQ-Sync pin connections are referred to as DsConnector. The MccDaq.ConnectionPin.AuxIn and
MccDaq.ConnectionPin.AuxOut settings match their corresponding hardware pin names.

polarity

AdcTbSrc and DacTbSrc input signals (direction = MccDaq.SignalDirection.SignalIn) can be set for either rising edge
(MccDaq.SignalPolarity.PositiveEdge) or falling edge (MccDaq.SignalPolarity.NegativeEdge) signals. The AuxOut connections
can be set to MccDaq.SignalPolarity.Inverted or MccDaq.SignalPolarity.NonInverted from their internal polarity.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 523 of 700

javascript:hhctrl.TextPopup(SelectSignal,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(SelectSignal,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

signalType parameter values

All of the signalType settings are MccDaq.SignalType enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the SignalType enumeration (variable = MccDaq.SignalType.AdcConvert, variable =
MccDaq.SignalType.AdcGate, etc.).

direction, connectionPin, and polarity parameter values

n All of the direction settings are MccDaq.SignalDirection enumerated constants. To set a variable to one of these constants,
you must refer to the MccDaq object and the SignalDirection enumeration (variable = MccDaq.SignalDirection.SignalIn,
variable = MccDaq. SignalDirection.SignalOut, etc.).

n All of the connectionPin settings are MccDaq.ConnectionPin enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ConnectionPin enumeration (variable =
MccDaq.ConnectionPin.AuxIn0, variable = MccDaq.ConnectionPin.DsConnector, etc.).

n All of the polarity settings are MccDaq.SignalPolarity enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the SignalPolarity enumeration (variable = MccDaq.SignalPolarity.PositiveEdge, variable
= MccDaq.ConnectionPin.Negative, etc.).

Signal Connection

AdcConvert A/D conversion pulse or clock.

AdcGate External gate for A/D conversions.

AdcScanClk A/D channel scan signal.

AdcScanStop A/D scan completion signal.

ADC_SSH A/D simultaneous sample and hold signal.

AdcStartScan Start of A/D channel-scan sequence signal.

AdcStartTrig A/D scan start trigger.

AdcStopTrig A/D stop- or pre- trigger.

AdcTbSrc A/D pacer timebase source.

Ctr1Clk CTR1 clock source.

Ctr2Clk CTR2 clock source.

DacStartTrig D/A start trigger.

DacTbSrc D/A pacer timebase source.

DacUpdate D/A update signal.

DGnd Digital ground.

SyncClk STC timebase signal.

Valid input settings (direction = MccDaq.SignalDirection.SignalIn)

signalType connectionPin polarity

AdcConvert AuxIn0..AuxIn5

DsConnector
PositiveEdge or NegativeEdge

AdcGate AuxIn0..AuxIn5 See SetTrigger().

AdcStartTrig AuxIn0..AuxIn5

DsConnector

AdcStopTrig AuxIn0..AuxIn5

DsConnector

AdcTbSrc AuxIn0..AuxIn5 PositiveEdge or NegativeEdge

DacStartTrig AuxIn0..AuxIn5

DsConnector
Not assigned here.

DscTbSrc AuxIn0..AuxIn5 PositiveEdge or NegativeEdge

DacUpdate AuxIn0..AuxIn5

DsConnector
PositiveEdge or NegativeEdge

SyncClk DsConnector Not assigned here.

Page 524 of 700

javascript:void(0)
javascript:void(0)
javascript:void(0)

* Inverted is only valid for Auxiliary Output (AuxOut) connections.

Notes

n You can view and edit the above timing and control configuration information from InstaCal. Open InstaCal, click on the
board, and press the Configure… button or menu item. If the board supports DAQ Sync and Auxiliary Input/Output signal
connections, a Advanced Timing & Control Configuration button appears. Press that button to open a display for viewing
and modifying the above timing and control signals.

n Except for the AdcTbSrc, DacTbsSrc and SyncClk signals, selecting an input signal connection does not necessarily activate it.
Alternately, assigning an output signal to a connection does activate the signal upon performing the respective operation. For
instance, when running an ExtClock AInScan(), AdcConvert SignalIn selects the connection to use as an external clock to
pace the A/D conversions; if AInScan() is run without setting the ExtClock option, however, the selected connection is not
activated and the signal at that connection is ignored. In both cases, the AdcConvert signal is output the connection(s)
selected for the AdcConvert SignalOut. Since there are no scan options for enabling the Timebase Source and the SyncClk,
selecting an input for the A/D or D/A Timebase Source, or SyncClk does activate the input source for the next respective
operations.

n Multiple input signals can be mapped to the same AuxIn connection by successive calls to SelectSignal(); however, only one
connection can be mapped to each input signal. If another connection had already been assigned to an input signal, the
former selection is de-assigned and the new connection is assigned.

n Only one output signal can be mapped to the same AuxOutn connection; however, multiple connections can be mapped to the
same output signal by successive calls to SelectSignal(). If an output signal had already been assigned to a connection, then
the former output signal is de-assigned and the new output signal is assigned to the connection.

n When selecting DsConnector for a signal, only one direction per signal type can be defined at a given time. Attempting to
assign both directions of a signal to the DSConnector results in only the latest selection being applied.

If the signal type had formerly been assigned an input direction from the DSConnector, assigning the output direction for that
signal type results in the input signal being reassigned to its default connection.

n AdcTbSrc and DacTbSrc are intended to synchronize the timebase of the analog input and output pacers across two or more

Valid output settings (direction = MccDaq.SignalDirection.SignalOut)

signalType connectionPin polarity

AdcConvert AuxOut0..AuxOut2

DsConnector
Inverted* or NonInverted

AdcScanClk AuxOut0..AuxOut2

AdcScanStop AuxOut0..AuxOut2

AdcSsh AuxOut0..AuxOut2

AdcStartScan AuxOut0..AuxOut2

AdcStartTrig AuxOut0..AuxOut2

DsConnector

AdcStopTrig AuxOut0..AuxOut2

DsConnector

Ctr1Clk AuxOut0..AuxOut2

Ctr2Clk AuxOut0..AuxOut2

DacStartTrig AuxOut0..AuxOut2

DsConnector

DacUpdate AuxOut0..AuxOut2

DsConnector

DGND AuxOut0..AuxOut2 Not assigned here.

SyncClk DsConnector Not assigned here.

Valid disabled settings (direction = MccDaq.SignalDirection.Disabled)

signalType connectionPin polarity

AdcTbSrc Not assigned here. Not assigned here.

DacTbSrc

SyncClk

Default input
signal
connections

Input signal Default connection

AdcConvert AuxIn0

AdcGate AuxIn5

AdcStartTrig AuxIn1

AdcStopTrig AuxIn2

DacUpdate AuxIn3

DacStartTrig AuxIn3

Page 525 of 700

boards. Internal calculations of sampling and update rates assume that the external timebase has the same frequency as its
internal clock. Adjust sample rates to compensate for differences in clock frequencies.

For instance, if the external timebase has a frequency of 10 MHz on a board that has a internal clock frequency of 40 MHz,
the scan function samples or updates at a rate of about 1/4 the rate entered. However, while compensating for differences in
external timebase and internal clock frequency, if the rate entered results in an invalid pacer count, the method returns a
BADRATE error.

Page 526 of 700

SetTrigger() method
Selects the trigger source and sets up its parameters. This trigger is used to initiate analog to digital conversions using the following
Universal Library for .NET methods:

n AInScan(), if the ExtTrigger option is selected.

n DInScan(), if the ExtTrigger option is selected.

n CInScan(), if the ExtTrigger option is selected.

n APretrig()

n FilePretrig()

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function SetTrigger(ByVal trigType As MccDaq.TriggerType, ByVal lowThreshold As Short, ByVal
highThreshold As Short) As MccDaq.ErrorInfo

Public Function SetTrigger(ByVal trigType As MccDaq.TriggerType, ByVal lowThreshold As System.UInt16,
ByVal highThreshold As System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetTrigger(MccDaq.TriggerType trigType, short lowThreshold, short
highThreshold)

public MccDaq.ErrorInfo SetTrigger(MccDaq.TriggerType trigType, ushort lowThreshold, ushort
highThreshold)

Parameters
trigType

Specifies the type of triggering based on the external trigger source. Set it to one of the constants specified in the Type
column listed in the "trigType parameter values" section below.

LowThreshold

Selects the low threshold used when the trigger input is analog. The range depends upon the resolution of the trigger
circuitry. Must be 0 to 255 for 8-bit trigger circuits, 0 to 4,095 for 12-bit trigger circuits, and 0 to 65,535 for 16-bit trigger
circuits. Refer to the "Notes" section below.

HighThreshold

Selects the high threshold used when the trigger input is analog. The range depends upon the resolution of the trigger
circuitry. Must be 0 to 255 for 8-bit trigger circuits, 0 to 4,095 for 12-bit trigger circuits, and 0 to 65,535 for 16-bit trigger
circuits. Refer to the "Notes" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 527 of 700

javascript:hhctrl.TextPopup(SetTrigger,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(SetTrigger,termfont,10,10,000,000)
javascript:void(0)

trigType parameter values

All of the trigType settings are MccDaq.TriggerType enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the TriggerType enumeration (variable = MccDaq.TriggerType.GateNegHys, variable =
MccDaq.TriggerType.GatePosHys, etc.).

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n The value of the threshold must be within the range of the analog trigger circuit associated with the board. Refer to the
board-specific information in the Universal Library User's Guide. For example, on the PCI-DAS1602/16 the analog trigger
circuit handles ±10 V. A value of 0 corresponds to –10 V, whereas a value of 65,535 corresponds to +10 V.

If you are using signed integer types, the thresholds range from –32,768 to 32,767 for 16-bit boards, instead of from 0 to
65,535. In this case, the unsigned value of 65,535 corresponds to a value of –1, 65,534 corresponds to –2, …, 32,768
corresponds to –32,768.

n For most boards that support analog triggering, you can pass the required trigger voltage level and the appropriate range to
FromEngUnits() to calculate the highThreshold and lowThreshold values.

n For some boards, you must manually calculate the threshold by first calculating the least significant bit (LSB) for a
particular range for the trigger resolution of your hardware. You then use the LSB to find the threshold in counts based on an
analog voltage trigger threshold. Refer to the following procedure for details. For board-specific information, refer to your
hardware in the "Analog Input Boards" section of the Universal Library User's Guide.

Trigger
Source

Type Explanation

Analog GateNegHys AD conversions are enabled when the external analog trigger input is more positive
than highThreshold. AD conversions are disabled when the external analog trigger
input is more negative than lowThreshold. Hysteresis is the level between
lowThreshold and highThreshold.

GatePosHys AD conversions are enabled when the external analog trigger input is more negative
than lowThreshold. AD conversions are disabled when the external analog trigger
input is more positive than highThreshold. Hysteresis is the level between
lowThreshold and highThreshold.

GateAbove AD conversions are enabled as long as the external analog trigger input is more
positive than highThreshold

GateBelow AD conversions are enabled as long as the external analog trigger input is more
negative than lowThreshold.

GateInWindow AD conversions are enabled as long as the external analog trigger is inside the region
defined by lowThreshold and highThreshold.

GateOutWindow AD conversions are enabled as long as the external analog trigger is outside the
region defined by lowThreshold and HighThreshold.

TrigAbove AD conversions are enabled when the external analog trigger input transitions from
below highThreshold to above. Once conversions are enabled, the external trigger is
ignored.

TrigBelow AD conversions are enabled when the external analog trigger input transitions from
above lowThreshold to below. Once conversions are enabled, the external trigger is
ignored.

Digital GateHigh AD conversions are enabled as long as the external digital trigger input is 5V (logic
HIGH or '1').

GateLow AD conversions are enabled as long as the external digital trigger input is 0V (logic
LOW or '0').

TrigHigh AD conversions are enabled when the external digital trigger is 5V (logic HIGH or '1').
Once conversions are enabled, the external trigger is ignored.

TrigLow AD conversions are enabled when the external digital trigger is 0V (logic LOW or '0').
Once conversions are enabled, the external trigger is ignored.

TrigPosEdge AD conversions are enabled when the external digital trigger makes a transition from
0V to 5V (logic LOW to HIGH). Once conversions are enabled, the external trigger is
ignored.

TrigNegEdge AD conversions are enabled when the external digital trigger makes a transition from
5V to 0V (logic HIGH to LOW). Once conversions are enabled, the external trigger is
ignored.

Page 528 of 700

Manually calculating the threshold

To calculate the threshold, do the following:

1. Calculate the least significant bit (LSB) by dividing the full scale range (FSR) by 2resolution.

FSR is the entire span from –FS to +FS of your hardware for a particular range. For example, the full scale range of ±0 V is
20 V.

2. Calculate how many times you need to add the LSB calculate in step 1 to the negative full scale (–FS) to reach the trigger
threshold value.

The maximum threshold value is 2resolution – 1. The formula is shown here:

Abs (–FS – threshold in volts) ÷ (LSB) = threshold in counts

Here are two examples that use this formula — one for 8-bit trigger resolution, and one for 12-bit trigger resolution.

n 8-bit example using the ±10 volt range with a –5 volt threshold:

Calculate the LSB: LSB = 20 ÷ 28 = 20 ÷ 256 = 0.078125

Calculate the threshold: Abs(–10 – (–5)) ÷ 0.078125 = 5 ÷ 0.078125 = 64 (round this result if it is not an integer). A count of
64 translates to a voltage threshold of –5.0 volts.

n 12-bit example using the ±10 volt range with a +1 volt threshold:

Calculate the LSB: LSB = 20 ÷ 212 = 20 ÷ 4096 = 0.00488

Calculate the threshold: Abs(–10 – 1) ÷ 0.00488 = 11 ÷ 0.00488 = 2254 (rounded from 2254.1). A count of 2254 translates
to a voltage threshold of 0.99952 volts.

Page 529 of 700

C7266Config() method
Configures a 7266 counter for desired operation. This method can only be used with boards that contain a 7266 counter chip
(Quadrature Encoder boards). For more information, refer to the LS7266R1 data sheet (ls7266r1.pdf) located in the "Documents"
subdirectory of the installation.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function C7266Config(ByVal counterNum As Integer, ByVal quadrature As MccDaq.Quadrature, ByVal
countingMode As MccDaq.CountingMode, ByVal dataEncoding As MccDaq.DataEncoding, ByVal indexMode As
MccDaq.IndexMode, ByVal invertIndex As MccDaq.OptionState, ByVal flagPins As MccDaq.FlagPins, ByVal
gateState As MccDaq.OptionState) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo C7266Config(int counterNum, MccDaq.Quadrature quadrature, MccDaq.CountingMode
countingMode, MccDaq.DataEncoding dataEncoding, MccDaq.IndexMode indexMode, MccDaq.OptionState
invertIndex, MccDaq.FlagPins flagPins, MccDaq.OptionState gateState)

Parameters
counterNum

Number (1 to n) of the counter to configure, where n is the number of counters on the board.

quadrature

Selects the resolution multiplier for quadrature input (X1Quad, X2Quad, or X4Quad), or disables quadrature input (NoQuad)
so that the counters can be used as standard TTL counters.

countingMode

Selects the operating mode for the counter. Refer to CountingModes parameter values below.

dataEncoding

Selects the format of the data that is returned by the counter - either Binary or BCD format. Options are BinaryCount or
BCDCount.

indexMode

Selects which action is taken when the Index signal is received. The IndexMode must be set to IndexDisabled whenever a
Quadrature is set to NOQuad, or when GateState is set to Enabled. Refer to IndexModes parameter values below.

invertIndex

Selects the polarity of the Index signal. Options are Enabled or Disabled. If set to Enabled, the Index signal is assumed to be
negative polarity. If set to Disabled, the Index signal is assumed to be positive polarity.

flagPins

Selects which signals are routed to the FLG1 and FLG2 pins. Refer to the FlagPins parameter values below.

gateState

When gateState is set to ENABLED, the channel INDEX input is routed to the RCNTR pin of the LS7266 chip, and is used as a
gating signal for the counter. When set to ENABLED indexMode must be set to IndexDisabled.

Returns

n Error code or 0 if no errors

Page 530 of 700

http://www.measurementcomputing.com/PDFmanuals/LS7266R1.pdf
http://www.adobe.com/products/acrobat/readstep2.html
javascript:hhctrl.TextPopup(C7266Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(C7266Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

CountingModes parameter values

IndexModes parameter values

FlagPins parameter values

NormalMode Each counter operates as a 24 bit counter that rolls over to 0 when the maximum count is
reached.

RangeLimit In range limit count mode, an upper an lower limit is set, mimicking limit switches in the
mechanical counterpart. The upper limit is set by loading the PRESET register with the
CLoad method after the counter has been configured. The lower limit is always 0. When
counting up, the counter freezes whenever the count reaches the value that was loaded into
the PRESET register. When counting down, the counter freezes at 0. In either case the
counting is resumed only when the count direction is reversed.

NoRecycle In non-recycle mode the counter is disabled whenever a count overflow or underflow takes
place. The counter is re-enabled when a reset or load operation is performed on the
counter.

ModuloN In ModuloN mode, an upper limit is set by loading the PRESET register with a maximum
count. Whenever counting up, when the maximum count is reached, the counter will roll-
over to 0 and continue counting up. Likewise when counting down, whenever the count
reaches 0, it will roll over to the maximum count (in the PRESET register) and continue
counting down.

IndexDisabled The Index signal is ignored.

LoadCtr The channel INDEX input is routed to the LCNTR pin of the LS7266 counter chip. The counter
is loaded whenever the signal occurs.

LoadOutLatch The channel INDEX input is routed to the LCNTR pin of the LS7266 counter chip. The current
count is latched whenever the signal occurs. When this mode is selected, the CIn() method
will return the same count value each time it is called until the Index signal occurs.

ResetCtr The channel INDEX input is routed to the RCNTR pin of the LS7266 counter chip. The
counter is reset whenever the signal occurs.

CarryBorrow FLG1 pin is Carry output, FLG2 is Borrow output.

CompareBorrow FLG1 pin is Compare output, FLG2 is Borrow output.

CarryBorrowUpDown FLG1 pin is Carry/Borrow output, FLG2 is Up/Down signal.

IndexError FLG1 pin is Index output, FLG2 is Error output.

Page 531 of 700

C8254Config() method
Configures 8254 counter for desired operation. This method can only be used with 8254 counters. For more information, see the
82C54 data sheet in accompanying 82C54.pdf file located in the Documents subdirectory where the UL is installed (C:/Program
files/Measurement Computing/DAQ by default).

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function C8254Config(ByVal counterNum As Integer, ByVal config As MccDaq.C8254Mode) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo C8254Config(int counterNum, MccDaq.C8254Mode config)

Parameters
counterNum

Selects one of the counter channels. An 8254 has three counters. The value may be 1 – n, where n is the number of 8254
counters on the board (refer to the board-specific information in the UL Users Guide).

config

Refer to the 8254 data sheet for a detailed description of each of the configurations. Set it to one of the constants in the
config parameter values section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

config parameter values

All of the config settings are MccDaq.C8254Mode enumerated constants. To set a variable to one of these constants, you must refer
to the MccDaq object and the C8254Mode enumeration (for example, variable = MccDaq.C8254Mode.HighOnLastCount, variable =
MccDaq.C8254Mode.LastShot, etc.).

HardwareStrobe Output of counter (OUT N) pulses low for one clock cycle on terminal count. Count starts on
rising edge at GATE N input. See Mode 5 in the 8254 data sheet in the accompanying
82C54.pdf file located in the Documents subdirectory of the installation.

HighOnLastCount Output of counter (OUT N) transitions from low to high on terminal count and remains high
until reset. See Mode 0 in the 8254 data sheet in the accompanying 82C54.pdf file located in
the Documents subdirectory where the UL is installed (C:/Program files/Measurement
Computing/DAQby default).

OneShot Output of counter (OUT N) transitions from high to low on rising edge of GATE N, then back
to high on terminal count. See Mode 1 in the 8254 data sheet in the accompanying
82C54.pdf file located in the Documents subdirectory of the installation.

RateGenerator Output of counter (OUT N) pulses low for one clock cycle on terminal count, reloads counter
and recycles. See Mode 2 in the 8254 data sheet in the accompanying 82C54.pdf file
located in the Documents subdirectory of the installation.

SoftwareStrobe Output of counter (OUT N) pulses low for one clock cycle on terminal count. Count starts
after counter is loaded. See Mode 4 in the 8254 data sheet in the accompanying 82C54.pdf
file located in the Documents subdirectory of the installation.

SquareWave Output of counter (OUT N) is high for count < 1/2 terminal count then low until terminal
count, whereupon it recycles. This mode generates a square wave. See Mode 3 in the 8254
data sheet in the accompanying 82C54.pdf file located in the Documents subdirectory of the
installation.

Page 532 of 700

http://www.measurementcomputing.com/PDFmanuals/82C54.pdf
http://www.adobe.com/products/acrobat/readstep2.html
javascript:hhctrl.TextPopup(C8254Config,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(C8254Config,termfont,10,10,000,000)
javascript:void(0)

C8536Config() method
Configures an 8536 counter for desired operation. This method can only be used with 8536 counters.

For more information, refer to the Zilog 8536 product specification. The document is available on our web site at
http://www.mccdaq.com/PDFmanuals/Z8536.pdf.

Member of the MccBoard class.

Function Prototype
VB .NET

Configure for software triggering:

Public Shared Function C8536Config(ByVal counterNum As Integer, ByVal outputControl As
MccDaq.C8536OutputControl, ByVal recycleMode As MccDaq.RecycleMode, ByVal trigType As
MccDaq.C8536TriggerType) As MccDaq.ErrorInfo

Configure for hardware triggering; use when existing code includes MccDaq.OptionState:

Public Function C8536Config(ByVal counterNum As Integer, ByVal outputControl As
MccDaq.C8536OutputControl, ByVal recycleMode As MccDaq.RecycleMode, ByVal retrigger As
MccDaq.OptionState) As MccDaq.ErrorInfo

C# .NET

Configure for software triggering:

public MccDaq.ErrorInfo C8536Config(int counterNum, MccDaq.C8536OutputControl outputControl,
MccDaq.RecycleMode recycleMode, MccDaq.C8536TriggerType trigType)

Configure for hardware triggering; use when existing code includes MccDaq.OptionState:

public MccDaq.ErrorInfo C8536Config(int counterNum, MccDaq.C8536OutputControl outputControl,
MccDaq.RecycleMode recycleMode, MccDaq.OptionState retrigger)

Parameters
counterNum

Selects one of the counter channels. An 8536 has 3 counters. The value may be 1, 2 or 3.

INT32 Series boards have two chips installed, so the counterNum value may be 1 to 6.

outputControl

Specifies the action of the output signal. Set it to one of the constants in the "outputControl parameter values" section below.

retrigger

If set to Recycle (as opposed to OneTime), the counter automatically reloads to the starting count every time it reaches 0,
and then counting continues

recycleMode

If set to Enabled, every trigger on the counter's trigger input initiates loading of the initial count. Counting proceeds from the
initial count.

trigType

Specifies the trigger type. Set it to one of the constants in the "trigType parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

outputControl parameter values

All of the outputControl settings are MccDaq.C8536OutputControl enumerated constants. To set a variable to one of these
constants, refer to the MccDaq object and the C8536OutputControl enumeration (for example, variable =
MccDaq.C8536OutputControl.HighPulseOnTc, variable = MccDaq.C8536OutputControl.ToggleOnTc, etc.).

trigType parameter values

HighPulseOnTc Output transitions from low to high for one clock pulse on terminal count

ToggleOnTc Output changes state on the terminal count.

HighUntilTc Output transitions to high at the start of counting then goes low on the terminal count.

Page 533 of 700

http://www.mccdaq.com/PDFmanuals/Z8536.pdf
http://www.adobe.com/products/acrobat/readstep2.html
javascript:hhctrl.TextPopup(C8536Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(C8536Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(C8536Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(C8536Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

All of the trigType settings are MccDaq.C8536TriggerType enumerated constants. To set a variable to one of these constants, refer
to the MccDaq object and the C8536TriggerType enumeration (for example, variable =
MccDaq.C8536OutputControl.HighPulseOnTc, variable = MccDaq.C8536OutputControl.ToggleOnTc, etc.).

HWStartTrig The first trigger on the counter's trigger input initiates loading of the initial count. Counting
proceeds from the initial count.

HWRetrig Every trigger on the counter's trigger input initiates loading of the initial count. Counting
proceeds from the initial count.

SWStartTrig The CLoad() method initiates loading of the initial count. Counting proceeds from the initial
count.

Page 534 of 700

C8536Init() method
Initializes the counter linking features of an 8536 counter chip. The linking of counters 1 and 2 must be accomplished prior to
enabling the counters.

Refer to the Zilog 8536 product specification for a description of the hardware affected by this mode. This document is available on
our web site at http://www.mccdaq.com/PDFmanuals/Z8536.pdf.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function C8536Init(ByVal chipNum As Integer, ByVal ctr1Output As MccDaq.CtrlOutput) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo C8536Init(int chipNum, MccDaq.CtrlOutput ctr1Output)

Parameters
chipNum

Selects one of the 8536 chips on the board, 1 to n.

ctrlOutput

Specifies how the counter 1 is to be linked to counter 2, if at all. Set it to one of the constants in the "ctrlOutput parameter
values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

ctrlOutput parameter values

All of the ctrlOutput settings are MccDaq.CtrlOutput enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the CtrlOutput enumeration (for example, variable = MccDaq.CtrlOutput.NotLinked, variable =
MccDaq.CtrlOutput.GateCtr2, etc.).

NotLinked Counter 1 is not connected to any other counters inputs.

GateCtr2 Output of counter 1 is connected to the GATE of counter #2.

TrigCtr2 Output of counter 1 is connected to the trigger of counter #2.

InCtr2 Output of counter 1 is connected to the counter #2 clock input.

Page 535 of 700

http://www.mccdaq.com/PDFmanuals/Z8536.pdf
http://www.adobe.com/products/acrobat/readstep2.html
javascript:hhctrl.TextPopup(C8536Init,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(C8536Init,termfont,10,10,000,000)
javascript:void(0)

C9513Config() method
Sets all of the configurable options of a 9513 counter. For more information, see the AM9513A data sheet in accompanying
9513A.pdf file located in the Documents subdirectory where the UL is installed (C:/Program files/Measurement Computing/DAQ by
default).

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function C9513Config(ByVal counterNum As Integer, ByVal gateControl As MccDaq.GateControl, ByVal
counterEdge As MccDaq.CountEdge, ByVal counterSource As MccDaq.CounterSource, ByVal specialGate As
MccDaq.OptionState, ByVal reload As MccDaq.Reload, ByVal recycleMode As MccDaq.RecycleMode, ByVal
bcdMode As MccDaq.BCDMode, ByVal countDirection As MccDaq.CountDirection, ByVal outputControl As
MccDaq.C9513OutputControl) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo C9513Config(int counterNum, MccDaq.GateControl gateControl, MccDaq.CountEdge
counterEdge, MccDaq.CounterSource counterSource, MccDaq.OptionState specialGate, MccDaq.Reload reload,
MccDaq.RecycleMode recycleMode, MccDaq.BCDMode bcdMode, MccDaq.CountDirection countDirection,
MccDaq.C9513OutputControl outputControl)

Parameters
counterNum

Counter number (1 - n) where n is the number of counters on the board. (For example, a CIO-CTR5 has 5, a CIO-CTR10 has
10, etc. See board specific info).

gateControl

Sets the gating response for level, edge, etc. Set it to one of the constants in the "gateControl parameter values" section
below.

counterEdge

Which edge to count. Referred to as "Source Edge" in the 9513 data book. Can be set to POSITIVEEDGE (count on rising
edge) or NEGATIVEEDGE (count on falling edge).

counterSource

Each counter may be set to count from one of 16 internal or external sources. Set it to one of the constants in the
"counterSource parameter values" section below.

specialGate

Special gate may be enabled (MccDaq.OptionState.Enabled) or disabled (MccDaq.OptionState.Disabled).

reload

Reload the counter from the load register (reload = MccDaq.Reload.LoadReg) or alternately load from the load register, then
the hold register (reload = MccDaq.Reload.LoadAndHoldReg).

recycleMode

Execute once (MccDaq.RecycleMode.OneTime) or reload and recycle (MccDaq.RecycleMode.Recycle) to count repetitively.

bcdMode

Counter may operate in binary coded decimal count (MccDaq.BCDMode.BCDCount) or binary count
(MccDaq.BCDMode.BinaryCount).

countDirection

AM9513 may count up (MccDaq.CountDirection.CountUp) or down (MccDaq.CountDirection.CountDown).

outputControl

The type of output desired. Set it to one of the constants in the "outputControl parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 536 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf
http://www.adobe.com/products/acrobat/readstep2.html
javascript:hhctrl.TextPopup(C9513Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(C9513Config,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

gateControl parameter values

All of the gateControl settings are MccDaq.GateControl enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the GateControl enumeration (for example, variable = MccDaq.GateControl.NoGate, variable
= MccDaq.GateControl.AhlTcPrevCtr, etc.).

counterSource parameter values

All of the counterSource settings are MccDaq.CounterSource enumerated constants. To set a variable to one of these constants,
you must refer to the MccDaq object and the CounterSource enumeration (for example, variable =
MccDaq.CounterSource.TcPrevCtr, variable = MccDaq.CounterSource.CtrInput1, etc.).

outputControl parameter values

All of the outputControl settings are MccDaq.9513OutputControl enumerated constants. To set a variable to one of these constants,
you must refer to the MccDaq object and the 9513OutputControl enumeration (for example, variable =
MccDaq.9513OutputControl.AlwaysLow, variable = MccDaq.9513OutputControl.HighPulseOnTc, etc.).

Notes

n The information provided here and in C9513Init() will only help you understand how Universal Library syntax corresponds to
the 9513 data sheet (refer to the accompanying 9513A.pdf file located in the Documents subdirectory of the installation). It is
not a substitute for the data sheet. You cannot program and use a 9513 counter/timer without it.

NoGate No gating

AhlTcPrevCtr Active high TCN -1

AhlNextGate Active High Level GATE N + 1

AhlPrevGate Active High Level GATE N - 1

AhlGate Active High Level GATE N

AllGate Active Low Level GATE N

AheGate Active High Edge GATE N

Alegate Active Low Edge GATE N

TcPrevCtr TCN - 1 (Terminal count of previous counter)

CtrInput1 SRC 1 (Counter Input 1)

CtrInput2 SRC 2 (Counter Input 2)

CtrInput3 SRC 3 (Counter Input 3)

CtrInput4 SRC 4 (Counter Input 4)

CtrInput5 SRC 5 (Counter Input 5)

Gate1 GATE1

Gate2 GATE2

Gate3 GATE3

Gate4 GATE4

Gate5 GATE5

Freq1 F1

Freq2 F2

Freq3 F3

Freq4 F4

Freq5 F5

AlwaysLow AlwaysLow

HighPulseOnTc High pulse on Terminal Count

ToggleOnTc TC Toggled

Disconnected Inactive, Output High Impedance

LowPulseOnTc Active Low Terminal Count Pulse

3, 6, 7 (numeric values) Illegal

Page 537 of 700

C9513Init() method
Initializes all of the chip level features of a 9513 counter chip. This method can only be used with 9513 counters. For more
information see the AM9513A data sheet in accompanying 9513A.pdf file located in the Documents subdirectory where the UL is
installed (C:/Program files/Measurement Computing/DAQ by default).

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function C9513Init(ByVal chipNum As Integer, ByVal foutDivider As Integer, ByVal foutSource As
MccDaq.CounterSource, ByVal compare1 As MccDaq.CompareValue, ByVal compare2 As MccDaq.CompareValue,
ByVal timeOfDay As MccDaq.TimeOfDay As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo C9513Init(int chipNum, int foutDivider, MccDaq.CounterSource foutSource,
MccDaq.CompareValue compare1, MccDaq.CompareValue compare2, MccDaq.TimeOfDay timeOfDay)

Parameters
chipNum

Specifies which 9513 chip is to be initialized. For a CTR05 board, set to 1. For a CTR10 board, set to either 1 or 2, and for a
CTR20 set to 1–4

foutDivider

F-Out divider (0-15). If set to 0, foutDivider is the rate of foutSource divided by 16. If set to a number between 1 ands 15,
foutDivider is the rate of foutSource divided by foutDivider

foutSource

Specifies source of the signal for F–Out signal. Set it to one of the constants in the "foutSource parameter values" section
below.

compare1

MccDaq.CompareValue.Enabled or MccDaq.CompareValue.Disabled

compare2

MccDaq.CompareValue.Enabled or MccDaq.CompareValue.Disabled

timeOfDay

MccDaq.TimeOfDay.Disabled, or three different enabled settings. Set it to one of the constants in the "timeOfDay parameter
values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 538 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf
http://www.adobe.com/products/acrobat/readstep2.html
javascript:hhctrl.TextPopup(C9513Init,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(C9513Init,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

foutSource parameter values

All of the foutSource settings are MccDaq.CounterSource enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the CounterSource enumeration (for example, variable = MccDaq.CounterSource.CtrInout1,
variable = MccDaq.CounterSource.CtrInput2, etc.).

timeOfDay parameter values

All of the timeOfDay settings are MccDaq.TimeOfDay enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the TimeOfDay enumeration (for example, variable = MccDaq.TimeOfDay.Disable, variable =
MccDaq.TimeOfDay.One, etc.).

Notes

n The information provided here and in C9513Config() will only help you understand how Universal Library for .NET syntax
corresponds to the 9513 data sheet (refer to the accompanying 9513A.pdf file located in the Documents subdirectory of the
installation). It is not a substitute for the data sheet. You cannot program and use a 9513 without it.

foutSource 9513 Data Sheet Equivalent

CtrInput1 SRC 1 (Counter Input 1)

CtrInput2 SRC 2 (Counter Input 2)

CtrInput3 SRC 3 (Counter Input 3)

CtrInput4 SRC 4 (Counter Input 4)

CtrInput5 SRC 5 (Counter Input 5)

Gate1 GATE1

Gate2 GATE2

Gate3 GATE3

Gate4 GATE4

Gate5 GATE5

Freq1 F1

Freq2 F2

Freq3 F3

Freq4 F4

Freq5 F5

timeOfDay 9513 Data Sheet Equivalent

Disabled TOD Disabled

One TOD Enabled/5 Input

Two TOD Enabled/6 Input

Three TOD Enabled/10 Input

No parameters
for:

9513 Data Sheet Equivalent

0 (FOUT on) FOUT Gate

0 (Data bus matches
board)

Data Bus Width

1 (Disable
Increment)

Data Pointer Control

1 (BCD Scaling) Scalar Control

Page 539 of 700

http://www.measurementcomputing.com/PDFmanuals/CTS9513-2.pdf

CClear() method
Clears a scan counter value (sets it to zero). This method only works with counter boards that have counter scan capability.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CClear(ByVal counterNum As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CClear(int counterNum)

Parameters
counterNum

The counter to clear.

Note: This parameter is zero-based (the first counter number to clear is "0").

Returns

n Error code or 0 if no errors

Page 540 of 700

javascript:hhctrl.TextPopup(CClear,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(CClear,termfont,10,10,000,000)

CConfigScan() method
Configures a counter channel. This method only works with counter boards that have counter scan capability.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CConfigScan(ByVal counterNum As Integer, ByVal mode As MccDaq.CounterMode, ByVal
debounceTime As MccDaq.CounterDebounceTime, ByVal debounceMode As MccDaq.CounterDebounceMode, ByVal
edgeDetection As MccDaq.CounterEdgeDetection, ByVal tickSize As MccDaq.CounterTickSize, ByVal
mapCounter As Integer) As MccDaq.ErrorInfo

Public Function CConfigScan(ByVal counterNum As Integer, ByVal mode As MccDaq.CounterMode, ByVal
debounceTime As MccDaq.CounterDebounceTime, ByVal debounceMode As MccDaq.CounterDebounceMode, ByVal
edgeDetection As MccDaq.CounterEdgeDetection, ByVal tickSize As Integer, ByVal mapCounter As Integer)
As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CConfigScan(int counterNum, MccDaq.CounterMode mode, MccDaq.CounterDebounceTime
debounceTime, MccDaq.CounterDebounceMode debounceMode, MccDaq.CounterEdgeDetection edgeDetection,
MccDaq.CounterTickSize tickSize, int mapCounter)

public MccDaq.ErrorInfo CConfigScan(int counterNum, MccDaq.CounterMode mode, MccDaq.CounterDebounceTime
debounceTime, MccDaq.CounterDebounceMode debounceMode, MccDaq.CounterEdgeDetection edgeDetection, int
tickSize, int mapCounter)

Parameters
counterNum

The counter to set up. Note: This parameter is zero-based (the first counter number to set up is "0").

mode

Bit fields that control various options. All of the mode settings are MccDaq.CounterMode enumerated constants. Set it to one
of the constants in the "mode parameter values" section below.

debounceTime

Used to bypass the debounce mode, or to set a channel's comparator output to one of 16 debounce times. Debounce is used
to eliminate switch-induced transients typically associated with electromechanical devices including relays, proximity
switches, and encoders.

All of the debounceTime settings are MccDaq.CounterDebounceTime enumerated constants. Set it to one of the constants in
the "debounceTime parameter values" section below.

debounceMode

Sets the mode of the debounce module. The debounceMode settings are MccDaq.CounterDebounceMode enumerated
constants. Set it to one of the constants in the "debounceMode parameter values" section below.

edgeDetection

Determines whether the rising edge or falling edge is to be detected. The edgeDetection settings are
MccDaq.CounterEdgeDetection enumerated constants. The choices are RisingEdge and FallingEdge.

tickSize

Sets the tick size, which is the fundamental unit of time for period, pulsewidth, and timing measurements. All of the tickSize
settings are MccDaq.CounterTickSize enumerated constants. Set it to one of the constants in the "tickSize parameter values"
section below.

mapCounter

Used to select the mapped channel. A mapped channel is one of the counter input channels other than counterNum that can
participate with the input signal of the counter defined by counterNum by gating the counter or decrementing the counter.

Returns

n Error code or 0 if no errors

Page 541 of 700

javascript:hhctrl.TextPopup(CConfigScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(CConfigScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

mode parameter values

n Totalize mode

Sets the specified counter to totalize mode. This mode may contain any combination of non-contradictory choices from the
following list of options:

n Encoder mode

Sets the specified counter to encoder measurement mode. This mode may contain any combination of non-contradictory
choices from the following list of options:

ClearOnRead The counter counts up and is cleared at the beginning of every sample. By default,
the counter counts up and only clears the counter at the start of a new scan
command.

StopAtMax The counter will stop at the top of its count. For the CIn32() method, the top of the
count depends on whether the Bit32 option is used. If it is, the top of the count is
FFFFFFFF hex. If not, the top of the count is FFFF hex. By default, the counter counts
upward and rolls over on the 32-bit boundary.

DecrementOn Allows the mapped channel to decrement the counter. With this option, the main
counter channel will increment the counter, and the mapped channel can be used to
decrement the counter. By default, the counter decrement option is set to "off".

This mode is not compatible with CIn() or CIn32(). If a counter is configured for
DecrementOn, calling CIn() or CIn32() for that counter will result in a
BADCOUNTERMODE error.

GatingOn Selects gating "on." When "on", the counter is enabled when the mapped channel to
gate the counter is high. When the mapped channel is low, the counter is disabled but
holds the count value.

This mode is not compatible with CIn() or CIn32(). If a counter is configured for
GatingOn, calling CIn() or CIn32() for that counter will result in a BADCOUNTERMODE
error.

LatchOnMap Causes the count to be latched by the signal on the mapped channel. By default, the
count is latched by the internal "start of scan" signal, so the count is updated each
time it's read.

This mode is not compatible with CIn() or CIn32(). If a counter is configured for
LatchOnMap, calling CIn() or CIn32() for that counter will result in a
BADCOUNTERMODE error.

Bit32 Selects a 32-bit counter for asynchronous mode. This argument value only affects
counter resolution for asynchronous calls (CIn(), CIn32(), and CIn64()).
Recommended for use only with CIn32(). (Using the Bit32 option with CIn() is not
very useful, since the value returned by CIn() is only 16 bits. The effect is that the
value returned by CIn() rolls over 4,294,967,295 times before stopping.)

Refer to board-specific information for the product you are using for details on how
this affects asynchronous reads on a specific device.

Bit48 Selects a 48-bit counter for asynchronous mode. This argument value only affects
counter resolution for asynchronous calls (CIn(), CIn32(), and CIn64()). (Using the
Bit48 option with CIn() and CIn32() is not very useful, since the value returned by
CIn() is only 16 bits, and the value returned by CIn32() is only 32 bits. The effect is
that the value returned by CIn() rolls over 4,294,967,295 times before stopping, and
the value returned by CIn32() rolls over 65,535 times before stopping.)

Refer to board-specific information for the product you are using for details on how
this affects asynchronous reads on a specific device.

UpDownOn Enables up/down counting mode.

RangeLimitOn Enables range limit counting mode. In range limit mode, an upper and lower limit is
set, mimicking limit switches in the mechanical counterpart. The upper limit is set by
loading the max limit register with the CLoad, CLoad32, or CLoad64 functions. The
lower limit is always 0. When counting up, the counter freezes whenever the count
reaches the value that was loaded into the max limit register.

NoRecycleOn Enables non-recycle counting mode. In non-recycle mode, the counter is disabled
whenever a count overflow or underflow takes place. The counter is re-enabled when
a clear or a load operation is performed on the counter

ModuloNOn Enables modulo-n counting mode. In modulo-n mode, an upper limit is set by loading
the max limit register with a maximum count. When counting up, the counter will roll-
over to 0 when the maximum count is reached, and then continue counting up.
Likewise when counting down, the counter will roll over to the maximum count (in the
max limit register) whenever the count reaches 0, and then continue counting down.

EncoderModeX1 Sets the encoder measurement mode to X1.

EncoderModeX2 Sets the encoder measurement mode to X2.

EncoderModeX4 Sets the encoder measurement mode to X4.

EncoderModeLatchOnZ Selects the Encoder Z mapped signal to latch the counter outputs. This allows the user
to know the exact counter value when an edge is present on another counter.

Page 542 of 700

n Period mode

Sets the specified counter to period measurement mode. This mode may contain any combination of non-contradictory
choices from the following list of options:

EncoderModeClearOnZOn Selects "clear on Z" on. The counter is cleared on the rising edge of the mapped (Z)
channel. By default, the "ClearOnZ" option is off, and the counter is not cleared.

EncoderModeBit16 Selects a 32-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn().

EncoderModeBit32 Selects a 32-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn32(). (Using the
EncoderModeBit32 option with CIn() is not very useful, since the value returned by
CIn() is only 16 bits. The effect is that the value returned by CIn() rolls over
4,294,967,295 times before stopping.)

EncoderModeBit48 Selects a 48-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn64(). (Using the
EncoderModeBit48 option with CIn() and CIn32() is not very useful, since the value
returned by CIn() is only 16 bits, and the value returned by CIn32() is only 32 bits.
The effect is that the value returned by CIn() rolls over 4,294,967,295 times before
stopping, and the value returned by CIn32() rolls over 65,535 times before stopping.)

EncoderModeRangeLimitOn Enables Range Limit counting mode. In Range Limit mode, an upper and lower limit is
set, mimicking limit switches in the mechanical counterpart. The upper limit is set by
loading the max limit register with the CLoad, CLoad32, or CLoad64 functions. The
lower limit is always 0. When counting up, the counter freezes whenever the count
reaches the value that was loaded into the max limit register.

EncoderModeNoRecycleOn Enables Non-recycle counting mode. In Non-recycle mode, the counter is disabled
whenever a count overflow or underflow takes place. The counter is re-enabled when
a clear or a load operation is performed on the counter

EncoderModeModuloNOn Enables Modulo-N counting mode. In Modulo-N mode, an upper limit is set by loading
the max limit register with a maximum count. When counting up, the counter will roll-
over to 0 when the maximum count is reached, and then continue counting up.
Likewise when counting down, the counter will roll over to the maximum count (in the
max limit register) whenever the count reaches 0, and then continue counting down.

PeriodModeX1 The measurement is latched each time one complete period is observed.

PeriodModeX10 The measurement is latched each time 10 complete periods are observed.

PeriodModeX100 The measurement is latched each time 100 complete periods are observed.

PeriodModeX1000 The measurement is latched each time 1000 complete periods are observed.

PeriodModeGatingOn Selects gating "on." When "on", the counter is enabled when the mapped channel to
gate the counter is high. When the mapped channel is low, the counter is disabled but
holds the count value.

This mode is not compatible with CIn() or CIn32(). If a counter is configured for
PeriodModeGatingOn, calling CIn() or CIn32() for that counter will result in a
BADCOUNTERMODE error.

PeriodModeBit16 Selects a 16-bit counter for asynchronous mode. This argument value only affects
counter resolution for asynchronous calls (CIn(), CIn32(), and CIn64()).
Recommended for use only with CIn().

PeriodModeBit32 Selects a 32-bit counter for asynchronous mode. This argument value only affects
counter resolution for asynchronous calls (CIn(), CIn32(), and CIn64()).
Recommended for use only with CIn32(). (Using the PeriodModeBit32 option with CIn
() is not very useful, since the value returned by CIn() is only 16 bits. The effect is
that the value returned by CIn() rolls over at 64k 65,535 times before stopping.)

PeriodModeBit48 Selects a 48-bit counter for asynchronous mode. This argument value only affects
counter resolution for asynchronous calls (CIn(), CIn32(), and CIn64()).
Recommended for use only with CIn64(). (Using the PeriodModeBit48 option with CIn
() and CIn32() is not very useful, since the value returned by CIn() is only 16 bits,
and the value returned by CIn32() is only 32 bits. The effect is that the value returned
by CIn() rolls over 4,294,967,295 times before stopping, and the value returned by
CIn32() rolls over 65,535 times before stopping.)

Page 543 of 700

n PulseWidth mode

Sets the specified counter to Pulsewidth measurement mode. This mode may contain any combination of non-contradictory
choices from the following list of options:

n TIMING mode

Sets the specified counter to timing mode. This mode supports the following option:

debounceTime parameter values

PulseWidthModeGatingOn Selects gating "on." When "on", the counter is enabled when the mapped channel to
gate the counter is high. When the mapped channel is low, the counter is disabled but
holds the count value.

This mode is not compatible with CIn() or CIn32(). If a counter is configured for
PulsewidthModeGatingOn, calling CIn() or CIn32() for that counter will result in a
BADCOUNTERMODE error.

PulseWidthModeBit16 Selects a 32-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn().

PulseWidthModeBit32 Selects a 32-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn32(). (Using the
PulseWidthModeBit32 option with CIn() and CIn32() is not very useful, since the value
returned by CIn() is only 16 bits, and the value returned by CIn32() is only 32 bits.
The effect is that the value returned by CIn() rolls over 4,294,967,295 times before
stopping, and the value returned by CIn32() rolls over 65,535 times before stopping.)

PulseWidthModeBit48 Selects a 48-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn64(). (Using the
PulseWidthModeBit48 option with CIn() and CIn32() is not very useful, since the value
returned by CIn() is only 16 bits, and the value returned by CIn32() is only 32 bits.
The effect is that the value returned by CIn() rolls over 4,294,967,295 times before
stopping, and the value returned by CIn32() rolls over 65,535 times before stopping.)

TimingModeBit16 Selects a 32-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn().

TimingModeBit32 Selects a 32-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn32(). (Using the
TimingModeBit32 option with CIn() is not very useful, since the value returned by CIn
() is only 16 bits. The effect is that the value returned by CIn() rolls over at 64k
65,535 times before stopping.)

TimingModeBit48 Selects a 48-bit counter for asynchronous mode. This argument value only affects
CIn64(), CIn32(), and CIn(). Recommended for use only with CIn64(). (Using the
TimingModeBit48 option with CIn() and CIn32() is not very useful, since the value
returned by CIn() is only 16 bits, and the value returned by CIn32() is only 32 bits.
The effect is that the value returned by CIn() rolls over 4,294,967,295 times before
stopping, and the value returned by CIn32() rolls over 65,535 times before stopping.)

Debounce500ns Sets the counter channel's comparator output to 500 ns.

Debounce1500ns Sets the counter channel's comparator output to 1500 ns.

Debounce3500ns Sets the counter channel's comparator output to 3500 ns.

Debounce7500ns Sets the counter channel's comparator output to 7500 ns.

Debounce15500ns Sets the counter channel's comparator output to 15500 ns.

Debounce31500ns Sets the counter channel's comparator output to 31500 ns.

Debounce63500ns Sets the counter channel's comparator output to 63500 ns.

Debounce127500ns Sets the counter channel's comparator output to 127500 ns.

Debounce100us Sets the counter channel's comparator output to 100 us.

Debounce300us Sets the counter channel's comparator output to 300 us.

Debounce700us Sets the counter channel's comparator output to 700 us.

Debounce1500us Sets the counter channel's comparator output to 1500 us.

Debounce3100us Sets the counter channel's comparator output to 3100 us.

Debounce6300us Sets the counter channel's comparator output to 6300 us.

Debounce12700us Sets the counter channel's comparator output to 12700 us.

Debounce25500us Sets the counter channel's comparator output to 25500 us.

Page 544 of 700

debounceMode parameter values

tickSize parameter values

TriggerAfterStable This mode rejects glitches and only passes state transitions after a specified period of
stability (the debounce time). This mode is used with electromechanical devices like
encoders and mechanical switches to reject switch bounce and disturbances due to a
vibrating encoder that is not otherwise moving. The debounce time should be set
short enough to accept the desired input pulse but longer than the period of the
undesired disturbance.

TriggerBeforeStable Use this mode when the input signal has groups of glitches and each group is to be
counted as one. The trigger before stable mode will recognize and count the first
glitch within a group but reject the subsequent glitches within the group if the
debounce time is set accordingly. In this case the debounce time should be set to
encompass one entire group of glitches.

Tick20pt83ns Sets the counter channel's tick size to 20.83 ns.

Tick208pt3ns Sets the counter channel's tick size to 208.3 ns.

Tick2083pt3ns Sets the counter channel's tick size to 2083.3 ns.

Tick20833pt3ns Sets the counter channel's tick size to 20833.3 ns.

Page 545 of 700

CFreqIn() method
Measures the frequency of a signal. This method can only be used with 9513 counters. This method uses internal counters #5 and
#4.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CFreqIn(ByVal signalSource As MccDaq.SignalSource, ByVal gateInterval As Integer, ByRef
count As Short, ByRef freq As Integer) As MccDaq.ErrorInfo

Public Function CFreqIn(ByVal signalSource As MccDaq.SignalSource, ByVal gateInterval As Integer, ByRef
count As System.UInt16, ByRef freq As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CFreqIn(MccDaq.SignalSource signalSource, int gateInterval, out short count,
out int freq)

public MccDaq.ErrorInfo CFreqIn(MccDaq.SignalSource signalSource, int gateInterval, out ushort count,
out int freq)

Parameters
signalSource

Specifies the source of the signal to calculate the frequency from.

The signal to be measured is routed internally from the source specified by signalSource to the clock input of counter 5. On
boards with more than one 9513 chip, there is more than one counter 5. Which counter 5 is used is also determined by
signalSource. Set it to one of the constants in the "signalSource parameter values" section below.

The value of signalSource determines which chip will be used. CtrInput6 through CtrInput10, Freq6 through Freq10 and Gate6
through Gate9 indicate chip two will be used. The signal to be measured must be present at the chip two input specified by
signalSource.

Note: The gating connection from counter 4 output to counter 5 gate must be made between counters 4 and 5 of this chip
(refer to the Notes section below). Refer to board-specific information to determine valid values for your board.

gateInterval

Gating interval in milliseconds (must be > 0). Specifies the time, in milliseconds, that the counter will count. The optimum
gateInterval depends on the frequency of the measured signal. The counter can count up to 65,535.

If the gating interval is too low, then the count will be too low and the resolution of the frequency measurement will be poor.
For example, if the count changes from 1 to 2 the measured frequency doubles.

If the gating interval is too long, the counter will overflow and a FreqOverFlow error will occur.

This method will not return until the gateInterval has expired. There is no background option. Under Windows, this means
that window activity will stop for the duration of the call. Adjust the gateInterval so this does not pose a problem to your user
interface.

count

The raw count.

freq

The measured frequency in Hz.

Returns

n An ErrorInfo object that indicates the status of the operation.

n count - Count that the frequency calculation is based on.

n freq - Measured frequency in Hz

Page 546 of 700

javascript:hhctrl.TextPopup(CFreqIn,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CFreqIn,termfont,10,10,000,000)
javascript:void(0)

signalSource parameter values

All of the signalSource settings are MccDaq.SignalSource enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the SignalSource enumeration (for example, variable = MccDaq.SignalSource.CtrInput1,
variable = MccDaq.SignalSource.Gate1, etc.).

Notes

n This method requires an electrical connection between counter 4 output and counter 5 gate. This connection must be made
between counters 4 and 5 on the chip specified by signalSource.

n C9513Init() must be called for each chipNum that will be used by this method. The values of foutDivider, foutSource,
compare1, compare2, and timeOfDay are irrelevant to this method and may be any value shown in the C9513Init() method
description.

n If you select an external clock source for the counters, the gateInterval, count, and freq settings are only valid if the external
source is 1 MHz. Otherwise, you need to scale the values according to the frequency of the external clock source.

For example, for an external clock source of 2 MHz, increase your gateInterval setting by a factor of 2, and also double the
count and freq values returned when analyzing your results.

One 9513 chip

(Chip 1 used):
CtrInput1 through CtrInput5

Gate1 through Gate4

Freq1 through Freq5

Two 9513 chips

(Chip 1 or Chip 2 used):
CtrInput1 through CtrInput10

Gate1 through Gate 9 (excluding gate 5)

Freq1 through Freq10

Four 9513 chips

(Chips 1- 4 may be used):
CtrInput1 through CtrInput20

Gate1 through Gate19 (excluding gates 5, 10, and 15)

Freq1 through Freq20

Page 547 of 700

CIn() method
Reads the current count from a counter.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CIn(ByVal counterNum As Integer, ByRef count As Short) As MccDaq.ErrorInfo

Public Function CIn(ByVal counterNum As Integer, ByRef count As System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CIn(int counterNum, out ushort count)

public MccDaq.ErrorInfo CIn(int counterNum, out short count)

Parameters
counterNum

The counter to read the current count from. Valid values are 1 to 20, up to the number of counters on the board.

count

The counter value is returned here.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n Count: Refer to your BASIC manual for information on BASIC integer data types. -32,768 to 32,767 for BASIC languages.
BASIC reads counters as:

n –1 reads as 65,535

n –32,768 reads as 32,768

n 32,767 reads as 32,767

n 2 reads as 2

n 0 reads as 0

n CIn() vs CIn32() vs CIn64()

Although the CIn(), CIn32(), and CIn64() methods perform the same operation, CIn32() is the preferred method to use.

The only difference between the three is that CIn() returns a 16-bit count value, CIn32() returns a 32-bit value, and CIn64()
returns a 64-bit value. Both CIn() and CIn32() can be used, but CIn64() is required whenever you need to read count values
greater than 32-bits (counts >4,294,967,295) or the upper (more significant) bits will be truncated.

Page 548 of 700

javascript:hhctrl.TextPopup(CIn,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(CIn,termfont,10,10,000,000)

CIn32() method
Reads the current count from a counter, and returns it as a 32 bit integer.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CIn32(ByVal counterNum As Integer, ByRef count As Integer) As MccDaq.ErrorInfo

Public Function CIn32(ByVal counterNum As Integer, ByRef count As System.UInt32) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CIn32(int counterNum, out uint count)

public MccDaq.ErrorInfo CIn32(int counterNum, out int count)

Parameters
counterNum

The counter to read current count from. Valid values are 1 to n, where n is the number of counters on the board.

count

Current count value from selected counter.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n CIn() vs CIn32() vs CIn64()

Although the CIn(), CIn32(), and CIn64() methods perform the same operation, CIn32() is the preferred method to use.

The only difference between the three is that CIn() returns a 16-bit count value, CIn32() returns a 32-bit value, and CIn64()
returns a 64-bit value. Both CIn() and CIn32() can be used, but CIn64() is required whenever you need to read count values
greater than 32-bits (counts >4,294,967,295) or the upper (more significant) bits will be truncated.

Page 549 of 700

javascript:hhctrl.TextPopup(CIn32,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(CIn32,termfont,10,10,000,000)

CIn64() method
Reads the current count from a counter, and returns it as a 64-bit double word. This function is not supported in Visual Basic, since
no appropriate data type is available to accept the Count argument in those languages.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CIn64(ByVal counterNum As Integer, ByRef count As Integer) As MccDaq.ErrorInfo

Public Function CIn64(ByVal counterNum As Integer, ByRef count As System.UInt32) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CIn64(int counterNum, out uint count)

public MccDaq.ErrorInfo CIn64(int counterNum, out int count)

Parameters
counterNum

The counter to read current count from. Valid values are 1 to n, where n is the number of counters on the board.

count

Current count value from the selected counter.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n CIn() vs CIn32() vs CIn64()

Although the CIn(), CIn32(), and CIn64() methods perform the same operation, CIn32() is the preferred method to use.

The only difference between the three is that CIn() returns a 16-bit count value, CIn32() returns a 32-bit value, and CIn64()
returns a 64-bit value. Both CIn() and CIn32() can be used, but CIn64() is required whenever you need to read count values
greater than 32-bits (counts >4,294,967,295) or the upper (more significant) bits will be truncated.

Page 550 of 700

javascript:hhctrl.TextPopup(CIn64,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(CIn64,termfont,10,10,000,000)

CInScan() method
Scans a range of scan counter channels, and stores the samples in an array. This method only works with counter boards that have
counter scan capability.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CInScan(ByVal firstCtr As Integer, ByVal lastCtr As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal memHandle As IntPtr, ByVal options As MccDaq.ScanOptions) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CInScan(int firstCtr, int lastCtr, int numPoints, ref int rate, IntPtr
memHandle, MccDaq.ScanOptions Options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function CInScan(ByVal firstCtr As Integer, ByVal lastCtr As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal memHandle As Integer, ByVal options As MccDaq.ScanOptions) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CInScan(int firstCtr, int lastCtr, int numPoints, int rate, int memHandle,
MccDaq.ScanOptions options)

Parameters
firstCtr

First counter channel of the scan. This parameter is zero-based, so the first counter number is "0".

lastCtr

Last counter channel of the scan. This parameter is zero-based, so the first counter number is "0".

The maximum allowable channel for both firstCtr and lastCtr depends on how many scan counters are available on the
Measurement Computing device in use.

numPoints

Number of counter samples to collect. Specifies the total number of counter samples that will be collected. If more than one
channel is being sampled then the number of samples collected per channel is equal to Count / (firstCtr – lastCtr + 1).

rate

The rate at which samples are taken – the counts are latched and saved in board memory, in samples per second.

Rate also returns the value of the actual rate set, which may be different from the requested rate because of pacer
limitations.

memHandle

The handle for the Windows buffer to store data (Windows). This buffer must have been previously allocated with the
WinBufAlloc32Ex() method.

options

Bit fields that control various options. All of the option settings are MccDaq.ScanOptions enumerated constants. Set it to one
of the constants in the "options parameter values" section below.

Returns

n Error code or 0 if no errors

n rate – the actual sampling rate used.

n memHandle – the collected counter data returned via the Windows buffer.

Page 551 of 700

javascript:hhctrl.TextPopup(CInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (for example, variable = MccDaq.ScanOptions.Continuous, variable =
MccDaq.ScanOptions.Background, etc.).

Background When the Background option is used, control returns immediately to the next line in your
program, and the data collection from the counters into the buffer continues in the
background. If the Background option is not used, the CInScan() method does not return to
your program until all of the requested data has been collected and returned to the buffer.

Continuous This option puts the function in an endless loop. Once it collects the required number of
samples, it resets to the start of the buffer and begins again. The only way to stop this
operation is by using StopBackground() with CtrFunction. Normally, you should use this
option with Background so that your program regains control.

Ctr16Bit Sets the counter resolution to 16-bits. When using devices that return data in a 16-bit
format, create the buffer using WinBufAllocEx().

Ctr32Bit Sets the counter resolution to 32-bits. When using devices that return data in a 32-bit
format, create the buffer using WinBufAlloc32Ex().

Ctr48Bit Sets the counter resolution to 48-bits. When using devices that return data in a 64-bit
format, create the buffer using WinBufAlloc64Ex().

ExtClock If this option is specified, conversions will be controlled by the signal on the external clock
input rather than by the internal pacer clock. Each conversion will be triggered on the
appropriate edge of the clock input signal (refer to board-specific information in the UL
User's Guide). When this option is used the rate parameter is ignored. The sampling rate is
dependent on the clock signal. Options for the board will default to a transfer mode that will
allow the maximum conversion rate to be attained unless otherwise specified.

ExtTrigger If this option is specified, sampling does not begin until the trigger condition is met. You can
set the trigger condition to rising edge, falling edge, or the level of the digital trigger input
with the SetTrigger() method. Refer to board-specific information in the UL User's Guide.

HighResRate Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
rate parameter above).

Page 552 of 700

CLoad() method
Loads the specified counter's Load, Hold, Alarm, QuadCount, QuadPreset or PreScaler register with a count. When loading a counter
with a starting value, it is never loaded directly into the counter's count register. Rather, it is loaded into the load or hold register.
From there, the counter, after being enabled, loads the count from the appropriate register, generally on the first valid pulse.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CLoad(ByVal regNum As MccDaq.CounterRegister, ByVal loadValue As Integer) As
MccDaq.ErrorInfo

Public Function CLoad(ByVal regNum As MccDaq.CounterRegister, ByVal loadValue As System.UInt32) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CLoad(MccDaq.CounterRegister regNum, uint loadValue)

public MccDaq.ErrorInfo CLoad(MccDaq.CounterRegister regNum, int loadValue)

Parameters
regNum

The register to load the count to. Set it to one of the constants in the "RegNum parameter values" section below.

loadValue

The value to be loaded. This value must be between 0 and 2resolution – 1 of the counter. For example, a 16-bit counter is 216
– 1, or 65,535. Refer to the notes on Basic integer types.

Returns

n An ErrorInfo object that indicates the status of the operation.

regNum parameter values

All of the regNum settings are MccDaq.CounterRegister enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the CounterRegister enumeration (for example, variable =
MccDaq.CounterRegister.LoadReg0, variable = MccDaq.CounterRegister.HoldReg1, etc.).

Notes

n You cannot load a count-down-only counter with less than 2.

n Counter types: Several counter types are supported. Refer to the counter chip's data sheet for the registers available for a
counter type.

n CLoad() vs CLoad32()

The CLoad() and CLoad32() perform the same operation. These methods differ in that CLoad() loads a 16-bit count value,
while CLoad32() loads a 32-bit value. The only time you need to use CLoad32() is to load counts that are larger than 32-bits
(counts >4,294,967,295).

LoadReg0 to LoadReg20 Load registers 1 to 20. This can span many chips.

HoldReg1 to HoldReg20 Hold registers 0 to 20. This can span several chips. (9513 only)

Alarm1Chip1 Alarm register 1 of the first counter chip. (9513 only)

Alarm2Chip1 Alarm register 2 of the first counter chip. (9513 only)

Alarm1Chip2 Alarm register 1 of the second counter chip. (9513 only)

Alarm2Chip2 Alarm register 2 of the second counter chip. (9513 only)

Alarm1Chip3 Alarm register 1 of the third counter chip. (9513 only)

Alarm2Chip3 Alarm register 2 of the third counter chip. (9513 only)

Alarm1Chip4 Alarm register 1 of the fourth counter chip. (9513 only)

Alarm2Chip4 Alarm register 2 of the fourth counter chip. (9513 only)

QuadCount1 to QuadCount4 Used to initialize the counter. (LS7266 only)

QuadPreset1 to QuadPreset4 Used to set the upper limit of the counter in some modes. (LS7266 only)

QuadPrescaler1 to QuadPrescaler4 Used for clock filtering (valid values: 0 to 255). (LS7266 only)

MaxLimitReg0 to MaxLimitReg7 Max limit register (USB-QUAD08 only)

Page 553 of 700

javascript:hhctrl.TextPopup(CLoad,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CLoad,termfont,10,10,000,000)
javascript:void(0)

CLoad32() method
Loads the specified counter's CurrentCount, Preset, or PreScaler register with a count.

Member of the MccBoard class.

Function Prototype
VB .NET:

Public Function CLoad32(ByVal regNum As MccDaq.CounterRegister, ByVal loadValue As Integer) As
MccDaq.ErrorInfo

Public Function CLoad32(ByVal regNum As MccDaq.CounterRegister, ByVal loadValue As System.UInt32) As
MccDaq.ErrorInfo

C# .NET:

public MccDaq.ErrorInfo CLoad32(MccDaq.CounterRegister regNum, uint loadValue)

public MccDaq.ErrorInfo CLoad32(MccDaq.CounterRegister regNum, int loadValue)

Parameters
regNum

The register to load the value into. Set it to one of the constants in the "regNum parameter values" section below.

loadValue

The value to be loaded into regNum.

Returns

n An ErrorInfo object that indicates the status of the operation.

regNum parameter values

All of the regNum settings are MccDaq.CounterRegister enumerated constants. To set a variable to one of these constants, refer to
the MccDaq object and the CounterRegister enumeration (for example, variable = MccDaq.CounterRegister.LoadReg0, variable =
MccDaq.CounterRegister.HoldReg1, etc.).

Notes

n CLoad() vs CLoad32()

Although the CLoad() and CLoad32() methods perform the same operation, CLoad32() is the preferred method to use. The
only difference between the two is that CLoad() loads a 16-bit count value and CLoad32() loads a 32-bit value. The only time
you need to use CLoad32() is to load counts that are larger than 16-bits (counts > 65,535).

LoadReg0 to LoadReg20 Load registers 0 to 20. This can span many chips.

HoldReg1 to HoldReg20 Hold registers 1 to 20. This can span several chips. (9513 only)

Alarm1Chip1 Alarm register 1 of the first counter chip. (9513 only)

Alarm2Chip1 Alarm register 2 of the first counter chip. (9513 only)

Alarm1Chip2 Alarm register 1 of the second counter chip. (9513 only)

Alarm2Chip2 Alarm register 2 of the second counter chip. (9513 only)

Alarm1Chip3 Alarm register 1 of the third counter chip. (9513 only)

Alarm2Chip3 Alarm register 2 of the third counter chip. (9513 only)

Alarm1Chip4 Alarm register 1 of the fourth counter chip. (9513 only)

Alarm2Chip4 Alarm register 2 of the fourth counter chip. (9513 only)

QuadCount1 to QuadCount4 Used to initialize the counter. (LS7266 only)

QuadPreset1 to QuadPreset4 Used to set the upper limit of the counter in some modes. (LS7266 only)

QuadPreScaler1 to QuadPreScaler4 Used for clock filtering (valid values: 0 to 255). (LS7266 only)

MaxLimitReg0 to MaxLimitReg7 Max limit register (USB-QUAD08 only)

Page 554 of 700

javascript:hhctrl.TextPopup(CLoad32,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CLoad32,termfont,10,10,000,000)
javascript:void(0)

CLoad64() method
Loads the specified counter's CurrentCount, Preset, or PreScaler register with a count.

Member of the MccBoard class.

Function Prototype
VB .NET:

Public Function CLoad64(ByVal regNum As MccDaq.CounterRegister, ByVal loadValue As Long) As
MccDaq.ErrorInfo

Public Function CLoad64(ByVal regNum As MccDaq.CounterRegister, ByVal loadValue As ULong) As
MccDaq.ErrorInfo

C# .NET:

public MccDaq.ErrorInfo CLoad64(MccDaq.CounterRegister regNum, uint loadValue)

public MccDaq.ErrorInfo CLoad64(MccDaq.CounterRegister regNum, int loadValue)

Parameters
regNum

The register to load the value into. Set it to one of the constants in the "regNum parameter values" section below.

loadValue

The value to be loaded into regNum.

Returns

n An ErrorInfo object that indicates the status of the operation.

regNum parameter values

All of the regNum settings are MccDaq.CounterRegister enumerated constants. To set a variable to one of these constants, refer to
the MccDaq object and the CounterRegister enumeration (for example, variable = MccDaq.CounterRegister.LoadReg0, variable =
MccDaq.CounterRegister.HoldReg1, etc.).

Notes

n CLoad() vs CLoad64()

Although the CLoad() and CLoad32() methods perform the same operation, CLoad64() is the preferred method to use. The
only difference between the two is that CLoad() loads a 16-bit count value and CLoad64() loads a 64-bit value. The only time
you need to use CLoad64() is to load counts that are larger than 32-bits (counts >4,294,967,295).

LoadReg0 to LoadReg20 Load registers 0 to 20. This can span many chips.

HoldReg1 to HoldReg20 Hold registers 1 to 20. This can span several chips. (9513 only)

Alarm1Chip1 Alarm register 1 of the first counter chip. (9513 only)

Alarm2Chip1 Alarm register 2 of the first counter chip. (9513 only)

Alarm1Chip2 Alarm register 1 of the second counter chip. (9513 only)

Alarm2Chip2 Alarm register 2 of the second counter chip. (9513 only)

Alarm1Chip3 Alarm register 1 of the third counter chip. (9513 only)

Alarm2Chip3 Alarm register 2 of the third counter chip. (9513 only)

Alarm1Chip4 Alarm register 1 of the fourth counter chip. (9513 only)

Alarm2Chip4 Alarm register 2 of the fourth counter chip. (9513 only)

QuadCount1 to QuadCount4 Used to initialize the counter. (LS7266 only)

QuadPreset1 to QuadPreset4 Used to set the upper limit of the counter in some modes. (LS7266 only)

QuadPreScaler1 to QuadPreScaler4 Used for clock filtering (valid values: 0 to 255). (LS7266 only)

MaxLimitReg0 to MaxLimitReg7 Max limit register (USB-QUAD08 only)

Page 555 of 700

javascript:hhctrl.TextPopup(CLoad64,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CLoad64,termfont,10,10,000,000)
javascript:void(0)

CStatus() method
Returns status information about the specified counter (7266 counters only).

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CStatus(ByVal counterNum As Integer, ByRef statusBits As MccDaq.StatusBits) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CStatus(int counterNum,out MccDaq.StatusBits statusBits)

Parameters
CounterNum

The number of the counter whose status bits you want to read. Valid values are 1 to n, where n is the number of counters on
the board.

statusBits

Current status from selected counter is returned here. The status consists of individual bits that indicate various conditions
within the counter. Set it to one of the constants in the "statusBits parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

statusBits parameter values

All of the statusBits settings are MccDaq.StatusBits enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the StatusBits enumeration (for example, variable = MccDaq.StatusBits.UnderFlow, variable =
MccDaq.StatusBits.Overflow, and so on).

Compare Set to 1 whenever the count matches the preset register. Is cleared to 0 whenever CStatus
() is called.

Error Set to 1 whenever an error occurs due to excessive noise on the input. Is cleared to 0 by
calling C7266Config().

Index Set to 1 when index is valid. Is cleared to 0 when index is not valid.

Overflow Set to 1 whenever the count increments past it's upper limit. Is cleared to 0 whenever
CStatus() is called.

Sign Set to 1 when the MSB of the count is 1. Is cleared to 0 whenever the MSB of the count is
set to 0.

Underflow Set to 1 whenever the count decrements past 0. Is cleared to 0 whenever CStatus() is
called.

UpDown Set to 1 when counting up. Is cleared to 0 when counting down

Page 556 of 700

javascript:hhctrl.TextPopup(CStatus,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CStatus,termfont,10,10,000,000)
javascript:void(0)

CStoreOnInt() method
Installs an interrupt handler that will store the current count whenever an interrupt occurs. This method can only be used with 9513
counters. This method will continue to operate in the background until either intCount is satisfied or StopBackground() with
CtrFunction is called.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function CstoreOnInt(ByVal intCount As Integer, cntrControl As MccDaq.CounterControl[], ByVal
memHandle As IntPtr) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CstoreOnInt(int intCount, MccDaq.CounterControl cntrControl, IntPtr memHandle)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function CstoreOnInt(ByVal intCount As Integer, ByRef cntrControl As MccDaq.CounterControl,
ByVal memHandle As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo CstoreOnInt(int intCount, ref MccDaq.CounterControl cntrControl, int memHandle)

Parameters
intCount

The counters will be read every time an interrupt occurs, until IntCount number of interrupts have occurred. If IntCount = 0,
the method will run until StopBackground() is called. (Refer below to memHandle).

cntrControl

The array should have an element for each counter on the board. (5 elements for a CTR05 device, 10 elements for a CTR10
device, and so on). Each element corresponds to a counter channel. Each element should be set to either
MccDaq.CounterControl.Disabled or MccDaq.CounterControl.Enabled

All channels that are set to MccDaq.CounterControl.Enabled will be read when an interrupt occurs.

memHandle

Handle for Windows buffer. If intCount is non-zero, the buffer referenced by memHandle must be of sufficient size to hold
(intCount × Number of Counters) points.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes
If the Library Revision is set to 4.0 or greater, the following code changes are required:

n If intCount is non-zero, the buffer referenced by memHandle must be able to hold (intCount × Number of Counters) points.
For example, if you set intCount to 100 for a CTR05 device, you must allocate the size of the buffer to be (100 × 5) = 500.
This new functionality keeps the user application from having to move the data out of the buffer for every interrupt, before it
is overwritten. Now, for each interrupt, the counter values will be stored in adjacent memory locations in the buffer.

n Important: Allocate the proper buffer size for non-zero intCount settings. Specifying intCount as a non-zero value and
failing to allocate the proper sized buffer results in a runtime error. There is no way for the Universal Library to determine if
the buffer has been allocated with the proper size.

If intCount = 0, the functionality is unchanged.

Page 557 of 700

javascript:hhctrl.TextPopup(CStoreOnInt,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CStoreOnInt,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CStoreOnInt,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(CStoreOnInt,termfont,10,10,000,000)
javascript:void(0)

PulseOutStart() method
Starts a timer to generate digital pulses at a specified frequency and duty cycle. Use PulseOutStop() to stop the output. Use this
method with counter boards that have a timer-type counter.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function PulseOutStart(ByVal timerNum As Integer, ByRef frequency As Double, ByRef dutyCycle As
Double, ByVal pulseCount As Integer, ByRef initialDelay As Double, ByVal idleState As MccDaq.IdleState,
ByVal options As MccDaq.PulseOutOptions) As MccDaq.ErrorInfo

Public Function PulseOutStart(ByVal timerNum As Integer, ByRef frequency As Double, ByRef dutyCycle As
Double, ByVal pulseCount As UInteger, ByRef initialDelay As Double, ByVal idleState As
MccDaq.IdleState, ByVal options As MccDaq.PulseOutOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo PulseOutStart(int timerNum, ref double frequency, ref double dutyCycle, uint
pulseCount, ref double initialDelay, MccDaq.IdleState idleState, MccDaq.PulseOutOptions options)

public MccDaq.ErrorInfo PulseOutStart(int timerNum, ref double frequency, ref double dutyCycle, int
pulseCount, ref double initialDelay, MccDaq.IdleState idleState, MccDaq.PulseOutOptions options)

Parameters
timerNum

The timer to start output pulses. Valid values are zero (0) up to the number of timers on the board – 1.

frequency

The desired square wave frequency. The timer clock will be divided down by integer values to produce the frequency. The
actual frequency output will be returned. Valid values are dependent on the timer's clock and the timer resolution.

dutyCycle

The width of the pulse divided by the pulse period. This ratio is used with the frequency value to determine the pulse width
and the interval between pulses.

pulseCount

The number of pulses to generate. Setting the pulse count to zero will result in pulses being generated until the PulseOutStop
() method is called.

initialDelay

The amount of time to delay before starting the timer output after enabling the output.

idleState

The resting state of the output. Set it to one of the constants in the "idleState parameter values" section below.

options

Reserved for future use.

Returns

n An ErrorInfo object that indicates the status of the operation.

idleState parameter values

All of the idleState settings are MccDaq.IdleState enumerated constants. To set a variable to one of these constants, you must refer
to the MccDaq object and the IdleState enumeration, for example "variable = MccDaq.IdleState.IdleHigh".

IdleHigh Sets the output resting state high.

IdleLow Sets the output resting state low.

Page 558 of 700

javascript:hhctrl.TextPopup(PulseOutStart,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(PulseOutStart,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

PulseOutStop() method
Stops a timer output. Use PulseOutStart() to start the output. Use this method with counter boards that have a timer-type counter.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function PulseOutStop ByVal timerNum As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo PulseOutStop(int timerNum)

Parameters
timerNum

The timer to stop. Valid values are zero (0) up to the number of timers on the board – 1.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 559 of 700

javascript:hhctrl.TextPopup(PulseOutStop,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(PulseOutStop,termfont,10,10,000,000)

TimerOutStart() method
Starts a timer square wave output. Use TimerOutStop() to stop the output. Use this method with counter boards that have a timer-
type counter.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function TimerOutStart(ByVal timerNum As Integer, ByRef frequency As Double) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo TimerOutStart(int timerNum, double frequency)

Parameters
timerNum

The timer to output the square wave from. Valid values are zero up to the number of timers on the board – 1.

frequency

The desired square wave frequency. The timers clock will be divided down by integer values to produce the frequency. The
actual frequency output will be returned. Valid values are dependent on the timer's clock and the timer resolution.

Returns

n Error code or 0 if no errors

n frequency – the actual frequency set.

Page 560 of 700

javascript:hhctrl.TextPopup(TimerOutStart,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(TimerOutStart,termfont,10,10,000,000)

TimerOutStop() method
Stops a timer square wave output. Use TimerOutStart() to stop the output. Use this method with counter boards that have a timer-
type counter.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function TimerOutStop(ByVal timerNum As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo TimerOutStop(int timerNum)

Parameters
timerNum

The timer to stop. Valid values are zero up to the number of timers on the board – 1.

Returns

n Error code or 0 if no errors

Page 561 of 700

javascript:hhctrl.TextPopup(TimerOutStop,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(TimerOutStop,termfont,10,10,000,000)

ConvertFile() method
Converts a binary log file to a comma-separated values (.CSV) text file or another text file format that you specify.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function ConvertFile(ByRef destFileName As String, ByVal startSample As Integer, ByVal count As
Integer, ByVal delimiter As MccDaq.FieldDelimiter) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ConvertFile(string destFileName, int startSample, int count,
MccDaq.FieldDelimiter delimiter)

Parameter
destFileName

The name and destination path of the converted file. Use the file extension of the file type that you want to create.

startSample

The first sample to read.

count

The number of samples to read.

delimiter

Specifies the character to use between fields in the converted file.

All of the delimiter settings are MccDaq.FieldDelimiter enumerated constants. Choices are MccDaq.FieldDelimiter.Comma,
MccDaq.FieldDelimiter.Semicolon, MccDaq.FieldDelimiter.Space, and MccDaq.FieldDelimiter.Tab.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n Time stamp data is stored according to the timeZone preference and timeFormat preference. Refer to SetPreferences().

Time stamps in the converted file may be in either 12-hour or 24-hour format based on the value of the timeFormat
preference. Time stamps can optionally be converted to local time based on the value of the timeZone preference.

n AI temperature data is returned according to the units preference. Refer to SetPreferences().

The units preference is only applied to the AI data if the data was logged as temperature data. Refer to GetAIInfo(). This
value is ignored if the AI data was logged as raw data.

The units preference is always applied to CJC data, since it is always logged as temperature data.

n If the destFileName argument ends with a .csv extension, the delimiter parameter must be set to
MccDaq.FieldDelimiter.Comma. Otherwise, an INVALIDDELIMITER error is returned.

You can open a comma-separated values text file (.csv) directly in Microsoft Excel. Text files with extensions other than .csv
can only be imported into Excel.

Page 562 of 700

javascript:hhctrl.TextPopup(ConvertFile,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ConvertFile,termfont,10,10,000,000)
javascript:void(0)

FileName property
Returns the file name associated with the current instance of the DataLogger class.

Member of the DataLogger class.

Property prototype
VB .NET

Public Shared ReadOnly Property DataLogger As String

C# .NET

public string FileName [get]

Page 563 of 700

GetAIChannelCount() method
Returns the total number of analog channels that were logged in a binary file.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function GetAIChannelCount(ByRef aiCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetAIChannelCount(ref int aiCount)

Parameter
aiCount

The number of analog input channels logged in the file.

Returns

n An ErrorInfo object that indicates the status of the operation.

n aiCount – Returns the number of analog input channels logged in the binary file.

Page 564 of 700

javascript:hhctrl.TextPopup(GetAIChannelCount,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetAIChannelCount,termfont,10,10,000,000)

GetAIInfo() method
Returns the channel number and unit value of each analog input channel logged in a binary file.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function GetAIInfo(ByRef channelNumbers As Integer, ByRef units As MccDaq.LoggerUnits, As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetAIInfo(ref int channelNumbers, ref MccDaq.LoggerUnits units)

Parameter
channelNumbers

An array that contains the analog input channel numbers logged in the file.

units

An array that contains the unit values set by the device in InstaCal for each analog input channel logged in the file.

The units settings are MccDaq.LoggerUnits enumerated constants. Choices are MccDaq.LoggerUnits.Temperature, and
MccDaq.LoggerUnits.Raw.

Returns

n An ErrorInfo object that indicates the status of the operation.

n channelNumbers – Returns the analog input channel numbers logged in the binary file.

n units – Returns the unit values set by the device in InstaCal for each analog input channel logged in the binary file
(MccDaq.LoggerUnits.Temperature or MccDaq.LoggerUnits.Raw.)

Page 565 of 700

javascript:hhctrl.TextPopup(GetAIInfo,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(GetAIInfo,termfont,10,10,000,000)
javascript:void(0)

GetCJCInfo() method
Returns the number of CJC temperature channels logged in a binary file.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function GetCJCInfo(ByRef cjcCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetCJCInfo(ref int cjcCount)

Parameter
cjcCount

The number of CJC temperature channels logged in the file.

Returns

n An ErrorInfo object that indicates the status of the operation.

n cjcCount – Returns the number of CJC temperature channels logged in the binary file.

Page 566 of 700

javascript:hhctrl.TextPopup(GetCJCInfo,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetCJCInfo,termfont,10,10,000,000)

GetDIOInfo() method
Returns the number of digital I/O channels logged in a binary file.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function GetDIOInfo(ByRef dioCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetDIOInfo(ref int dioCount)

Parameter
dioCount

The number of digital I/O channels logged in the file.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dioCount – Returns the number of digital I/O channels logged in the file.

Page 567 of 700

javascript:hhctrl.TextPopup(GetDIOInfo,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetDIOInfo,termfont,10,10,000,000)

GetFileInfo() method
Returns file information from the file associated with the current instance of the DataLogger.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function GetFileInfo(ByRef version As Integer, ByRef size As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetFileInfo(ref int version, ref int size)

Parameter
version

The version level of the file.

size

The size in bytes of the file.

Returns

n An ErrorInfo object that indicates the status of the operation.

n version – Returns the version level of the binary file.

n size – Returns the size in bytes of the binary file.

Page 568 of 700

javascript:hhctrl.TextPopup(GetFileInfo,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetFileInfo,termfont,10,10,000,000)

GetFileName() method

Returns the name and path of the nth file in the directory containing binary log files.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Shared Function GetFileName(ByVal fileNumber As Integer, ByRef path As String, ByRef fileName As
String) As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo GetFileName(int fileNumber, ref string path, ref string fileName)

Parameter
fileNumber

Index of the file whose name you want to return. Specify one of the following:

n The number (n) that represents the location of the file in the directory (where n = 0, 1, 2, and so on), or

n MccService.GetFirst – get the first file in the directory, or

n MccService.GetNext – get the next file in the directory, based on the current index.

This parameter is the index of the file in the directory, and is not part of the filename.

path

The full path of the directory containing the log files.

fileName

The full path and name of the binary file. The path must be null-terminated and cannot be longer than 256 characters.

Returns

n An ErrorInfo object that indicates the status of the operation.

n fileName – Returns the file name and path of the binary file.

Notes

n To access all of the files in a directory, first call GetFileName() with fileNumber set to MccService.GetFirst, then again with
fileNumber set to MccService.GetNext until the method returns the error code NOMOREFILES.

Page 569 of 700

javascript:hhctrl.TextPopup(GetFileName,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetFileName,termfont,10,10,000,000)

GetPreferences() method
Returns API preference settings for time stamp data, analog temperature data, and CJC temperature data. Returns the default
values unless changed using SetPreferences().

Member of the DataLogger class.

Function Prototype
VB .NET

Public Shared Function GetPreferences(ByRef timeFormat As MccDaq.TimeFormat, ByRef timeZone As
MccDaq.TimeZone, ByRef units As MccDaq.TempScale) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetPreferences(ref MccDaq.TimeFormat timeFormat, ref MccDaq.TimeZone timeZone,
ref MccDaq.TempScale units)

Parameter
timeFormat

Returns the format used to display time stamp data.

All of the timeFormat settings are MccDaq.TimeFormat enumerated constants. Choices are MccDaq.TimeFormat.TwelveHour
(for example 2:32:51PM) and MccDaq.TimeFormat.TwentyFourHour (for example 14:32:51).

timeZone

Returns the time zone to store time stamp data.

All of the timeZone settings are MccDaq.TimeZone enumerated constants. Choices are MccDaq.TimeZone.Local and
MccDaq.TimeZone.GMT.

units

Returns the unit to use for analog temperature data. This value is ignored if raw data values are logged.

All of the units settings are MccDaq.TempScale enumerated constants. Choices are MccDaq.TempScale.Celsius,
MccDaq.TempScale.Fahrenheit, and MccDaq.TempScale.Kelvin.

Returns

n An ErrorInfo object that indicates the status of the operation.

n timeFormat – Returns the format to apply to time stamp data from API functions that return time data.

n timeZone – Returns the time zone to apply to time stamp data from API functions that return time data.

n units – Returns the unit to use when converting temperature data from API functions that return temperature data.

Page 570 of 700

javascript:hhctrl.TextPopup(GetPreferences,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(GetPreferences,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

GetSampleInfo() method
Returns the sample interval, sample count, and the date and time of the first data point in a binary file.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function GetSampleInfo(ByRef sampleInterval As Integer, ByRef sampleCount As Integer, ByRef
startDate As Integer, ByRef startTime As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetSampleInfo(ref int sampleInterval, ref int sampleCount, ref int startDate,
ref int startTime)

Parameter
sampleInterval

The time, in seconds, between samples.

sampleCount

The number of samples contained in the file.

startDate

The date of the first data point logged in the file. Date values are packed in the following format:

Byte 0: day

Byte 1: month

Byte 2 - 3: year

startTime

The time when the first data point was logged in the file. Time values are packed in the following format:

Byte 0: seconds

Byte 1: minutes

Byte 2: hours

Byte 3: 0xff = 24hour format, 0x0 = AM, 0x1 = PM

Returns

n An ErrorInfo object that indicates the status of the operation.

n sampleInterval – Returns the time, in seconds, between samples.

n sampleCount – Returns the number of samples in the file.

n startData – Returns the date of the first data point logged in the file.

n startTime – Returns the time when the first data point was logged in the file.

Notes

n Time stamped data is returned according to the timeZone and timeFormat preferences. Refer to SetPreferences() for more
information.

Page 571 of 700

javascript:hhctrl.TextPopup(GetSampleInfo,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetSampleInfo,termfont,10,10,000,000)

ReadAIChannels() method
Reads analog input data from a binary file, and stores the values in an array.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function ReadAIChannels(ByVal startSample As Integer, ByVal count Integer, ByRef aiChannels As
Single) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ReadAIChannels(int startSample, int count, ref float [] aiChannels)

Parameter
startSample

The first sample to read from the binary file.

count

The number of samples to read from the binary file.

aiChannels

Receives the analog input values.

Returns

n An ErrorInfo object that indicates the status of the operation.

n aiChannels – Returns the analog input values logged in the file.

Notes

n The unit of the analog input data that is returned is set by the value of the Units preference. Refer to SetPreferences().

The units preference is only applied if the logged data is temperature data. This value is ignored if the data logged is raw.

Analog array

The user is responsible for allocating the size of the analog data array, and ensuring that it is large enough to hold the data that will
be returned. You can calculate the array allocation using the sampleCount value from GetSampleInfo(), and the aiCount value from
GetAIInfo():

float* aiChannels = new float[sampleCount * aiCount];

The figure below shows the layout of the analog array, and how the elements should be indexed.

Where:

n is (numberOfChannels – 1).

CH0 – CHn refer to the channels in the array, not the input channels of the device.

For example, assume that all of the even number input channels are logged. The analog array channels are mapped as shown
here:

Array Channel Device Input Channel

0 0

1 2

2 4

3 6

Page 572 of 700

javascript:hhctrl.TextPopup(ReadAIChannels,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ReadAIChannels,termfont,10,10,000,000)

Use the following code fragment to access the elements of the analog array:

for (i=0; i<numberOfSamples; i++)

{

for (j=0; j<numberOfAIChannels; j++)

{

a = analogArray[(i *numberOfAIChannels) + j];

}

}

where

numberOfSamples is set by the sampleCount value from GetSampleInfo()

numberOfAIChannels is set by the aiCount value from GetAIChannelCount()

Page 573 of 700

ReadCJCChannels() method
Reads CJC temperature data from a binary file, and stores the values in an array.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function ReadCJCChannels(ByVal startSample As Integer, ByVal count Integer, ByRef cjcChannels As
Single) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ReadCJCChannels(int startSample, int count, ref float [] cjcChannels)

Parameter
startSample

The first sample to read from the binary file.

count

The number of samples to read from the binary file.

cjcChannels

Receives the CJC temperature values.

Returns

n An ErrorInfo object that indicates the status of the operation.

n cjcChannels – Returns the CJC temperature values logged in the file.

Notes

n The unit of the CJC temperature data that is returned is set by the value of the units preference. Refer to SetPreferences().

The units preference is only valid if the logged data is temperature data. This value is ignored if the data logged is raw.

CJC array

The user is responsible for allocating the size of the CJC array, and ensuring that it is large enough to hold the data that will be
returned. You can calculate the array allocation using the sampleCount value from GetSampleInfo(), and the cjcCount value from
GetCJCInfo():

float* cjcChannels = new float[sampleCount * cjcCount];

The figure below shows the layout of the CJC array, and how the elements should be indexed.

Where n is (CJCCount - 1)

Page 574 of 700

javascript:hhctrl.TextPopup(ReadCJCChannels,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ReadCJCChannels,termfont,10,10,000,000)

Use the following code fragment to access the elements of the CJC array:

for (i=0; i<numberOfSamples; i++)

{

for (j=0; j<numberOfCJCChannels; j++)

{

c = cjcArray[(i * numberOfCJCChannels) + j];

}

}

where

numberOfSamples is set by the sampleCount value from GetSampleInfo().

numberOfCJCChannels is set by the cjcCount value from GetCJCInfo().

Page 575 of 700

ReadDIOChannels() method
Reads digital I/O channel data from a binary file, and stores the values in an array.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function ReadDIOChannels(ByVal startSample As Integer, ByVal count Integer, ByRef dioChannels As
Single) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ReadDIOChannels(int startSample, int count, ref float [] dioChannels)

Parameter
startSample

The first sample to read from the binary file.

count

The number of samples to read from the binary file.

dioChannels

Receives the DIO channel values.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dioChannels – Returns the DIO channel values logged in the file.

DIO array

The user is responsible for allocating the size of the DIO array, and ensuring that it is large enough to hold the data that will be
returned. You can calculate the array allocation using the sampleCount value from GetSampleInfo(), and the dioCount value from
GetDIOInfo().

float* dioChannels = new float[sampleCount * dioCount];

The figure below shows the layout of the DIO array, and how the elements should be indexed.

Where n is (dioCount - 1)

Use the following code fragment to access the elements of the DIO array:

for (i=0; i<numberOfSamples; i++)

{

for (j=0; j<numberOfDIOChannels; j++)

{

d = dioArray[(i * numberOfDIOChannels) + j];

}

}

where:

numberOfSamples is set by the sampleCount value from GetSampleInfo()

numberOfDIOChannels is set by the dioCount value from GetDIOInfo()

Page 576 of 700

javascript:hhctrl.TextPopup(ReadDIOChannels,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ReadDIOChannels,termfont,10,10,000,000)

ReadTimeTags() method
Reads the date and time values logged in a binary file. This method stores the date values in a dateTags array, and the time values
in a timeTags array.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Function ReadTimeTags(ByVal startSample As Integer, ByVal count Integer, ByRef dateTags As
Integer, ByRef timeTags As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ReadTimeTags(int startSample, int count, ref int [] dateTags, ref int []
timeTags)

Parameter
startSample

The first sample to read from the binary file.

count

The number of samples to read from the binary file.

dateTags

Receives the date tag values. Dates are packed in the following format:

Byte 0: day

Byte 1: month

Byte 2 - 3: year

timeTags

Receives the time tag values. Times are packed in the following format:

Byte 0: seconds

Byte 1: minutes

Byte 2: hours

Byte 3: 0xff = 24hour format, 0x0 = AM, 0x1 = PM

Returns

n An ErrorInfo object that indicates the status of the operation.

n dateTags – Returns the date value for each sample logged in the file.

n timeTags – Returns the time value for each sample logged in the file.

Notes

n Time stamped data is stored according to the timeZone preference and the timeFormat preference. Refer to SetPreferences
().

n Time stamped data is logged in the file if InstaCal is configured to do so. If time stamps are not logged, the time array is
filled with values calculated from the file header information.

Date and Time array size

The user is responsible for allocating the size of the date and time arrays, and ensuring that they are large enough to hold the data
that is returned. You can calculate the array allocation using the sampleCount value from GetSampleInfo().

int* dates = new int[sampleCount];

int* times = new int[sampleCount];

dateTags array

The figure below shows the layout of the dateTags array, and how the elements should be indexed.

where n is (numberOfSamples – 1)

Page 577 of 700

javascript:hhctrl.TextPopup(ReadTimeTags,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ReadTimeTags,termfont,10,10,000,000)

Each sample has only one date. Use the following code fragment to access the elements of the dateTags array:

for (i=0; i<numberOfSamples; i++)

{

d = dateTagsArray[i];

}

timeTags array

The figure below shows the layout of the timeTags array, and how the elements should be indexed.

where n is (numberOfSamples – 1)

Each sample has only one time stamp. Use the following code fragment to access the elements of the timeTags array:

for (i=0; i<numberOfSamples; i++)

{

t = timeTagsArray[i];

}

Page 578 of 700

SetPreferences() method
Sets preferences for returned time stamped data, analog temperature data, and CJC temperature data.

Member of the DataLogger class.

Function Prototype
VB .NET

Public Shared Function SetPreferences(ByVal timeFormat As MccDaq.TimeFormat, ByVal timeZone As
MccDaq.TimeZone, ByVal units As MccDaq.TempScale) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo SetPreferences(MccDaq.TimeFormat timeFormat, ref MccDaq.TimeZone timeZone, ref
MccDaq.TempScale units)

Parameter
timeFormat

Specifies the time format to apply when returning time stamp data (when using ReadTimeTags() for example).

All of the timeFormat settings are MccDaq.TimeFormat enumerated constants. Choices are MccDaq.TimeFormat.TwelveHour
(for example 2:32:51) and MccDaq.TimeFormat.TwentyFourHour (for example 14:32:51).

timeFormat defaults to MccDaq.TimeFormat.TwelveHour.

timeZone

Specifies whether to convert time stamped data that is returned (when using ReadTimeTags() for example) to the local time
zone or to return the time stamps as they are stored in the file (in the GMT time zone).

All of the timeZone settings are MccDaq.TimeZone enumerated constants. Choices are MccDaq.TimeZone.Local and
MccDaq.TimeZone.GMT.

timeZone defaults to MccDaq.TimeZone.Local.

units

Specifies the unit for analog data. This value is ignored if counts are logged.

All of the units settings are MccDaq.TempScale enumerated constants. Choices are MccDaq.TempScale.Celsius,
MccDaq.TempScale.Fahrenheit, and MccDaq.TempScale.Kelvin.

units defaults to MccDaq.TempScale.Fahrenheit.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n The timeFormat and timeZone preferences are applied to all time data returned using API methods that return time data.

n The units preference specifies the temperature scale that the API applies when reading and converting analog, CJC, and time
stamped data.

Page 579 of 700

javascript:hhctrl.TextPopup(SetPreferences,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(SetPreferences,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

DBitIn() method
Reads the state of a single digital input bit.

This method treats all of the DIO ports of a particular type on a board as a single port. It lets you read the state of any individual
bit within this port. Note that for some port types, such as 8255 ports, if the port is configured for DigitalOut, this method provides
readback of the last output value.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O methods.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DBitIn(ByVal portType As MccDaq.DigitalPortType, ByVal bitNum As Integer, ByRef
bitValue As MccDaq.DigitalLogicState) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DBitIn(MccDaq.DigitalPortType portType, int bitNum, out
MccDaq.DigitalLogicState bitValue)

Parameters
portType

There are three general types of digital ports — ports that are programmable as input or output, ports that are fixed input or
output, and ports for which each bit may be programmed as input or output. For the first of these types, set PortType to
FirstPortA. For the latter two types, set portType to AuxPort. Some boards have both types of digital ports (DAS1600). Set
portType to either FirstPortA or AuxPort depending on which digital port you wish to write to.

bitNum

Specifies the bit number within the single large port.

bitValue

Place holder for return value of bit. Value will be 0 or 1. A 0 indicates a logic low reading, a 1 indicates a logic high reading.
Logic high does not necessarily mean 5 V. Refer to the board's user's guide for chip specifications.

Returns

n An ErrorInfo object that indicates the status of the operation.

n BitValue – value (0 or 1) of specified bit returned here.

Page 580 of 700

javascript:hhctrl.TextPopup(DBitIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DBitIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

DBitOut() method
Sets the state of a single digital output bit.

This method treats all of the DIO chips of a particular type on a board as a single large port. It lets you set the state of any
individual bit within this large port.

Most configurable ports require configuration before writing. Check the board-specific information in the Universal Library User's
Guide to determine if the port should be configured for your hardware. When configurable, use DConfigPort() to configure a port for
output, and DConfigBit() to configure a bit for output.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O methods.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DBitOut(ByVal portType As MccDaq.DigitalPortType, ByVal bitNum As Integer, ByVal
bitValue As MccDaq.DigitalLogicState) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DBitOut(MccDaq.DigitalPortType portType, int bitNum, MccDaq.DigitalLogicState
bitValue)

Parameters
portType

There are three general types of digital ports — ports that are programmable as input or output, ports that are fixed input or
output, and ports for which each bit may be programmed as input or output. For the first of these types, set portType to
FirstPortA. For the latter two types, set portType to AuxPort.

For boards that have both types of digital ports (such as the DAS1600), set portType to either FirstPortA or AuxPort,
depending on which digital inputs you wish to read.

bitNum

This specifies the bit number within the single large port. The specified bit must be in a port that is currently configured as an
output.

bitValue

The value to set the bit to. Value will be 0 or 1. A 0 indicates a logic low output, a 1 indicates a logic high output. Logic high
does not necessarily mean 5 V. See the board manual for chip specifications.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 581 of 700

javascript:hhctrl.TextPopup(DBitOut,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DBitOut,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

DConfigBit() method
Configures a specific digital bit as Input or Output. This method treats all DIO ports of the AuxPort type on a board as a single port.
This method is NOT supported by 8255 type DIO ports. Refer to board-specific information for details.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DConfigBit(ByVal portNum As MccDaq.DigitalPortType, ByVal bitNum As Integer, ByVal
direction As MccDaq.DigitalPortDirection) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DConfigBit(MccDaq.DigitalPortType portNum, int bitNum,
MccDaq.DigitalPortDirection direction)

Parameters
portNum

The port (AuxPort) whose bits are to be configured. The port specified must be bitwise configurable. See board specific
information for details.

bitNum

The bit number to configure as input or output. See board specific information for details.

direction

MccDaq.DigitalPortDirection.DigitalOut or MccDaq.DigitalPortDirection.DigitalIn configures the specified bit for output or input,
respectively.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 582 of 700

javascript:hhctrl.TextPopup(DConfigBit,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DConfigBit,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

DConfigPort() method
Configures a digital port as input or output.

This method is for use with ports that may be programmed as input or output, such as those on the 82C55 chips and 8536 chips.
Refer to the board's hardware User Guide for details of chip operation.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O methods.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DConfigPort(ByVal portNum As MccDaq.DigitalPortType, ByVal direction As
MccDaq.DigitalPortDirection) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DConfigPort(MccDaq.DigitalPortType portNum, MccDaq.DigitalPortDirection
direction)

Parameters
portNum

The specified port must be configurable. For most boards, AuxPort is not configurable; check the board-specific information in
the Universal Library User's Guide for details.

direction

MccDaq.DigitalPortDirection.DigitalOut or MccDaq.DigitalPortDirection.DigitalIn configures the entire eight-bit or four-bit port
for output or input, respectively.

Returns

n An ErrorInfo object that indicates the status of the operation.

Note

n When used on ports within an 8255 chip, this method will reset all ports on that chip configured for output to a zero state. This
means that if you set an output value on FirstPortA and then change the configuration on FirstPortB from Output to Input, the
output value at FirstPortA will be all zeros. You can, however, set the configuration on SecondPortx without affecting the value
at FirstPortA. For this reason, this method is usually called at the beginning of the program for each port requiring
configuration.

Page 583 of 700

javascript:hhctrl.TextPopup(DConfigPort,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DConfigPort,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

DIn() method
Reads a digital input port.

Note that for some port types, such as 8255 ports, if the port is configured for DigtalOut, this method will provide readback of the
last output value.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O methods.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DIn(ByVal portNum As MccDaq.DigitalPortType, ByRef dataValue As Short) As
MccDaq.ErrorInfo

Public Function DIn(ByVal portNum As MccDaq.DigitalPortType, ByRef dataValue As System.UInt16) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DIn(MccDaq.DigitalPortType portNum, out ushort dataValue)

public MccDaq.ErrorInfo DIn(MccDaq.DigitalPortType portNum, out short dataValue)

Parameters
portNum

Specifies which digital I/O port to read. Some hardware does allow readback of the state of the output using this method.
Check the board-specific information in the Universal Library User's Guide for details.

dataValue

Digital input value returned here.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataValue – Digital input value returned here

Notes

n The size of the ports vary. If it is an eight bit port, the returned value is in the 0 – 255 range. If it is a four bit port, the value
is in the 0 - 15 range.

n Refer to the board-specific information contained in the Universal Library User's Guide for clarification of valid portNum
values.

Page 584 of 700

javascript:hhctrl.TextPopup(DIn,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(DIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

DInScan() method
Performs multiple reads of a digital input port of a high speed digital port on a board with a pacer clock, such as the CIO-PDMA16.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DInScan(ByVal portNum As MccDaq.DigitalPortType, ByVal numPoints As Integer, ByRef rate
As Integer, ByVal memHandle As IntPtr, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DInScan(MccDaq.DigitalPortType portNum, int numPoints, ref int rate, IntPtr
memHandle, MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function DInScan(ByVal portNum As MccDaq.DigitalPortType, ByVal numPoints As Integer, ByRef rate
As Integer, ByVal memHandle As Integer, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DInScan(MccDaq.DigitalPortType portNum, int numPoints,ref int rate, int
memHandle, MccDaq.ScanOptions options)

Parameters
portNum

Specifies which digital I/O port to read (usually FirstPortA or FirstPortB). The specified port must be configured as an input.

numPoints

The number of times to read digital input.

rate

Number of times per second (Hz) to read the port. The actual sampling rate in some cases will vary a small amount from the
requested rate. The actual rate will be returned to the rate parameter.

memHandle

Handle for Windows buffer to store data. This buffer must have been previously allocated with the WinBufAllocEx() or
WinBufAlloc32Ex()method.

options

Bit fields that control various options. Set it to one of the constants in the "options parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n rate – actual sampling rate returned.

n memHandle – digital input value returned via allocated Windows buffer.

Page 585 of 700

javascript:hhctrl.TextPopup(DInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (for example, variable = MccDaq.ScanOptions.Background, variable
= MccDaq.ScanOptions.Continuous, etc.).

Notes

n Transfer Method may not be specified. DMA is used.

Background If the Background option is not used, the DInScan() method will not return to your program
until all of the requested data has been collected and returned to memHandle.

When the Background option is used, control will return immediately to the next line in your
program and the transfer from the digital input port to memHandle will continue in the
background. Use GetStatus() with DiFunction to check on the status of the background
operation. Use StopBackground() with DiFunction to terminate the background process
before it has completed.

Continuous This option puts the method in an endless loop. Once it transfers the required number of
bytes it resets to the start of the buffer and begins again. The only way to stop this
operation is by calling StopBackground() with DiFunction. Normally this option should be
used in combination with Background so that your program will regain control.

ExtClock If this option is used then transfers will be controlled by the signal on the trigger input line
rather than by the internal pacer clock. Each transfer will be triggered on the appropriate
edge of the trigger input signal (refer to board-specific information in the Universal Library
User's Guide). When this option is used, the rate parameter is ignored. The transfer rate is
dependent on the trigger signal.

ExtTrigger If this option is used then the scan will not begin until the signal on the trigger input line
meets the trigger criteria.

HighResRate Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
rate parameter above).

WordXfer Normally this method reads a single (byte) port. If WordXfer is specified, it will read two
adjacent ports on each read, and store the value of both ports together as the low and high
byte of a single array element in the buffer.

When WordXfer is used, it is generally required to set portNum to FirstPortA.

Page 586 of 700

javascript:void(0)

DOut() method
Writes a byte to a digital output port.

Most configurable ports require configuration before writing. Check the board-specific information in the Universal Library User's
Guide to determine if the port should be configured for your hardware. When configurable, use DConfigPort() to configure a port for
output.

Refer to the "Introduction: Digital Input / Output Boards" topic for additional details on using digital I/O boards with the Universal
Library's digital I/O methods.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DOut(ByVal portNum As MccDaq.DigitalPortType, ByVal dataValue As Short) As
MccDaq.ErrorInfo

Public Function DOut(ByVal portNum As MccDaq.DigitalPortType, ByVal dataValue As System.UInt16) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DOut(MccDaq.DigitalPortType portNum, ushort dataValue)

public MccDaq.ErrorInfo DOut(MccDaq.DigitalPortType portNum, short dataValue)

Parameters
portNum

There are three general types of digital ports - ports that are programmable as input or output, ports that are fixed input or
output, and ports for which each bit may be programmed as input or output. For the first of these types, set portNum to
FirstPortA. For the latter two types, set portNum to AuxPort. Some boards have both types of digital ports (DAS1600). Set
portNum to either FirstPortA or AuxPort depending on which digital port you wish to write to.

dataValue

Digital value to be written.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n The size of the ports vary. If it is an eight bit port, the output value is in the 0 – 255 range. If it is a four bit port, the value is
in the 0 - 15 range.

n Refer to the board-specific information in the Universal Library User's Guide for valid portNum values.

Page 587 of 700

javascript:hhctrl.TextPopup(DOut,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(DOut,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

DOutScan() method
Writes a series of bytes or words to the digital output port on a board with a pacer clock.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DOutScan(ByVal portNum As MccDaq.DigitalPortType, ByVal count As Integer, ByRef rate As
Integer, ByVal memHandle As IntPtr, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DOutScan(MccDaq.DigitalPortType portNum, int count, ref int rate, IntPtr
memHandle, MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function DOutScan(ByVal portNum As MccDaq.DigitalPortType, ByVal count As Integer, ByRef rate As
Integer, ByVal memHandle As Integer, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DOutScan(MccDaq.DigitalPortType portNum, int count, ref int rate, int
memHandle, MccDaq.ScanOptions options)

Parameters
portNum

Specifies which digital I/O port to write (usually FirstPortA or FirstPortB). The specified port must be configured as an output.

count

The number of times to write digital output.

rate

Number of times per second (Hz) to write to the port. The actual update rate in some cases will vary a small amount from the
requested rate. The actual rate will be returned to the rate parameter.

memHandle

Handle for Windows buffer to store data in (Windows). This buffer must have been previously allocated with the WinBufAlloc()
method.

options

Bit fields that control various options. Set it to one of the constants in the "options parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n rate – actual sampling rate returned.

Page 588 of 700

javascript:hhctrl.TextPopup(DOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (for example, variable = MccDaq.ScanOptions.Background, variable
= MccDaq.ScanOptions.Continuous, etc.).

Notes

n MccDaq.ScanOptions.ByteXfer is the default option. Make sure you are using an array when your data is arranged in bytes.
Use the MccDaq.ScanOptions.WordXfer option for word array transfers.

n NonStreamedIO can only be used with the number of samples (count) set equal to the size of the FIFO or less.

n Transfer Method may not be specified. DMA is used.

ADCClock Paces the data output operation using the ADC clock.

ADCClockTrig Triggers a data output operation when the ADC clock starts.

Background If the Background option is not used, the DOutScan() method will not return control to your
program until all of the requested data has been output.

When the Background option is used, control will return immediately to the next line in your
program and the transfer to the digital output port from memHandle will continue in the
background. Use GetStatus() with DoFunction to check on the status of the background
operation. Use StopBackground() with DoFunction to terminate the background process
before it has completed.

Continuous This option puts the method in an endless loop. Once it transfers the required number of
bytes it resets to the start of the buffer and begins again. The only way to stop this
operation is by calling StopBackground() with DoFunction. Normally this option should be
used in combination with Background so that your program will regain control.

EXTCLOCK When this option is used, transfers are controlled by the signal on the external clock input
rather than by the internal pacer clock. Each transfer will be triggered on the appropriate
edge of the clock input signal (refer to board-specific information contained in the UL Users
Guide).

When this option is used, the rate parameter is used for reference only. The transfer rate is
dependent on the clock signal. An approximation of the external clock rate is used to
determine the size of the packets to transfer from the board. Set the rate parameter to an
approximate maximum value.

NonStreamedIO When this option is used, you can output non-streamed data to a specific DAC output
channel.

To load the data output buffer into the device's internal output FIFO, the aggregate size of
the data output buffer must be must be less than or equal to the size of the internal data
output FIFO in the device. Once the sample data are transferred or downloaded to the
device, the device is responsible for outputting the data. You can't make any changes to the
output buffer once the output begins.

With NonStreamedIO mode, you do not have to periodically feed output data through the
program to the device for the data output to continue. However, the size of the buffer is
limited.

WordXfer Normally this method writes a single (byte) port. If WordXfer is specified, it will write two
adjacent ports as the low and high byte of a single array element in dataBuffer.

When WordXfer is used, it is generally required to set portNum to FirstPortA.

Page 589 of 700

javascript:void(0)

ErrHandling() method
Sets the error handling for all subsequent method calls. Most methods return error codes after each call. In addition, other error
handling features are built into the library. This method controls those features. If the Universal Library cannot find the
configuration file CB.CFG, it always terminates the program, regardless of the ErrHandling() setting.

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function ErrHandling(ByVal errorReporting As MccDaq.ErrorReporting, ByVal errorHandling
As MccDaq.ErrorHandling) As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo ErrHandling(MccDaq.ErrorReporting errorReporting, MccDaq.ErrorHandling
errorHandling)

Parameters
errorReporting

This parameter controls when the library will print error messages on the screen. The default is DontPrint. Set it to one of the
constants in the "errorReporting parameter values" section below.

errorHandling

This parameter specifies what class of error will cause the program to halt. The default is DontStop. Set it to one of the
constants in the "errorHandling parameter values" section below.

Returns

n Returns an ErrorInfo object that always has ErrorInfo.Value = NoErrors.

errorReporting parameter values

All of the errorReporting settings are MccDaq.ErrorReporting enumerated constants. To set a variable to one of these constants,
you must refer to the MccDaq object and the ErrorReporting enumeration (for example, variable =
MccDaq.ErrorReporting.DontPrint, variable = MccDaq.ErrorReporting.PrintWarnings, etc.).

errorHandling parameter values

All of the errorReporting settings are MccDaq.ErrorHandling enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the ErrorHandling enumeration (for example, variable = MccDaq.ErrorHandling.DontStop,
variable = MccDaq.ErrorHandling.StopFatal, etc.).

Note
Warnings vs fatal errors

All errors that can occur are classified as either "warnings" or "fatal":

n Errors that can occur in normal operation in a bug free program (disk is full, too few samples before trigger occurred) are
classified as "warnings."

n All other errors indicate a more serious problem and are classified as "fatal."

DontPrint Errors will not generate a message to the screen. In that case your program must always
check the returned error code after each library call to determine if an error occurred.

PrintWarnings Only warning errors will generate a message to the screen. Your program will have to check
for fatal errors.

PrintFatal Only fatal errors will generate a message to the screen. Your program must check for
warning errors.

PrintAll All errors will generate a message to the screen.

DontStop The program will always continue executing when an error occurs.

StopFatal The program will halt if a "fatal" error occurs.

StopAll Will stop whenever any error occurs. If you are running in an Integrated Development
Environment (IDE) then when errors occur, the environment may be shut down along with
the program. If your IDE behaves this way, then you should set ErrHandling() to
DONTSTOP. You can check error codes to determine the cause of the error.

Page 590 of 700

javascript:hhctrl.TextPopup(ErrHandling,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(ErrHandling,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

LogToFile() property
Set the ErrorInfo.LogToFile property to true to record time-stamped error codes to a file. Most UL for .NET method returns either an
ErrorInfo object or 0. If an error occurs, an ErrorInfo object is returned.

Member of the ErrorInfo class.

Property prototype
VB .NET

Public Property LogToFile As Boolean

C# .NET

public bool LogToFile [get, set]

Notes

n Refer to the ErrHandling() method for an alternate method of handling errors.

Page 591 of 700

Message() property
Returns the error message associated with an ErrorInfo object.

Most UL for .NET methods return an ErroInfo object. If no error occurred, an ErroInfo object is returned with the Message property
set to "No error has occurred".

Member of the ErrorInfo class.

Property prototype
VB .NET

Public ReadOnly Property Message As String

C# .NET

public string Message [get]

Notes

n Refer to the ErrHandling() method for an alternate method of handling errors.

Page 592 of 700

Value() property
Use the ErrorInfo.Value property to get the error constant associated with an ErrorInfo object. Most UL for .NET methods return an
ErroInfo object. If an error occurs, an ErroInfo object is returned with a non-zero value in the Value property.

Member of the ErrorInfo class.

Property prototype
VB .NET

Public ReadOnly Property Value As MccDaq.ErrorInfo.ErrorCode

C# .NET

public MccDaq.ErrorInfo.ErrorCode Value [get]

Notes

n Refer to the ErrHandling() method for an alternate method of handling errors.

Page 593 of 700

MemRead() method
Reads data from a memory board into an array.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function MemRead(ByVal dataBuffer As Short(), ByVal firstPoint As Integer, ByVal numPoints As
Integer) As MccDaq.ErrorInfo

Public Function MemRead(ByVal dataBuffer As System.UInt16(), ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemRead(short[] dataBuffer, int firstPoint, int numPoints)

public MccDaq.ErrorInfo MemRead(ushort[] dataBuffer, int firstPoint, int numPoints)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function MemRead(ByRef dataBuffer As Short, ByVal firstPoint As Integer, ByVal numPoints As
Integer) As MccDaq.ErrorInfo

Public Function MemRead(ByRef dataBuffer As System.UInt16, ByVal firstPoint As Integer, ByVal numPoints
As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemRead(out short dataBuffer, int firstPoint, int numPoints)

public MccDaq.ErrorInfo MemRead(out ushort dataBuffer, int firstPoint, int numPoints)

Parameter
dataBuffer

Reference to the data array.

firstPoint

Index of first point to read, or FromHere. Use the firstPoint parameter to specify the first point to be read. For example, to
read data sample numbers 200 through 250, set firstPoint = 200 and numPoints = 50.

numPoints

Number of data points (words) to read.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataBuffer - data read from the memory board.

Notes

n If you are going to read a large amount of data from the board in small chunks, set firstPoint to FromHere to read each
successive chunk. Using FromHere speeds up the operation of MemRead() when working with large amounts of data.

For example, to read 300,000 points in 100,000 point chunks, the calls would look like this:

DaqBoard0.MemRead(dataBuffer, 0, 100000)

DaqBoard0.MemRead(dataBuffer, FROMHERE, 1000000)

DaqBoard0.MemRead(dataBuffer, FROMHERE, 1000000)

n DT-Connect conflicts: The MemRead() method cannot be called while a DT-Connect transfer is in progress. For example, if
you start collecting A/D data to the memory board in the background (by calling AInScan() with the DTConnect +
Background options) you cannot call MemRead() until the AInScan() has completed. If you do you will get a DTACTIVE error.

Page 594 of 700

javascript:hhctrl.TextPopup(MemRead,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemRead,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemRead,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemRead,termfont,10,10,000,000)

MemReadPretrig() method
Reads pre-trigger data from a memory board that has been collected with the APretrig() method and re-arranges the data in the
correct order (pre-trigger data first, then post-trigger data). This method can only be used to retrieve data that has been collected
with the APretrig() method with ExtMemory set in the options parameter. After each APretrig() call, all data must be unloaded from
the memory board with this method. If any more data is sent to the memory board then the pre-trigger data will be lost.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function MemReadPretrig(ByVal dataBuffer As Short(), ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

Public Function MemReadPretrig(ByVal dataBuffer As System.UInt16(), ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemReadPretrig(short[] dataBuffer, int firstPoint, int numPoints)

public MccDaq.ErrorInfo MemReadPretrig(ushort[] dataBuffer, int firstPoint, int numPoints)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function MemReadPretrig(ByRef dataBuffer As Short, ByVal firstPoint As Integer, ByVal numPoints
As Integer) As MccDaq.ErrorInfo

Public Function MemReadPretrig(ByRef dataBuffer As System.UInt16, ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemReadPretrig(out short dataBuffer, int firstPoint, int numPoints)

public MccDaq.ErrorInfo MemReadPretrig(out ushort dataBuffer, int firstPoint, int numPoints)

Parameters
dataBuffer

Reference to the data array.

firstPoint

Index of first point to read or FromHere. Use the FirstPoint parameter to specify the first point to be read. For example, to
read data sample numbers 200 through 250, set firstPoint = 200 and numPoints = 50.

numPoints

Number of data samples (words) to read.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataBuffer - data read from memory board

Notes

n If you are going to read a large amount of data from the board in small chunks, set FirstPoint to FromHere to read each
successive chunk. Using FromHere speeds up the operation of MemReadPretrig() when working with large amounts of data.

For example, to read 300,000 points in 100,000 chunks, the calls would look like this:

DaqBoard0.MemReadPretrig(dataBuffer, 0, 100000)

DaqBoard0.MemReadPretrig(dataBuffer, FROMHERE, 1000000)

DaqBoard0.MemReadPretrig(dataBuffer, FROMHERE, 1000000)

n DT-Connect conflicts: The MemReadPretrig() method cannot be called while a DT-Connect transfer is in progress. For
example, if you start collecting A/D data to the memory board in the background (by calling AInScan() with the DTConnect +
Background options) you cannot call MemReadPretrig()until the AInScan() has completed. If you do you will get a DTACTIVE
error.

Page 595 of 700

javascript:hhctrl.TextPopup(MemReadPretrig,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemReadPretrig,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemReadPretrig,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemReadPretrig,termfont,10,10,000,000)

MemReset() method
Resets the memory board reference to the start of the data. The memory boards are sequential devices. They contain a counter
which points to the 'current' word in memory. Every time a word is read or written this counter increments to the next word.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function MemReset() As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemReset()

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes
This method is used to reset the counter back to the start of the memory. Between successive calls to AInScan(), you should call
this method so that the second AInScan() overwrites the data from the first call. Otherwise, the data from the first AInScan() will be
followed by the data from the second AInScan() in the memory on the card.

Likewise, anytime you call MemRead() or MemWrite(), it will leave the counter pointing to the next memory location after the data
that you read or wrote. Call MemReset() to reset back to the start of the memory buffer before the next call to AInScan().

Page 596 of 700

javascript:hhctrl.TextPopup(MemReset,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemReset,termfont,10,10,000,000)

MemSetDTMode() method
Sets the DT-Connect Mode of a memory board.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function MemSetDTMode(ByVal mode As MccDaq.DTMode) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemSetDTMode(MccDaq.DTMode mode)

Parameters
mode

Must be set to either DTIn or DTOut. Set the mode on the memory board to DTIn to transfer data from an A/D board to the
memory board. Set mode = DTOut to transfer data from a memory board to a D/A board.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This command only controls the direction of data transfer between the memory board and its parent board that is connected
to it via a DT-Connect cable.

If using the ExtMemory option for AInScan(), etc., this method should not be used. The Memory Board mode is already set
through the ExtMemory option.

n Use this method only if the parent board is not supported by the Universal Library.

Page 597 of 700

javascript:hhctrl.TextPopup(MemSetDTMode,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(MemSetDTMode,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

MemWrite() method
Writes data from an array to the memory card.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function MemWrite(ByVal dataBuffer As Short(), ByVal firstPoint As Integer, ByVal numPoints As
Integer) As MccDaq.ErrorInfo

Public Function MemWrite(ByVal dataBuffer As System.UInt16(), ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemWrite(short[] dataBuffer, int firstPoint,int numPoints)

public MccDaq.ErrorInfo MemWrite(ushort[] dataBuffer, int firstPoint, int numPoints)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function MemWrite(ByRef dataBuffer As Short, ByVal firstPoint As Integer, ByVal numPoints As
Integer) As MccDaq.ErrorInfo

Public Function MemWrite(ByRef dataBuffer As System.UInt16, ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo MemWrite(ref short dataBuffer, int firstPoint, int numPoints)

public MccDaq.ErrorInfo MemWrite(ref ushort dataBuffer, int firstPoint, int numPoints)

Parameters
dataBuffer

Reference to the data array.

firstPoint

Index of first point to write or FromHere. Use the firstPoint parameter to specify where in the board's memory to write the
first point. For example, to write to location numbers 200 through 250, set firstPoint = 200 and numPoints = 50.

numPoints

Number of data points (words) to write.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n To write large amounts of data to the board in small chunks, set firstPoint to FromHere to write each successive chunk. Using
FromHere speeds up the operation of MemWrite() when working with large amounts of data.

n For example, to write 300,000 points in 100,000 point chunks, the calls would look like this:

DaqBoard1.MemWrite(dataBuffer, 0, 100000)

DaqBoard1.MemWrite(dataBuffer, FromHere, 100000)

DaqBoard1.MemWrite(dataBuffer, FromHere, 100000)

n DT-Connect conflicts: The MemWrite() method cannot be called while a DT-Connect transfer is in progress. For example, if
you start collecting A/D data to the memory board in the background (by calling AInScan() with the DTCONNECT +
BACKGROUND options). You cannot call MemWrite() until the AInScan() has completed. If you do, you will get a DTACTIVE
error.

Page 598 of 700

javascript:hhctrl.TextPopup(MemWrite,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemWrite,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemWrite,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(MemWrite,termfont,10,10,000,000)

DeclareRevision() method
Initializes the Universal Library with the revision number of the library used to write the program. This method must be the first
Universal Library method to be called by the program.

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function DeclareRevision(ByRef revNum As Single) As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo DeclareRevision(ref float revNum)

Parameters
revNum

Revision number of the Universal Library used to interpret method parameters.

default

Any program using the 32-bit library and not containing this line of code will be defaulted to revision 5.4 parameter
assignments.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n By default, any program using the 32-bit library and not containing this line of code will be defaulted to revision 5.4
parameter assignments.

n As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new properties and
methods are added. It is Measurement Computing's goal to preserve existing programs you have written and therefore to
never change the order or number of parameters in a method.

n With the DeclareRevision() method, programs do not have to be rewritten in each line where new functions are used, and the
program then recompiled. The revision control method initializes the DLL so that the functions are interpreted according to
the format of the revision that you wrote and compiled your program in. The method works by interpreting the UL function
call from your program and filling in any arguments needed to run with the new revision.

n If your program has declared you are running code written for an earlier revision and you call a new method, you must
rewrite your program to include the new parameter, and declare the current revision in the DeclareRevision() method call.

Page 599 of 700

javascript:hhctrl.TextPopup(DeclareRevision,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(DeclareRevision,termfont,10,10,000,000)

GetRevision() method
Gets the revision number of the Universal Library DLL and VXD.

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function GetRevision(ByRef revNum As Single, ByRef vxdRevNum As Single) As
MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo GetRevision(out float revNum, out float vxdRevNum)

Parameters
revNum

Place holder for the revision number of Library DLL.

VXDRevNum

Place holder for the revision number of Library VXD.

Returns

n An ErrorInfo object that indicates if the revision levels of VXD and DLL are incompatible.

n revNum – Revision number of the Universal Library DLL

n vxdRevNum – Revision number of the Universal Library VXD

Page 600 of 700

javascript:hhctrl.TextPopup(GetRevision,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetRevision,termfont,10,10,000,000)

Version property
This information is used by the library to determine compatibility.

Member of the GlobalConfig class.

Property prototype
VB .NET

Public Shared ReadOnly Property Version As Integer

C# .NET

public int Version [get]

Page 601 of 700

FileAInScan() method
Scans a range of A/D channels and stores the samples in a disk file. FileAInScan() reads the specified number of A/D samples at
the specified sampling rate from the specified range of A/D channels from the board. If the A/D board has programmable gain, it
sets the gain to the specified range.

The collected data is returned to a file in binary format. Use FileRead() to load data from that file into an array. Refer to board–
specific information to determine if this method is supported on your device.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function FileAInScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal numPoints As
Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal fileName As String, ByVal options As
MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo FileAInScan(int lowChan, int highChan, int numPoints, ref int rate,
MccDaq.Range range, string fileName, MccDaq.ScanOptions options)

Parameters
lowChan

First A/D channel of the scan.

highChan

Last A/D channel of the scan.

The maximum allowable channel depends on which type of A/D board is being used. For boards with both single ended and
differential inputs, the maximum allowable channel number also depends on how the board is configured (for example, eight
channels for differential, 16 for single ended).

numPoints

Specifies the total number of A/D samples that will be collected. If more than one channel is being sampled, the number of
samples collected per channel is equal to Count / (HighChan – LowChan + 1).

rate

Sample rate in samples per second (Hz) per channel. The maximum sampling rate depends on the A/D board that is being
used (refer to the rate description in AInScan()).

range

If the selected A/D board does not have a programmable range feature, this parameter is ignored. Otherwise set the range
parameter to any range that is supported by the selected A/D board. Refer to board-specific information in the Universal
Library User's Guide for a list of the supported A/D ranges of each board.

fileName

The name of the file in which to store the data. If the file doesn't exist, it will be created.

options

Bit fields that control various options. Set it to one of the constants in the options parameter values section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n rate – actual sampling rate.

Page 602 of 700

javascript:hhctrl.TextPopup(FileAInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(FileAInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, refer to the
MccDaq object and the ScanOptions enumeration (for example, variable = MccDaq.ScanOptions.ExtClock, variable =
MccDaq.ScanOptions.ExtTrigger, and so on).

Notes

n OverRun error - (Error code 29) This error indicates that the data was not written to the file as fast as the data was sampled.
Consequently some data was lost. The value returned from FileGetInfo() in totalCount is the number of points that were
successfully collected.

Important!
In order to understand the methods, read the board-specific information in the Universal Library User's Guide and also in the
ReadMe files installed with the Universal Library. We also urge you to examine and run one or more of the example programs
supplied prior to attempting any programming of your own. Following this advice may save you hours of frustration, and wasted
time.

This note, which appears elsewhere, is especially applicable to this method. Now is the time to read the board-specific information
for your board. We suggest that you make a copy of that page to refer to as you read this manual and examine the example
programs.

ExtClock If this option is used, conversions are controlled by the signal on the external clock input
rather than by the internal pacer clock. Each conversion is triggered on the appropriate
edge of the trigger input signal (see board specific info). Additionally, the Rate parameter is
ignored. The sampling rate is dependent on the trigger signal.

ExtTrigger If this option is specified, the sampling does not begin until the trigger condition is met.

On many boards, this trigger condition is programmable (refer to the SetTrigger() method
and board–specific info for details) and can be programmed for rising or falling edge or an
analog level.

On other boards, only polled gate triggering is supported. Assuming active high operation,
data acquisition commences immediately if the trigger input is high. If the trigger input is
low, acquisition is held off until it goes high. Acquisition continues until numPoints samples
are taken, regardless of the state of the trigger input. For polled gate triggering, this option
is most useful if the signal is a pulse with a very low duty cycle (trigger signal is in a TTL low
state most of the time) to hold off triggering until the pulse occurs.

DtConnect Samples are sent to the DT-Connect port if the board is equipped with one.

Page 603 of 700

javascript:void(0)

FileGetInfo() method
Returns information about a streamer file.

When FileAInScan() or FilePretrig() fills the streamer file, information is stored about how the data was collected (sample rate,
channels sampled etc.). This method returns that information. Refer to board-specific information in the Universal Library User's
Guide to determine if your device supports FileAInScan() and/or FilePretrig().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function FileGetInfo(ByVal fileName As String, ByRef lowChan As Short, ByRef highChan As
Short, ByRef pretrigCount As Integer, ByRef totalCount As Integer, ByRef rate As Integer, ByRef range
As MccDaq.Range) As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo FileGetInfo(string fileName, out short lowChan, out short highChan, out
int pretrigCount, out int totalCount, out int rate, out MccDaq.Range range)

Parameters
fileName

Name of streamer file.

lowChan

Variable to return lowChan to.

highChan

Variable to return highChan to.

pretrigCount

Variable to return pretrigCount to.

totalCount

Variable to return totalCount to.

rate

Variable to return sampling rate to.

range

Variable to return the A/D range code to. Refer to board-specific information in the Universal Library User's Guide for a list of
the supported A/D ranges of each device.

Returns

n An ErrorInfo object that indicates the status of the operation.

n lowChan – low A/D channel of the scan.

n highChan – high A/D channel of the scan.

n totalCount – total number of points collected.

n pretrigCount – number of pre-trigger points collected.

n rate – sampling rate when data was collected.

n range – Range of the A/D when data was collected.

Page 604 of 700

javascript:hhctrl.TextPopup(FileGetInfo,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(FileGetInfo,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

FilePretrig() method
Scan a range of channels continuously while waiting for a trigger.

Once the trigger occurs, FilePretrig() returns the specified number of samples, including the specified number of pre-trigger
samples to a disk file. This method waits for a trigger signal to occur on the Trigger Input. Once the trigger occurs, it returns the
specified number (TotalCount) of A/D samples, including the specified number of pre-trigger points. It collects the data at the
specified sampling rate (rate) from the specified range (lowChan-highChan) of A/D channels from the specified board. If the A/D
board has programmable gain then it sets the gain to the specified range. The collected data is returned to a file. See board specific
info to determine if this method is supported by your board.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function FilePretrig(ByVal lowChan As Integer, ByVal highChan As Integer, ByRef pretrigCount As
Integer, ByRef totalCount As Integer, ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal
fileName As String, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo FilePretrig(int lowChan, int highChan, ref int pretrigCount, ref int
totalCount, ref int rate, MccDaq.Range range, string fileName, MccDaq.ScanOptions options)

Parameters
lowChan

First A/D channel of the scan.

highChan

Last A/D channel of the scan.

The maximum allowable channel depends on which type of A/D board is being used. For boards that have both single ended
and differential inputs the maximum allowable channel number also depends on how the board is configured Refer to board–
specific information for the maximum number of channels allowed in differential and single ended modes.

pretrigCount

Specifies the number of samples before the trigger that will be returned. PretrigCount must be less than 16000, and
PretrigCount must also be less than TotalCount – 512.

If the trigger occurs too early, then fewer than the requested number of pre-trigger samples will be collected. In that case a
TooFew error will occur. The PretrigCount will be set to indicate how many samples were collected and the post trigger
samples will still be collected.

totalCount

Sets the total number of samples to be collected and stored in the file. totalCount must be greater than or equal to
pretrigCount + 512.

If the trigger occurs too early, fewer than the requested number of samples will be collected and a TooFew error will occur.
The totalCount will be set to indicate how many samples were actually collected.

rate

Sample rate in samples per second (Hz) per channel. The maximum sampling rate depends on the A/D board that is being
used. This is the rate at which scans are triggered.

If you are sampling 4 channels, 0 – 3, then specifying a rate of 10,000 scans per second (10 kHz) will result in the A/D
converter rate of 40 kHz: 4 channels at 10,000 samples per channel per second. This is different from some software, where
you specify the total A/D chip rate. In those systems, the per channel rate is equal to the A/D rate divided by the number of
channels in a scan. This parameter also returns the value of the actual set. This may be different from the requested rate
because of pacer limitations.

range

If the selected A/D board does not have a programmable range feature, this parameter is ignored. Otherwise, set the Range
parameter to any range that is supported by the selected A/D board. Refer to board–specific information for a list of the
supported A/D ranges of each device.

fileName

The name of the file in which to store the data. If the file doesn't exist, it will be created.

options

Bit fields that control various options. Set it to one of the constants in the options parameter values section below.

Page 605 of 700

javascript:hhctrl.TextPopup(FilePretrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(FilePretrig,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Returns

n An ErrorInfo object that indicates the status of the operation.

n preTrigCount – actual number of pre-trigger samples collected

n totalCount – actual number of samples collected

n rate – the actual sampling rate

options parameter values

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these constants, you must
refer to the MccDaq object and the ScanOptions enumeration (for example, variable = MccDaq.ScanOptions.ExtClock or variable =
MccDaq.ScanOptions.DtConnect).

Notes

n OverRun error - (Error code 29) This error indicates that the data was not written to the file as fast as the data was sampled.
Consequently some data was lost. The value in TotalCount will be the number of points that were successfully collected.

ExtClock If this option is used then conversions will be controlled by the signal on the trigger input
line rather than by the internal pacer clock. Each conversion will be triggered on the
appropriate edge of the trigger input signal (see board specific info). When this option is
used the Rate parameter is ignored. The sampling rate is dependent on the trigger signal.

DtConnect Samples are sent to the DT-Connect port if the board is equipped with one.

Page 606 of 700

javascript:void(0)

FileRead() method
This method reads data from a streamer file, and returns the data in a one-dimensional or two-dimensional array.

When FileAInScan() or FilePretrig() fills the streamer file, this method returns the content of that file. Refer to information on your
board in the Universal Library User's Guide to determine if your board supports FileAInScan() and/or FilePreTrig().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function FileRead(ByVal fileName As String, ByVal firstPoint As Integer, ByRef numPoints
As Integer, ByVal dataBuffer As Short()) As MccDaq.ErrorInfo

Public Shared Function FileRead(ByVal fileName As String, ByVal firstPoint As Integer, ByRef numPoints
As Integer, ByVal dataBuffer As System.UInt16()) As MccDaq.ErrorInfo

Public Shared Function FileRead(ByVal fileName As String, ByVal firstPoint As Integer, ByRef numPoints
As Integer, ByVal dataBuffer As System.double(,)) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo FileRead(string fileName, int firstPoint, ref int numPoints, short[]
dataBuffer)

public MccDaq.ErrorInfo FileRead(string fileName, int firstPoint, ref int numPoints, ushort[]
dataBuffer)

public MccDaq.ErrorInfo FileRead(string fileName, int firstPoint, ref int numPoints, double[,]
dataBuffer)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Returns a one-dimensional array of short values:

Public Shared Function FileRead(ByVal fileName As String, ByVal firstPoint As Integer, ByRef
numPoints As Integer, ByRef dataBuffer As Short) As MccDaq.ErrorInfo

Returns a one-dimensional array of System.UInt16 values:

Public Shared Function FileRead(ByVal fileName As String, ByVal firstPoint As Integer, ByRef
numPoints As Integer, ByRef dataBuffer As System.UInt16) As MccDaq.ErrorInfo

Returns a two-dimensional array of double values:

Public Shared Function FileRead(ByVal fileName As String, ByVal firstPoint As Integer, ByRef
numPoints As Integer, ByRef dataBuffer As Double(,), ByVal numChannels As Integer) As
MccDaq.ErrorInfo

C# .NET

Returns a one-dimensional array of short values:

public static MccDaq.ErrorInfo FileRead(string fileName, int firstPoint, ref int numPoints, out short
dataBuffer)

Returns a one-dimensional array of System.UInt16 values:

public static MccDaq.ErrorInfo FileRead(string fileName, int firstPoint, ref int numPoints, out
ushort dataBuffer)

Returns a two-dimensional array of double values:

public static MccDaq.ErrorInfo FileRead(string fileName, int firstPoint, ref int numPoints, out
double dataBuffer[,], int numChannels)

Parameters
fileName

The name of the streamer file to read.

firstPoint

The index of the first point to read.

Page 607 of 700

javascript:hhctrl.TextPopup(FileRead,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(FileRead,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(FileRead,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(FileRead,termfont,10,10,000,000)

numPoints

The number of points to read in the file.

dataBuffer

A reference to the array in the data buffer that the data is read into.

numChannels

The number of channels to read into dataBuffer.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataBuffer – the data read from a file.

n numPoints – number of points actually read. numPoints may be less than the requested number of points if an error occurs.

Notes

n Data format:

The data is returned as 16-bits. The 16-bits may represent 12 bits of analog, 12-bits of analog plus 4 bits of channel, or 16-bits of
analog data.

n Loading portions of files:

The file may contain more data than can fit in dataBuffer. Use numPoints and firstPoint to read a selected piece of the file into
dataBuffer. Call FileGetInfo() first to find out how many points are in the file.

Page 608 of 700

DaqInScan() method
Scans analog, digital, counter, and temperature input channels synchronously, and stores the samples in an array. This method
only works with boards that support synchronous input.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DaqInScan(ByVal chanArray As Short(), ByVal chanTypeArray As MccDaq.ChannelType,ByVal
gainArray as MccDaq.Range, ByVal chanCount As Integer, ByRef rate As Integer, ByRef pretrigCount As
Integer, ByRef totalCount As Integer, ByVal memHandle As IntPtr, ByVal options MccDaq.ScanOptions) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DaqInScan(short[] chanArray, MccDaq.ChannelType[] chanTypeArray, MccDaq.Range[]
gainArray, int chanCount, ref int rate, ref int pretrigCount, ref int totalCount, IntPtr memHandle,
MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function DaqInScan(ByVal chanArray As Short(), ByVal chanTypeArray As MccDaq.ChannelType,ByVal
gainArray as MccDaq.Range, ByVal chanCount As Integer, ByRef rate As Integer, ByRef pretrigCount As
Integer, ByRef totalCount As Integer, ByVal memHandle As Integer, ByVal options MccDaq.ScanOptions) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DaqInScan(short[] chanArray, MccDaq.ChannelType[] chanTypeArray, MccDaq.Range[]
gainArray, int chanCount, ref int rate, ref int pretrigCount, ref int totalCount, int memHandle,
MccDaq.ScanOptions options)

Parameters
chanArray

Array containing channel values. Valid channel values are analog input channels, digital ports, counter input channels, and
temperature input channels on the device.

chanTypeArray

Array containing channel types. Each element of this array defines the type of the corresponding element in the chanArray.

All of the chanTypeArray settings are MccDaq.ChannelType enumerated constants. Set it to one of the constants in the
chanTypeArray parameter values section below.

gainArray

Array containing A/D range codes. If the corresponding element in the chanArray is not an analog input channel, the range
code for this channel is ignored.

All of the gainArray settings are MccDaq.Range enumerated constants. Set to any range that is supported by the selected
A/D board. Refer to the board-specific information in the Universal Library User's Guide for a list of the supported A/D ranges
of each device.

chanCount

Number of elements in each of the three arrays - chanArray, chanTypeArray, and gainArray.

rate

The sample rate at which samples are acquired, in samples per second per channel. rate also returns the value of the actual
rate set, which may be different from the requested rate because of pacer limitations.

pretrigCount

Sets the number of pre-trigger samples to collect. Specifies the number of samples to collect before the trigger occurs. This
method won't run in pre-trigger mode if preTrigCount is set to zero. preTrigCount is ignored if the ExtTrigger option is not
specified.

pretrigCount also returns the value of the actual pre-trigger count set, which may be different from the set pre-trigger count
because pre-trigger count must be a multiple of the channel count (chanCount).

pretrigCount must be evenly divisible by the number of channels being scanned (chanCount). If it is not, this method adjusts
the number (down) to the next valid value, and returns that value to the pretrigCount parameter.

Page 609 of 700

javascript:hhctrl.TextPopup(DaqInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

totalCount

Total number of samples to collect. Specifies the total number of samples to collect and store in the buffer. totalCount must
be greater than pretrigCount.

totalCount also returns the value of the actual total count set, which may be different from the requested total count, because
total count must be a multiple of the channel count (chanCount).

totalCount must be evenly divisible by the number of channels being scanned (chanCount). If it is not, this method adjusts
the number (down) to the next valid value, and returns that value to the totalCount parameter.

memHandle

Handle for the Windows buffer to store data. This buffer must have been previously allocated with the WinBufAllocEx(),
WinBufAlloc32Ex(), or WinBufAlloc64Ex() method.

options

Bit fields that control various options. All of the options settings are MccDaq.ScanOptions enumerated constants. This field
may contain any combination of non-contradictory choices in the options parameter values section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n rate – Actual sampling rate used.

n preTrigCount – Actual pre-trigger count used.

n totalCount – Actual total count used.

n memHandle - Collected data returned via the Windows buffer.

chanTypeArray parameter values

chanTypeArray flag values

options parameter values

Analog Analog input channel.

Digital8 8-bit digital input port.

Digital16 16-bit digital input port. (FirstPortA only)

Ctr16 16-bit counter.

Ctr32Low Lower 16-bits of a 32-bit counter.

Ctr32High Upper 16-bits of a 32-bit counter.

CJC CJC channel.

TC Thermocouple channel.

The GetTCValues() method can be used to convert raw thermocouple data to data on a
temperature scale (MccDaq.TempScale.Celsius, MccDaq.TempScale.Fahrenheit or
MccDaq.TempScale.Kelvin).

Note: If at least one TC channel is listed in the channel array, and averaging is enabled for
that channel, the averaging will be applied to all of the channels listed in the channel array.

SetpointStatus The setpoint status register. This is a bit field indicating the state of each of the setpoints. A
"1" indicates that the setpoint criteria has been met.

SetpointEnable Enables a setpoint. When this option is specified, it must be OR'ed with the ChanTypeArray
parameter values.

You set the setpoint criteria with the DaqSetSetpoints() method. The number of channels set
with the SetpointEnable flag must match the number of setpoints set by the
DaqSetSetpoints() method's setpointCount parameter.

Background When the Background option is used, control returns immediately to the next line in your
program, and the data collection from the counters into the buffer continues in the
background. If the Background option is not used, the DaqInScan() method does not return
to your program until all of the requested data has been collected and returned to the
buffer.

Use GetStatus() with DaqiFunction to check on the status of the background operation. Use
StopBackground() with DaqiFunction to terminate the background process before it has
completed. Execute StopBackground() after normal termination of all background functions
in order to clear variables and flags.

Continuous This option puts the function in an endless loop. Once it collects the required number of
samples, it resets to the start of the buffer and begins again. The only way to stop this
operation is to use StopBackground() with DaqiFunction. Normally, this option should be
used in combination with Background so that your program will regain control.

Page 610 of 700

javascript:void(0)
javascript:void(0)
javascript:void(0)
../../Enumerations/MccDaq.FunctionType.htm

ExtClock If this option is used, conversions will be controlled by the signal on the external clock input
rather than by the internal pacer clock. Each conversion will be triggered on the appropriate
edge of the clock input signal. When this option is used the rate argument is ignored. The
sampling rate is dependent on the clock signal. Options for the board will default to a
transfer mode that will allow the maximum conversion rate to be attained unless otherwise
specified.

ExtTrigger If this option is specified, the sampling will not begin until the trigger condition is met (refer
to the DaqSetTrigger() method).

HighResRate Acquires data at a high resolution rate. When specified, the rate at which samples are
acquired is in "samples per 1000 seconds per channel". When this option is not specified,
the rate at which samples are acquired is in "samples per second per channel" (refer to the
rate parameter above).

Page 611 of 700

DaqOutScan() method
Outputs values synchronously to analog output channels and digital output ports. This function only works with boards that support
synchronous output.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DaqOutScan(ByVal chanArray As Short(), ByVal chanTypeArray As MccDaq.ChannelType
(),ByVal gainArray As MccDaq.Range, ByVal chanCount As Integer, ByRef rate As Integer, ByVal count As
Integer, ByVal memHandle As IntPtr, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DaqOutScan (short[] chanArray, MccDaq.ChannelType[] chanTypeArray, MccDaq.Range
[] gainArray, int chanCount, ref int rate, int count, IntPtr memHandle, MccDaq.ScanOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function DaqOutScan(ByVal chanArray As Short(), ByVal chanTypeArray As MccDaq.ChannelType
(),ByVal gainArray As MccDaq.Range, ByVal chanCount As Integer, ByRef rate As Integer, ByVal count As
Integer, ByVal memHandle As Integer, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DaqOutScan(short[] chanArray, MccDaq.ChannelType[] chanTypeArray, MccDaq.Range
[] gainArray, int chanCount, ref int rate, int count, int memHandle, MccDaq.ScanOptions options)

Parameters
chanArray

Array containing channel values. Valid channel values are analog output channels and digital ports.

chanTypeArray

Array containing channel types. Each element of this array defines the type of the corresponding element in the chanArray.

The chanTypeArray settings are MccDaq.ChannelType enumerated constants. Choices are:

n Analog: Analog output channel.

n Digital16: 16-bit digital output port (FirstPortA only).

gainArray

Array containing D/A range codes. If the corresponding element in the chanArray is not an analog output channel, the range
code for this channel is ignored. If the board does not have programmable gain, this parameter is ignored, and therefore can
be set to null.

chanCount

Number of elements in each of the three arrays - chanArray, chanTypeArray, and gainArray.

rate

Sample rate in scans per second. Rate also returns the value of the actual rate set, which may be different from the
requested rate because of pacer limitations.

count

Sets the total number of values to output. count must be a multiple of chanCount.

memHandle

Handle for the Windows buffer from which data is output. This buffer must have been previously allocated with the
WinBufAllocEx(), WinBufAlloc32Ex(), or WinBufAlloc64Ex() method, and data values loaded, for example using
WinArrayToBuf().

options

Bit fields that control various options. All of the options settings are MccDaq.ScanOptions enumerated constants. This field
may contain any combination of non-contradictory choices in the options parameter values section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 612 of 700

javascript:hhctrl.TextPopup(DaqOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqOutScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

n rate – Actual sampling rate used.

options parameter values

ADCClock When this option is used, the data output operation is paced by the ADC clock.

ADCClockTrig If this option is used, the data output operation is triggered upon the start of the ADC clock.

Background When this option is used, the output operations begin running in the background, and
control immediately returns to the next line of your program.

Use GetStatus() with DaqoFunction to check the status of background operation. Use
StopBackground() method with DaqoFunction to terminate background operations before
they are completed. Execute StopBackground() with DaqoFunction after normal termination
of all background functions in order to clear variables and flags.

Continuous This option puts the method in an endless loop. Once it outputs the specified number (count)
of output values, it resets to the start of the buffer and begins again. The only way to stop
this operation is by calling StopBackground() with DaqoFunction. This option should only be
used in combination with Background so that your program regains control.

ExtClock If this option is used, conversions are paced by the signal on the external clock input rather
than by the internal pacer clock. Each conversion is triggered on the appropriate edge of
the clock input signal.

When this option is used, the rate parameter is ignored. The sampling rate is dependent on
the clock signal. Options for the board default to transfer types that allow the maximum
conversion rate to be attained unless otherwise specified.

NonStreamedIO This option allows non-streamed data output to be generated to a specified output channel.

In this mode, the aggregate size of data output buffer must be less than or equal to the size
of the internal data output FIFO on the Measurement Computing device. This allows the data
output buffer to be loaded into the device's internal output FIFO.

Once the sample updates are transferred (or downloaded) to the device, the device is
responsible for outputting the data. While the size is limited, and the output buffer cannot be
changed once the output is started, this mode has the advantage being able to continue
data output without having to periodically feed output data through the program to the
device.

Page 613 of 700

javascript:void(0)
../../Enumerations/MccDaq.FunctionType.htm

DaqSetSetpoints() method
Configures up to 16 detection setpoints associated with the input channels within a scan group. This method only works with boards
that support synchronous input.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DaqSetSetpoints(ByVal limitAArray As Single(), ByVal limitBArray As Single(), ByVal
reserved As Single(), ByVal setpointFlagsArray As MccDaq.SetpointFlag, ByVal setpointOutputArray As
MccDaq.SetpointOutput, ByVal output1Array As Single(), ByVal output2Array As Single(), outputMask1Array
As Single(), outputMask2Array As Single(), ByVal setpointCount As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DaqSetSetpoints(float[] limitAArray, float[] limitBArray, float[] reserved,
MccDaq.SetpointFlag[] setpointFlagsArray, MccDaq.SetpointOutput[] setpointOutputArray, float[]
output1Array, float[] output2Array, float[] outputMask1Array, float[] outputMask2Array, int
setpointCount)

Parameters
limitAArray

Array containing the limit A values for the input channels used for the setpoint. Limit A specifies a value used to determine if
the setpoint criteria are met.

limitBArray

Array containing the limit B values for the input channels used for the setpoint. Limit B specifies a value used to determine if
the setpoint criteria are met.

reserved

Reserved for future use.

setpointFlagsArray

Array containing the setpoint flags.

All of the setpointFlagsArray settings are MccDaq.SetpointFlag enumerated constants. Set it to one of the constants in the
setpointFlagsArray parameter values section below.

setpointOutputArray

Array containing output sources.

All of the setpointOutputArray settings are MccDaq.SetPointOutput enumerated constants. Set it to one of the constants in the
setpointOutputArray parameter values section below.

output1Array

Array containing the values for the output channels used for the setpoint.

output2Array

Array containing the values for the output channels used for the setpoint.

outputMask1Array

Array containing the output masks for output value 1 (for FIRSTPORTC only).

outputMask2Array

Array containing the output masks for output value 2 (for FIRSTPORTC only).

setpointCount

Number of setpoints to configure (0 to 16). Set to 0 to disable the setpoints.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 614 of 700

javascript:hhctrl.TextPopup(DaqSetSetpoints,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqSetSetpoints,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

setpointFlagsArray parameter values

setpointOutputArray parameter values

Flag Description

EqualLimitA Setpoint criteria: The input channel = limit A.

LessThanLimitA Setpoint criteria: The input channel < limit A.

GreaterThanLimitB Setpoint criteria: The input channel > limit B.

OutsideLimits Setpoint criteria: The input channel < limit A and > limit B.

InsideLimits Setpoint criteria: The input channel > limit A and < limit B.

Hysteresis Setpoint criteria: If the input channel > limit A then output value 1. If the input
channel < limit B then output value 2.

UpdateOnTrueOnly If the criteria is met then output value 1.

UpdateOnTrueAndFalse If the criteria is met then output value 1, else output value 2.

Output source Description

None Perform no outputs.

FirstPortC Output to FirstPortC when the criteria is met.

DigitalPort Output to digital port when the criteria is met.

DAC0 Output to DAC0 when the criteria is met. You must have a device with DAC0.

DAC1 Output to DAC1 when the criteria is met. You must have a device with DAC1.

DAC2 Output to DAC2 when the criteria is met. You must have a device with DAC2.

DAC3 Output to DAC3 when the criteria is met. You must have a device with DAC3.

TMR0 Output to timer 0 when the criteria is met.

TMR1 Output to timer 1 when the criteria is met.

Page 615 of 700

javascript:void(0)
javascript:void(0)

DaqSetTrigger() method
Selects the trigger source and sets up its parameters. This trigger is used to initiate or terminate an acquisition using the
DaqInScan() function if the ExtTrigger option is selected. This method only works with boards that support synchronous output.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DaqSetTrigger(ByVal trigSource As MccDaq.TriggerSource, ByVal trigSense
MccDaq.TriggerSensitivity, ByVal trigChan As Integer, ByVal chanType As MccDaq.ChannelType, ByVal gain
As MccDaq.Range, ByVal level As Single, ByVal variance As Single, ByVal trigEvent As
MccDaq.TriggerEvent) As MccDaq.ErrorInfo

C#.NET

public MccDaq.ErrorInfo DaqSetTrigger(MccDaq.TriggerSource trigSource, MccDaq.TriggerSensitivity
trigSense, int trigChan, MccDaq.ChannelType chanType, MccDaq.Range gain, float level, float variance,
MccDaq.TriggerEvent trigEvent)

Parameters
trigSource

Specifies the type of triggering based on the external trigger source.

All of the trigSource settings are MccDaq.TriggerSource enumerated constants. Set it to one of the constants in the trigSource
parameter values section below.

trigSense

Specifies the trigger sensitivity. The trigger sensitivity normally defines the way in which a trigger event is detected based
upon the characteristics of the trigger input signal. Often, it defines the way in which the trigger input signal(s) should be
compared to the trigger level parameter value.

All of the trigSense settings are MccDaq.TriggerSensitivity enumerated constants. Set it to one of the constants in the
trigSense parameter values section below.

trigChan

The trigger channel. This channel must be a configured channel in the channel array (refer to DaqInScan()).

chanType

The channel type. All of the chanType settings are MccDaq.ChannelType enumerated constants. chanType should match the
channel type setting for the trigger channel configured using the DaqInScan() method.

gain

The trigger channel gain code. If the device has programmable gain, this parameter should match the gain code setting when
the channel is configured using the DaqInScan() method. The gain parameter is ignored if trigChan is not an analog channel.

level

A single precision floating point value which represents, in engineering units, the level at or around which the trigger event
should be detected.

This option is used for trigger types that depend on an input channel comparison to detect the start trigger or stop trigger
event.

The actual level at which the trigger event is detected depends upon trigger sensing and variability. Refer to the Trigger
levels section below for more information.

variance

A single-precision floating point value which represents, in engineering units, the amount that the trigger event can vary from
the level parameter.

While the TrigSense parameter indicates the direction of the input signal relative to the level parameter, the variance
parameter specifies the degree to which the input signal can vary relative to the level parameter.

trigEvent

Specifies the trigger event type. Valid values indicate either a start trigger event (MccDaq.TriggerEvent.Start) or a stop
trigger event (MccDaq.TriggerEvent.Stop).

Start: The start trigger event defines the conditions under which post-trigger acquisition data collection should be initiated or
triggered. The start trigger event can vary in complexity from starting immediately, to starting on complex channel value
definitions.

Stop: The stop trigger event signals the current data acquisition process to terminate. The stop event can be as simple as
that of a scan count, or as complex as involving a channel value level condition.

Page 616 of 700

javascript:hhctrl.TextPopup(DaqSetTrigger,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(DaqSetTrigger,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Returns

n An ErrorInfo object that indicates the status of the operation.

trigSource parameter values

trigSense parameter values

Trigger levels

The actual level at which the trigger event is detected depends upon trigger sensing and variability. The various ranges of possible
values for the level parameter based on the trigger source are:

n TrigAnalogHW: The voltage used to define the trigger level. Trigger detection is performed in hardware.

n TrigAnalogSW: The voltage used to define the trigger level. Trigger detection is performed in software.

n TrigDigPattern: Sets the bit pattern for the digital channel trigger. Choices are:

0.0 (no bits set): 255.0 (all bits set) for 8-bit digital ports.

0.0 (no bits set): 65,535.0 (all bits set) for 16-bit digital ports.

n TrigCounter: Selects either Pulse or Totalize counter values (0.0 – 65,535).

n TrigImmediate: Ignored

n TrigScanCount: Ignored

TrigImmediate Start trigger event only. Acquisition begins immediately upon invocation the
DaqInScan() method. No pre-trigger data acquisition is possible with this trigger type.

TrigExtTTL Start trigger event only. Acquisition begins on the selectable edge of an external TTL
signal. No pre-trigger data acquisition is possible with this trigger type.

TrigAnalogHW Start trigger event only. Acquisition begins upon a selectable criteria of the input
signal (above level, below level, rising edge, etc.) trigChan must be defined as the
first channel in the channel scan group. No pre-trigger data acquisition is possible with
this trigger type.

TrigAnalogSW Post-trigger data acquisition begins upon a selectable criteria of the input signal
(above level, below level, rising edge, etc.)

TrigDigPattern Post-trigger data acquisition beings upon receiving a specified digital pattern on the
specified digital port.

TrigCounter Post-trigger data acquisition begins upon detection of specified counter criteria.

TrigScanCount Stop trigger event only. Stops collecting post-trigger data when the specified number
of post-trigger scans are completed.

RisingEdge Triggers when the signal goes from low to high (TTL trigger), or rises through a
specified level (hardware analog, software analog, and counter).

FallingEdge Triggers when the signal goes from high to low (TTL trigger), or falls through a
specified level (hardware analog, software analog, and counter).

AboveLevel Triggers when the signal is above a specified level (hardware analog, software
analog, counter, and digital pattern).

BelowLevel Triggers when the signal is below a specified level (hardware analog, software analog,
counter, and digital pattern).

EqLevel Triggers when the signal equals a specified level (hardware analog, software analog,
counter, and digital pattern).

NeLevel Triggers when the signal does not equal a specified level (hardware analog, software
analog, counter, and digital pattern).

Page 617 of 700

javascript:void(0)
javascript:void(0)

Trigger start and stop criteria

The table below lists the trigger start and stop criteria based on the selected trigger type and sensitivity.

Trigger Start/Stop
Source (trigSource)

Trigger Sensitivity
(trigSense)

Trigger Start/Stop Criteria

TrigAnalogHW

(Start trigger event only)
RisingEdge Triggers when the signal value < (level – variance). Then, the

signal value > level.

FallingEdge Triggers when the signal value > (level + variance). Then, the
signal value < level.

AboveLevel Triggers when the signal value > (level).

BelowLevel Triggers when the signal value < (level).

TrigAnalogSW RisingEdge Triggers/stops when the signal value < (level – variance).
Then, the signal value > level.

FallingEdge Triggers/stops when the signal value > (level + variance).
Then, the signal value < level.

AboveLevel Triggers/stops when the signal value > (level).

BelowLevel Triggers/stops when the signal value < (level).

EqLevel Triggers/stops when (level – variance) < signal value < (level
+ variance).

NeLevel Triggers/stops when the signal value < (level – variance) OR
when the signal value > (level + variance).

TrigDigPattern AboveLevel Triggers/stops when the (digital port value AND (bitwise)
variance) > (level AND (bitwise) variance).

BelowLevel Triggers/stops when the (digital port value AND (bitwise)
variance) < (level AND (bitwise) variance).

EqLevel Triggers/stops when the (digital port value AND (bitwise)
variance) = (level AND (bitwise) variance).

NeLevel Triggers/stops when the (digital port value AND (bitwise)
variance) != (level AND (bitwise) variance).

TrigCounter RisingEdge Triggers/stops when the counter channel < (level – variance).
Then, the counter channel > level.

FallingEdge Triggers/stops when counter channel > (level + variance).
Then, the counter channel < level.

AboveLevel Triggers/stops when the counter channel > (level – variance).

BelowLevel Triggers/stops when the counter channel < (level + variance).

EqLevel Triggers/stops when (level – variance) < counter channel <
(level + variance).

NeLevel Triggers/stops when the counter channel < (level – variance)
OR when the counter channel > (level + variance).

Page 618 of 700

TIn() method
Reads an analog input channel, linearizes it according to the selected temperature sensor type, if required, and returns the
temperature in units determined by the Scale argument.

The CJC channel, the gain, and sensor type are read from the InstaCal configuration file. Run the InstaCal configuration program
to set these items.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function TIn(ByVal chan As Integer, ByVal scale As MccDaq.TempScale ByRef tempValue As Single,
ByVal options As MccDaq.ThermocoupleOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo TIn(int chan, MccDaq.TempScale scale, out float tempValue,
MccDaq.ThermocoupleOptions options)

Parameters
chan

Input channel to read.

scale

Specifies the temperature scale that the input is converted to. Choices are MccDaq.TempScale.Celsius,
MccDaq.TempScale.Fahrenheit, MccDaq.TempScale.Kelvin, MccDaq.TempScale.Volts, and MccDaq.TempScale.NoScale.

tempValue

The temperature in units determined by the Scale argument is returned here.

options

Bit fields that control various options. Set it to one of the constants in the "options parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n tempValue - The temperature is returned here.

options parameter values

All of the options settings are MccDaq.ThermocoupleOptions enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the ThermocoupleOptions enumeration (for example, variable=
MccDaq.ThermocoupleOptions.Filter or variable = MccDaq.ThermocoupleOptions.NoFilter).

Refer to the board-specific information in the Universal Library User's Guide to determine if your hardware supports these options.

Notes
scale options

n Specify the NoScale option to retrieve raw data from the device. When NoScale is specified, calibrated data is returned,
although a cold junction compensation (CJC) correction factor is not applied to the returned values.

n Specify the Volts option to read the voltage input of a thermocouple.

Refer to board-specific information in the Universal Library User's Guide to determine if your hardware supports these options.

Filter When selected, a smoothing function is applied to temperature readings, very much like the
electrical smoothing inherent in all hand held temperature sensor instruments. This is the
default. Ten samples are read from the specified channel and averaged. The average is the
reading returned. Averaging removes normally distributed signal line noise.

NoFilter When selected, the temperature readings are not smoothed, resulting in a scattering of
readings around a mean.

Page 619 of 700

javascript:hhctrl.TextPopup(TIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(TIn,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Using CIO-EXP boards

For CIO-EXP boards, the channel number is calculated using the following formula:

chan = (ADChan × 16) + (16 + MuxChan)

where:

ADChan is the A/D channel that is connected to the multiplexer.

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the multiplexer board.

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember that DAS08 channels are
numbered 0, 1, 2, 3, 4, 5, 6 and 7). If you connect a thermocouple to channel 5 of the EXP16, the value for Chan would be (0 × 16)
+ (16 + 5)= 0 + 21 = 21.

CJC channel

The CJC channel is set in the InstaCal installation and configuration program. If you have multiple EXP boards, the Universal
Library will apply the CJC reading to the linearization formula in the following manner:

n If you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will use the CJC temp reading
from that channel.

n If you left the CJC channel for the EXP board that the channel you are reading is on to NOT SET, the library will use the CJC
reading from the next lower EXP board with a CJC channel selected.

For example: You have four CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You choose CIO-EXP16 #1
(connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7, AND, you leave the CIO-EXP16's 2, 3 and 4
CJC channels to NOT SET. Result: The CIO-EXP boards will all use the CJC reading from CIO-EXP16 #1, connected to channel 7 for
linearization. It is important to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

Specific Errors

If an OUTOFRANGE or OPENCONNECTION error occurs, the value returned in TempValue is -9999.0. If a NOTREADY error occurs,
the value returned in TempValue is -9000.

Important!
If the EXP board is connected to an A/D that does not have programmable gain (DAS08, DAS16, DAS16F) then the A/D board
range is read from the configuration file (CB.CFG). In most cases, hardware selectable ranges should be set to ±5 V for
thermocouples, and 0–10 V for RTDs. Refer to the board-specific information in the Universal Library User's Guide or in the user
manual for your board. If the board has programmable gains, the TIn() method will set the appropriate A/D range.

Page 620 of 700

TInScan() method
Reads a range of channels from an analog input board, linearizes them according to temperature sensor type, if required, and
returns the temperatures to an array in units determined by the Scale argument.

The CJC channel, the gain, and temperature sensor type are read from the configuration file. Use the InstaCal configuration
program to change any of these options.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function TInScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal scale As
MccDaq.TempScale, ByVal dataBuffer As Single(), ByVal options As MccDaq.ThermocoupleOptions) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo TInScan(int lowChan, int highChan, TempScale scale, float[] dataBuffer,
MccDaq.ThermocoupleOptions options)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function TInScan(ByVal lowChan As Integer, ByVal highChan As Integer, ByVal scale As
MccDaq.TempScale, ByRef dataBuffer As Single, ByVal options As MccDaq.ThermocoupleOptions) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo TInScan(int lowChan, int highChan, MccDaq.TempScale scale, out float
dataBuffer, MccDaq.ThermocoupleOptions options)

Parameters
lowChan

Low channel of the scan.

highChan

High channel of the scan.

scale

Specifies the temperature scale that the input is converted to. Choices are MccDaq.TempScale.Celsius,
MccDaq.TempScale.Fahrenheit, MccDaq.TempScale.Kelvin, MccDaq.TempScale.Volts, and MccDaq.TempScale.NoScale.

dataBuffer

The temperature is returned in units determined by the Scale argument. Each element in the array corresponds to a channel
in the scan. dataBuffer must be at least large enough to hold highChan - lowChan + 1 temperature values.

options

Bit fields that control various options. Set it to one of the constants in the "options parameter values" section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataBuffer[] - Temperature values in degrees are returned here for each channel in the scan.

options parameter values

All of the options settings are MccDaq.ThermocoupleOptions enumerated constants. To set a variable to one of these constants, you
must refer to the MccDaq object and the ThermocoupleOptions enumeration (for example, variable =
MccDaq.ThermocoupleOptions.Filter or variable = MccDaq.ThermocoupleOptions.NoFilter).

Refer to the board-specific information in the Universal Library User's Guide to determine if your hardware supports these options.

Filter When selected, a smoothing function is applied to temperature readings, very much like the
electrical smoothing inherent in all hand held temperature sensor instruments. This is the
default. Ten samples are read from the specified channel and averaged. The average is the
reading returned. Averaging removes normally distributed signal line noise.

NoFilter When selected, the temperature readings are not smoothed, resulting in a scattering of
readings around a mean.

Page 621 of 700

javascript:hhctrl.TextPopup(TInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(TInScan,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Notes
scale options

n Specify the NoScale option to retrieve raw data from the device. When NoScale is specified, calibrated data is returned,
although a cold junction compensation (CJC) correction factor is not applied to the returned values.

n Specify the Volts option to read the voltage input of a thermocouple.

Refer to board-specific information in the Universal Library User's Guide to determine if your hardware supports these options.

Using CIO-EXP boards

For CIO-EXP boards, the channel number is calculated using the following formula:

Chan = (ADChan × 16) + (16 + MuxChan)

where:

ADChan is the A/D channel that is connected to the multiplexer.

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the multiplexer board.

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember that DAS08 channels are
numbered 0, 1, 2, 3, 4, 5, 6 and 7). If you connect a thermocouple to channel 5 of the EXP16, the value for Chan would be (0 × 16)
+ (16 + 5)= 0 + 21 = 21.

CJC channel

The CJC channel is set in the InstaCal installation and configuration program. If you have multiple EXP boards, the Universal
Library will apply the CJC reading to the linearization formula in the following manner:

n If you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will use the CJC temp reading
from that channel.

n If you left the CJC channel for the EXP board that the channel you are reading is on to NOT SET, the library will use the CJC
reading from the next lower EXP board with a CJC channel selected.

For example: You have four CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You choose CIO-EXP16 #1
(connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7, AND, you leave the CIO-EXP16's 2, 3 and 4
CJC channels to NOT SET. Result: The CIO-EXP boards will all use the CJC reading from CIO-EXP16 #1, connected to channel 7 for
linearization. It is important to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

Specific Errors

For most boards, if an OUTOFRANGE or OPENCONNECTION error occurs, the value in the array element associated with the channel
causing the error returned will be –9999.0.

Important!
If the EXP board is connected to an A/D that does not have programmable gain (DAS08, DAS16, DAS16F) then the A/D board
range is read from the configuration file (CB.CFG). In most cases, hardware selectable ranges should be set to ±5 V for
thermocouples, and 0–10 V for RTDs. Refer to the board-specific information in the Universal Library User's Guide or in the user
manual for your board. If the board has programmable gains, the TIn() method will set the appropriate A/D range.

Page 622 of 700

WinArrayToBuf() method
Copies data from a one-dimensional or two-dimensional array into a Windows memory buffer.

Member of the MccService class.

Function Prototype
VB .NET

Copies data from a one-dimensional array of short values:

Public Shared Function WinArrayToBuf(ByVal dataArray As Short(), ByVal memHandle As IntPtr, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data from a one-dimensional array of System.UInt16 values:

Public Shared Function WinArrayToBuf(ByVal dataArray As System.UInt16(), ByVal memHandle As IntPtr,
ByVal firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data from a two-dimensional array of double values:

Public Shared WinArrayToBuf(ByVal dataArray As Double(,), ByVal memHandle As IntPtr, ByVal firstPoint
As Integer, ByVal numPoints As Integer, ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

Copies data from a one-dimensional array of short values:

public MccDaq.ErrorInfo WinArrayToBuf(short[] dataArray, IntPtr memHandle, int firstPoint, int
numPoints)

Copies data from a one-dimensional array of System.UInt16 values:

public MccDaq.ErrorInfo WinArrayToBuf(ushort[] dataArray, IntPtr memHandle, int firstPoint, int
numPoints)

Copies data from a two-dimensional array of double values:

public MccDaq.ErrorInfo WinArrayToBuf(double[,] dataArray, IntPtr memHandle, int firstPoint, int
numPoints, int numChannels)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Copies data from a one-dimensional array of short values:

Public Shared Function WinArrayToBuf(ByRef dataArray As Short, ByVal memHandle As Integer, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data from a one-dimensional array of System.UInt16 values:

Public Shared Function WinArrayToBuf(ByRef dataArray As System.UInt16, ByVal memHandle As Integer,
ByVal firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data from a two-dimensional array of double values:

Public Shared WinArrayToBuf(ByRef dataArray As Double(,), ByVal memHandle As Integer, ByVal
firstPoint As Integer, ByVal numPoints As Integer, ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

Copies data from a one-dimensional array of short values:

public static MccDaq.ErrorInfo WinArrayToBuf(ref short dataArray, int memHandle, int firstPoint, int
numPoints)

Copies data from a one-dimensional array of System.UInt16 values:

public static MccDaq.ErrorInfo WinArrayToBuf(ref ushort dataArray, int memHandle, int firstPoint, int
numPoints)

Copies data from a two-dimensional array of double values:

public static MccDaq.ErrorInfo WinArrayToBuf(ref double[,] dataArray, int memHandle, int firstPoint,
int numPoints, int numChannels)

Parameters
dataArray

The array containing the data to be copied. The first dimension should equal the number of channels. The second dimension

Page 623 of 700

javascript:hhctrl.TextPopup(WinArrayToBuf,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinArrayToBuf,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinArrayToBuf,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinArrayToBuf,termfont,10,10,000,000)

should equal the number of points/channel.

memHandle

This must be a memory handle that was returned by WinBufAllocEx() when the buffer was allocated. The data will be copied
into this buffer.

firstPoint

Index of the first point in the memory buffer where data will be copied to.

numPoints

Number of data points to copy from dataArray.

numChannels

Number of channels to copy from dataArray.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This method copies data from an array to a Windows global memory buffer. This would typically be used to initialize the
buffer with data before doing an output scan. You can use the firstPoint and numPoints parameters to fill a portion of the
buffer. This is useful if you want to send new data to the buffer after a Background + Continuous output scan has been
started, for example during circular buffering.

Page 624 of 700

WinBufAlloc() method (deprecated)
Allocates a Windows global memory buffer which can be used with the scan methods, and returns a memory handle for it.

Deprecated; unless your application calls deprecated methods, use WinBufAllocEx().

Most devices return data in a 16-bit format. For these devices, the buffer can be created using WinBufAlloc(). Some devices return
data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the data. In
these cases, determine if the buffer needs to be created using WinBufAlloc32() or WinBufAlloc64(). See hardware-specific
information to determine the type of buffer needed. If not specifically mentioned, use WinBufAlloc().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function WinBufAlloc(ByVal numPoints As Integer) As Integer

C# .NET

public static int WinBufAlloc(int numPoints)

Parameters
numPoints

The size of buffer to allocate. Specifies how many data points (16-bit integers, NOT bytes) can be stored in the buffer.

Returns

n 0, if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a Windows global
memory handle, which can then be passed to the scan methods in the library. If an error occurs, the handle will come back
as 0 to indicate that the buffer was not allocated.

Page 625 of 700

javascript:hhctrl.TextPopup(WinBufAlloc,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufAlloc,termfont,10,10,000,000)

WinBufAllocEx() method
Allocates a Windows global memory buffer which can be used with the scan methods, and returns a memory handle for it.

Most devices return data in a 16-bit format. For these devices, the buffer can be created using WinBufAlloc(). Some devices return
data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the data. In
these cases, determine if the buffer needs to be created using WinBufAlloc32Ex() or WinBufAlloc64Ex(). See hardware-specific
information to determine the type of buffer needed. If not specifically mentioned, use WinBufAllocEx().

Member of the MccService class.

Function Prototype
VB .NET

Public Function WinBufAllocEx(ByVal numPoints As Integer) As IntPtr

C# .NET

public IntPtr WinBufAllocEx(int numPoints)

Parameters
numPoints

The size of buffer to allocate. Specifies how many data points (16-bit integers, NOT bytes) can be stored in the buffer.

Returns

n 0, if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a Windows global
memory handle, which can then be passed to the scan methods in the library. If an error occurs, the handle will come back
as 0 to indicate that the buffer was not allocated.

n This method is preferred over the deprecated method WinBufAlloc(). Only use WinBufAlloc() in 32-bit legacy applications that
call deprecated methods.

Page 626 of 700

WinBufAlloc32() method (deprecated)
Allocates a 32-bit Windows global memory buffer for use with 32-bit scan functions, and returns a memory handle for the buffer.

Deprecated; unless your application calls deprecated methods, use WinBufAlloc32Ex().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function WinBufAlloc32(ByVal numPoints As Integer) As Integer

C# .NET

public int WinBufAlloc32(int numPoints)

Parameters
numPoints

The size of the buffer to allocate. Specifies how many data points (32-bit integers, NOT bytes) that the buffer will hold.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a Windows global
memory handle which can then be passed to the scan methods in the library. If an error occurs, the handle will come back as
0 to indicate that the buffer was not allocated.

n When using devices that return data in a 16-bit format, the buffer can be created using WinBufAlloc(). Some devices return
data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the
data. In these cases, determine if the buffer needs to be created using WinBufAlloc32() or WinBufAlloc64(). See hardware-
specific information to determine the type of buffer needed.

Page 627 of 700

javascript:hhctrl.TextPopup(WinBufAlloc32,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufAlloc32,termfont,10,10,000,000)

WinBufAlloc32Ex() method
Allocates a 32-bit Windows global memory buffer for use with 32-bit scan functions, and returns a memory handle for the buffer.

Member of the MccService class.

Function Prototype
VB .NET

Public Function WinBufAlloc32Ex(ByVal numPoints As Integer) As IntPtr

C# .NET

public IntPtr WinBufAlloc32Ex(int numPoints)

Parameters
numPoints

The size of the buffer to allocate. Specifies how many data points (32-bit integers, NOT bytes) that the buffer will hold.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a Windows global
memory handle which can then be passed to the scan methods in the library. If an error occurs, the handle will come back as
0 to indicate that the buffer was not allocated.

n When using devices that return data in a 16-bit format, the buffer can be created using WinBufAllocEx(). Some devices return
data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the
data. In these cases, determine if the buffer needs to be created using WinBufAlloc32Ex() or WinBufAlloc64Ex(). See
hardware-specific information to determine the type of buffer needed.

n This method is preferred over the deprecated method WinBufAlloc32(). Only use WinBufAlloc32() in 32-bit legacy applications
that call deprecated methods.

Page 628 of 700

WinBufAlloc64() method (deprecated)
Allocates a 64-bit Windows global memory buffer for use with 64-bit scan functions, and returns a memory handle for the buffer.

Deprecated; unless your application calls deprecated methods, use WinBufAlloc64Ex().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function WinBufAlloc64(ByVal numPoints As Integer) As Integer

C# .NET

public static int WinBufAlloc64(int numPoints)

Parameters
numPoints

The size of the buffer to allocate. Specifies how many data points (64-bit integers, NOT bytes) that the buffer will hold.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other methods in the library, this function does not return an ErrorInfo object. It returns a Windows global
memory handle which can then be passed to the scan functions in the library. If an error occurs, the handle will come back
as 0 to indicate that the buffer was not allocated.

n When using devices that return data in a 16-bit format, the buffer can be created using WinBufAlloc(). Some devices return
data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the
data. In these cases, determine if the buffer needs to be created using WinBufAlloc32() or WinBufAlloc64(). See hardware-
specific information to determine the type of buffer needed.

Page 629 of 700

javascript:hhctrl.TextPopup(WinBufAlloc64,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufAlloc64,termfont,10,10,000,000)

WinBufAlloc64Ex() method
Allocates a 64-bit Windows global memory buffer for use with 64-bit scan functions, and returns a memory handle for the buffer.

Member of the MccService class.

Function Prototype
VB .NET

Public Function WinBufAlloc64Ex(ByVal numPoints As Integer) As IntPtr

C# .NET

public IntPtr WinBufAlloc64Ex(int numPoints)

Parameters
numPoints

The size of the buffer to allocate. Specifies how many data points (64-bit integers, NOT bytes) that the buffer will hold.

Returns

n 0 if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n Unlike most other methods in the library, this function does not return an ErrorInfo object. It returns a Windows global
memory handle which can then be passed to the scan functions in the library. If an error occurs, the handle will come back
as 0 to indicate that the buffer was not allocated.

n When using devices that return data in a 16-bit format, the buffer can be created using WinBufAllocEx(). Some devices return
data in higher resolution formats, or the resolution of the data can vary depending on various options used to collect the
data. In these cases, determine if the buffer needs to be created using WinBufAlloc32Ex() or WinBufAlloc64Ex(). See
hardware-specific information to determine the type of buffer needed.

n This method is preferred over the deprecated method WinBufAlloc64(). Only use WinBufAlloc64() in 32-bit legacy applications
that call deprecated methods.

Page 630 of 700

WinBufFree() method (deprecated)
Frees a Windows global memory buffer which was previously allocated with WinBufAlloc(), WinBufAlloc32(), or WinBufAlloc64().

Deprecated; unless your application calls deprecated methods, use WinBufFreeEx().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function WinBufFree(ByVal memHandle As Integer) As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo WinBufFree(int memHandle)

Parameters
memHandle

A Windows memory handle. This must be a memory handle that was returned by WinBufAlloc(), WinBufAlloc32(), or
WinBufAlloc64() when the buffer was allocated.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 631 of 700

javascript:hhctrl.TextPopup(WinBufFree,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufFree,termfont,10,10,000,000)

WinBufFreeEx() method
Frees a Windows global memory buffer which was previously allocated with WinBufAllocEx(), WinBufAlloc32Ex(), or
WinBufAlloc64Ex().

Deprecated; unless your application calls deprecated methods, use WinBufFreeEx().

Member of the MccService class.

Function Prototype
VB .NET

Public Function WinBufFreeEx(ByVal memHandle As IntPtr) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo WinBufFreeEx(IntPtr memHandle)

Parameters
memHandle

A Windows memory handle. This must be a memory handle that was returned by WinBufAllocEx(), WinBufAlloc32Ex(), or
WinBufAlloc64Ex() when the buffer was allocated.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This method is preferred over the deprecated method WinBufFree(). Only use ScaledWinBufAlloc() in 32-bit legacy
applications that call deprecated methods.

Page 632 of 700

WinBufToArray() method
Copies data from a Windows memory buffer into a one-dimensional or two-dimensional array.

Member of the MccService class.

Function Prototype
VB .NET

Copies data to a one-dimensional array of short values:

Public Function WinBufToArray(ByVal memHandle As IntPtr, ByVal dataArray As Short(), ByVal firstPoint
As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data to a one-dimensional array of System.UInt16 values:

Public Function WinBufToArray(ByVal memHandle As IntPtr, ByVal dataArray As System.UInt16(), ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data to a two-dimensional array of double values:

public ErrorInfo WinBufToArray(ByVal memHandle As IntPtr, ByVal dataArray As Double(,), ByVal
firstPoint As Integer, ByVal numPoints As Integer, ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

Copies data to a one-dimensional array of short values:

public MccDaq.ErrorInfo WinBufToArray(IntPtr memHandle, short[] dataArray, int firstPoint, int
numPoints)

Copies data to a one-dimensional array of System.UInt16 values:

public MccDaq.ErrorInfo WinBufToArray(IntPtr memHandle, ushort[] dataArray, int firstPoint, int
numPoints)

Copies data to a two-dimensional array of double values:

public MccDaq.ErrorInfo WinBufToArray(IntPtr memHandle, double[,] dataArray, int firstPoint, int
numPoints, int numChannels)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Copies data to a one-dimensional array of short values:

Public Shared Function WinBufToArray(ByVal memHandle As Integer, ByRef dataArray As Short, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data to a one-dimensional array of System.UInt16 values:

Public Shared Function WinBufToArray(ByVal memHandle As Integer, ByRef dataArray As System.UInt16,
ByVal firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data to a two-dimensional array of double values:

public static ErrorInfo WinBufToArray(ByVal memHandle As Integer, ByRef dataArray As Double(,), ByVal
firstPoint As Integer, ByVal numPoints As Integer, ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

Copies data to a one-dimensional array of short values:

public static MccDaq.ErrorInfo WinBufToArray(int memHandle, out short dataArray, int firstPoint, int
numPoints)

Copies data to a one-dimensional array of System.UInt16 values:

public static MccDaq.ErrorInfo WinBufToArray(int memHandle, out ushort dataArray, int firstPoint, int
numPoints)

Copies data to a two-dimensional array of double values:

public static MccDaq.ErrorInfo WinBufToArray(int memHandle, out double[,] dataArray, int firstPoint,
int numPoints, int numChannels)

Parameters
memHandle

Page 633 of 700

javascript:hhctrl.TextPopup(WinBufToArray,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufToArray,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufToArray,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufToArray,termfont,10,10,000,000)

This must be a memory handle that was returned by WinBufAllocEx() when the buffer was allocated. The data will be copied
from this buffer

dataArray

The array that the data will be copied to. The first dimension should equal the number of channels. The second dimension
should equal the number of points/channel.

firstPoint

Index of the first point in the memory buffer that data will be copied from.

numPoints

Number of data points to copy into dataArray.

numChannels

Number of channels to copy into dataArray.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This method copies data from a Windows global memory buffer to a single value or into an array of doubles. This would
typically be used to retrieve data from the buffer after executing an input scan method.

n You can use the firstPoint and numPoints parameters to copy only a portion of the buffer to the array. This can be useful if
you want foreground code to manipulate previously collected data while a Background scan continues to collect new data.

Page 634 of 700

WinBufToArray32() method
Copies 32-bit data from a Windows global memory buffer into a one-dimensional or two-dimensional array. This method is typically
used to retrieve data from the buffer after executing an input scan method.

Member of the MccService class.

Function Prototype
VB .NET

Copies data into a two-dimensional array of double values:

Public Shared Function WinBufToArray32(ByVal memHandle As IntPtr, ByVal dataArray(,) As Double, ByVal
firstPoint As Integer, ByVal numPoints As Integer, ByVal numChannels As Integer) As MccDaq.ErrorInfo

Copies data into an array of integer values:

Public Shared Function WinBufToArray32(ByVal memHandle As IntPtr, ByVal dataArray As Integer(), ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data into an array of System.UInt32 values:

Public Shared Function WinBufToArray32(ByVal memHandle As IntPtr, ByVal dataArray As System.UInt32(),
ByVal firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

Copies data into a two-dimensional array of double values:

public static MccDaq.ErrorInfo WinBufToArray32(IntPtr memHandle, double[,] dataArray, int firstPoint,
int numPoints, int numChannels)

Copies data into an array of integer values:

public MccDaq.ErrorInfo WinBufToArray32(IntPtr memHandle, int[] dataArray, int firstPoint, int
numPoints)

Copies data into an array of System.UInt32 values:

public MccDaq.ErrorInfo WinBufToArray32(int memHandle, uint[] dataArray, int firstPoint, int
numPoints)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Copies data into a two-dimensional array of double values:

Public Shared Function WinBufToArray32(ByVal memHandle As Integer, ByRef dataArray(,) As Double,
ByVal firstPoint As Integer, ByVal numPoints As Integer, ByVal numChannels As Integer) As
MccDaq.ErrorInfo

Copies data into an array of integer values:

Public Shared Function WinBufToArray32(ByVal memHandle As Integer, ByRef dataArray As Integer, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

Copies data into an array of System.UInt32 values:

Public Shared Function WinBufToArray32(ByVal memHandle As Integer, ByRef dataArray As System.UInt32,
ByVal firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

Copies data into a two-dimensional array of double values:

public MccDaq.ErrorInfo WinBufToArray32(int memHandle, out double[,] dataArray, int firstPoint, int
numPoints, int numChannels)

Copies data into an array of integer values:

public MccDaq.ErrorInfo WinBufToArray32(int memHandle, out int dataArray, int firstPoint, int
numPoints)

Copies data into an array of System.UInt32 values:

public MccDaq.ErrorInfo WinBufToArray32(int memHandle, out uint dataArray, int firstPoint, int
numPoints)

Page 635 of 700

javascript:hhctrl.TextPopup(WinBufToArray32,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufToArray32,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufToArray32,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(WinBufToArray32,termfont,10,10,000,000)

Parameters
memHandle

The memory handle that was returned by WinBufAlloc32() when the buffer was allocated. The buffer should contain the data
that you want to copy.

dataArray

The array where the data is copied.

firstPoint

The index of the first point in the memory buffer that data is copied from.

numPoints

The number of data points to copy.

numChannels

The number of channels to copy into dataArray.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n You can copy only a portion of the buffer to the array using the firstPoint and numPoints argument. This is useful if you want
foreground code to manipulate previously collected data while a Background scan continues to collect new data.

n Although this method is available to Windows C programs, it is not necessary, since you can manipulate the memory buffer
directly by casting the MemHandle returned from WinBufAlloc32() to the appropriate type. This method avoids having to copy
the data from the memory buffer to an array.

Refer to the following example:

/*declare and initialize the variables*/

long numPoints= 1000;

unsigned short *dataArray = NULL;

int MemHandle = 0;

/*allocate the buffer and cast it to a pointer to an unsigned long*/

MemHandle = WinBufAlloc32(numPoints);

dataArray = (unsigned long*)MemHandle;

/*scan in the data*/

CInScan(......,MemHandle,...);

/*print the results*/

for(int i=0; i<numPoints; ++i)

printf("Data[%d]=%d\n", i, dataArray[i]);

/*free the buffer and NULL the pointer*/

WinBufFree(MemHandle);

dataArray = NULL;

Page 636 of 700

ScaledWinArrayToBuf() method
Copies double-precision values from an array into a Windows memory buffer.

Member of the MccService class.

Function Prototype
VB .NET

Public Function ScaledWinArrayToBuf(ByVal dataArray As Double(), ByVal memHandle As IntPtr, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As Integer As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ScaledWinArrayToBuf(double[] dataArray, IntPtr memHandle, int firstPoint, int
numPoints)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Shared Function ScaledWinArrayToBuf(ByRef dataArray As Double, ByVal memHandle As Integer, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As Integer As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo ScaledWinArrayToBuf(ref double dataArray, int memHandle, int firstPoint,
int numPoints)

Parameters
dataArray

The array containing the data to be copied.

memHandle

This must be a memory handle that was returned by ScaledWinBufAllocEx() when the buffer was allocated. The data will be
copied into this buffer.

firstPoint

Index of the first point in the memory buffer where the data will be copied.

numPoints

Number of data points to copy.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This method is used in conjunction with the ScaleData scan option and ScaledWinBufAllocEx().

Page 637 of 700

javascript:hhctrl.TextPopup(ScaledWinArrayToBuf,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ScaledWinArrayToBuf,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ScaledWinArrayToBuf,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ScaledWinArrayToBuf,termfont,10,10,000,000)

ScaledWinBufAlloc() method (deprecated)
Allocates a Windows global memory buffer large enough to hold scaled data obtained from scan operations in which the ScaleData
scan option is selected, and returns a memory handle for the buffer.

Deprecated; unless your application calls deprecated methods, use ScaledWinBufAllocEx().

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function ScaledWinBufAlloc(ByVal numPoints As Integer) As Integer

C# .NET

public static int ScaledWinBufAlloc(int numPoints)

Parameters
numPoints

The size of the buffer to allocate. Specifies the number of double precision values (8-byte or 64-bit) that the buffer will hold.

Returns

n 0, if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n This method is used in conjunction with the ScaleData scan option and ScaledWinBufToArray() or ScaledWinArrayToBuf().

n Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a Windows global
memory handle, which can then be passed to the scan methods in the library. If an error occurs, the handle will come back
as 0 to indicate that the buffer was not allocated.

Page 638 of 700

javascript:hhctrl.TextPopup(ScaledWinBufAlloc,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ScaledWinBufAlloc,termfont,10,10,000,000)

ScaledWinBufAllocEx() method
Allocates a Windows global memory buffer large enough to hold scaled data obtained from scan operations in which the ScaleData
scan option is selected, and returns a memory handle for the buffer.

Member of the MccService class.

Function Prototype
VB .NET

Public Function ScaledWinBufAllocEx(ByVal numPoints As Integer) As IntPtr

C# .NET

public IntPtr ScaledWinBufAllocEx(int numPoints)

Parameters
numPoints

The size of the buffer to allocate. Specifies the number of double precision values (8-byte or 64-bit) that the buffer will hold.

Returns

n 0, if the buffer could not be allocated, or a non-zero integer handle to the buffer.

Notes

n This method is used in conjunction with the ScaleData scan option and ScaledWinBufToArray() or ScaledWinArrayToBuf().

n Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a Windows global
memory handle, which can then be passed to the scan methods in the library. If an error occurs, the handle will come back
as 0 to indicate that the buffer was not allocated.

n This method is preferred over the deprecated method ScaledWinBufAlloc(). Only use ScaledWinBufAlloc() in 32-bit legacy
applications that call deprecated methods.

Page 639 of 700

ScaledWinBufToArray() method
Copies double-precision values from a Windows memory buffer into an array.

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function ScaledWinBufToArray(ByVal memHandle As IntPtr, ByVal dataArray As Double(),
ByVal firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo ScaledWinBufToArray(IntPtr memHandle, double[] dataArray, int firstPoint, int
numPoints)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Shared Function ScaledWinBufToArray(ByVal memHandle As Integer, ByRef dataArray As Double, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

C# .NET

public static MccDaq.ErrorInfo ScaledWinBufToArray(int memHandle, out double dataArray, int firstPoint,
int numPoints)

Parameters
memHandle

The memory handle that was returned by ScaledWinBufAllocEx() when the buffer was allocated. The buffer should contain the
data that you want to copy.

dataArray

A pointer to the start of the destination array to which the data samples are copied.

firstPoint

The index of the first sample to copy from the buffer.

numPoints

The number of samples to copy into dataArray.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This method is used in conjunction with the ScaleData scan option and ScaledWinBufAllocEx().

Page 640 of 700

javascript:hhctrl.TextPopup(ScaledWinBufToArray,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ScaledWinBufToArray,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(ScaledWinBufToArray,termfont,10,10,000,000)

BoardName property
The name of the board associated with an instance of the MccBoard class. The board name is returned as a null-terminated string.

Member of the MccBoard class.

Function Prototype
VB .NET

Public ReadOnly Property BoardName As String

C# .NET

public string BoardName [get]

Page 641 of 700

DeviceLogin() method
Opens a device session with a shared device.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DeviceLogin(ByVal userName As String, ByVal password As String) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DeviceLogin(System.String userName, System.String password)

Parameters
userName

A null-terminated string that identifies the user name used to log in to a device session.

password

A null-terminated string that identifies the password used to log in to a device session.

Returns

n Error code or 0 if no errors.

Notes

n If the user name or password is invalid, the INVALIDLOGIN error is returned.

n If the session is already opened by another user, the SESSIONINUSE error is returned.

Page 642 of 700

javascript:hhctrl.TextPopup(DeviceLogin,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(DeviceLogin,termfont,10,10,000,000)

DeviceLogout() method
Releases the device session with a shared device.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DeviceLogout() As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DeviceLogout()

Page 643 of 700

javascript:hhctrl.TextPopup(DeviceLogout,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(DeviceLogout,termfont,10,10,000,000)

DisableEvent() method
Disables one or more event conditions, and disconnects their user-defined handlers.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function DisableEvent(ByVal eventType As MccDaq.EventType As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo DisableEvent(MccDaq.EventType eventType)

Parameters
eventType

Specifies one or more event conditions that will be disabled. More than one event type can be specified by bitwise OR'ing the
event types. Note that specifying an event that has not been enabled is benign and will not cause any errors. Refer to
EnableEvent() for a list of valid Event Types.

To disable all events in a single call, use AllEventTypes.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n For most event types, this method cannot be called while any background operations (AInScan(), APretrig(), or AOutScan())
are active. Perform a StopBackground() before calling DisableEvent(). However, for OnExternalInterrupt events, you can call
DisableEvent() while the board is actively generating events.

Important!
In order to understand the methods, you must read the board-specific information contained in the Universal Library User's Guide.
Review and run the example programs before attempting any programming of your own. Following this advice will save you hours
of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this method. Now is the time to read the board-specific information
for your board (see the Universal Library User's Guide). We suggest that you make a copy of that page to refer to as you read this
manual and examine the example programs.

Page 644 of 700

javascript:hhctrl.TextPopup(DisableEvent,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(DisableEvent,termfont,10,10,000,000)
javascript:void(0)

EnableEvent() method
Binds one or more event conditions to a user-defined callback function. Upon detection of an event condition, the user-defined
function is invoked with board- and event-specific data. Detection of event conditions occurs in response to interrupts. Typically,
this method is used in conjunction with interrupt driven processes such as AInScan(), APretrig(), or AOut().

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function EnableEvent(ByVal eventType As MccDaq.EventType, ByVal eventParameter As Integer, ByVal
callbackFunc As MccDaq.EventCallback, ByVal userData As IntPtr) As MccDaq.ErrorInfo

Public Function EnableEvent(ByVal eventType As MccDaq.EventType, ByVal eventParameter As System.UInt32,
ByVal callbackFunc As MccDaq.EventCallback, ByVal userData As IntPtr) As MccDaq.ErrorInfo

Public Function EnableEvent(ByVal eventType As MccDaq.EventType, ByVal eventParameter As
MccDaq.EventParameter, ByVal callbackFunc As MccDaq.CallbackFunction, ByVal userData As IntPtr) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo EnableEvent(MccDaq.EventType eventType, uint eventParameter,
MccDaq.EventCallback callbackFunc, System.IntPtr userData)

public MccDaq.ErrorInfo EnableEvent(MccDaq.EventType eventType, int eventParameter,
MccDaq.EventCallback callbackFunc, System.IntPtr userData)

public MccDaq.ErrorInfo EnableEvent(MccDaq.EventType eventType, MccDaq.EventParameter eventParameter,
MccDaq.CallbackFunction callbackFunc, System.IntPtr userData)

Parameters
eventType

Specifies one or more event conditions that will be bound to the user-defined callback function. More than one event type can
be specified by bitwise OR'ing the event types. Set it to one of the constants in the eventType Parameter Values section
below.

eventParameter

Additional data required to specify some event conditions, such as an OnDataAvailable event or OnExternalInterrupt event.

For OnDataAvailable events, eventParameter is used to determine the minimum number of samples to acquire during an
analog input scan before generating the event. For OnExternalInterrupt events, eventParameter is used to latch digital bits on
supported hardware by setting it to one of the constants in the eventParameter parameter Values section below.

Most event conditions ignore this value.

callbackFunc

A delegate type that is the user-defined callback function to handle the above event type(s). A delegate is a data structure
that refers either to a static method, or to a class instance and an instance method of that class.

The callbackFunc needs the same parameters as the EventCallback delegate declaration. Refer to the "EventCallback
delegate" section for proper syntax and return values.

userData

Reference to user-defined data that is passed to the EventCallback delegate. This parameter is NOT de-referenced by the
library or its drivers; as a consequence, a NULL pointer can be supplied.

Returns

n An ErrorInfo object that indicates the status of the operation.

Page 645 of 700

javascript:hhctrl.TextPopup(EnableEvent,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(EnableEvent,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

eventType Parameter Values

eventParameter Parameter Values

Callback Function Prototypes

C# .NET

public delegate void EventCallback(int BoardNum, MccDaq.EventType EventType, uint EventData, IntPtr
pUserData);

VB .NET

Public Sub MyCallback(ByVal BoardNum As Integer, ByVal EventType As MccDaq.EventType, ByVal EventData
As UInt32, ByVal pUserData As System.IntPtr)

Notes

n EnableEvent() cannot be called while any background operations (AInScan(), APretrig(), or AOutScan()) are active. If a
background operation is in progress when EnableEvent() is called, EnableEvent() will return the AlreadyActive error. Perform
a StopBackground() call before calling EnableEvent().

n Events will not be generated faster than the user callback function can handle them. If an event type becomes multi-signaled
before the event handler returns, events are merged. The event handler is called once per event type, and is supplied with
the event data corresponding to the latest event. When more than one event type is generated, the event handler for each
event type is called in the same order in which they are enabled.

n Events are generated while handling board-generated interrupts. As a consequence, using StopBackground() to abort
background operations will not generate OnEndOfAoScan or OnEndOfAiScan events. However, the event handlers can be
called directly immediately after calling StopBackground().

Important!
In order to understand the methods, you must read the board-specific information contained in the Universal Library User's Guide.
Review and run the example programs before attempting any programming of your own. Following this advice will save you hours
of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this method. Now is the time to read the board-specific information
for your board (see the Universal Library User's Guide). We suggest that you make a copy of that page to refer to as you read this
manual and examine the example programs.

OnDataAvailable Generates an event whenever the number of samples acquired during an analog input scan
increases by eventParameter samples or more. Note that for BlockIo scans, events will be
generated on packet transfers; for example, even if EventParameter is set to 1, events will
only be generated every packet-size worth of data (256 samples for the PCI-DAS1602) for
aggregate rates greater than 1 kHz for the default AInScan() mode.

For APretrig(), the first event is not generated until a minimum of EventParameter samples
after the pretrigger.

OnEndOfAiScan Generates an event upon completion or fatal error of AInScan() or APretrig().

Some devices, such as the USB-1208FS and USB-1408FS, will generate an end of scan
event after StopBackground() is called, but most devices do not. Handle post-scan tasks
directly after calling StopBackground.

OnEndOfAoScan Generates an event upon completion or fatal error of AOutScan().

Some devices, such as the USB-1208FS and USB-1408FS, will generate an end of scan
event after StopBackground() is called, but most devices do not. Handle post-scan tasks
directly after calling StopBackground.

OnExternalInterrupt For some digital and counter boards, generates an event, latches digital input data, or
latches digital output data upon detection of a pulse at the External Interrupt pin.

OnPretrigger For APretrig(), generates an event upon detection of the first trigger.

OnScanError Generates an event upon detection of a driver error during Background input and output
scans. This includes OverRun, UnderRun, and TooFew errors.

LatchDI Returns the data that was latched in at the most recent interrupt edge.

LatchDO Latches out the data most recently written to the hardware.

Page 646 of 700

EngArrayToWinBuf() method
Transfers a 2D array of engineering unit values to a Windows buffer as integer values.

The conversion from engineering unit values to integer values uses the D/A resolution of the board associated with the MccBoard
object.

This method is usually used to obtain values compatible with the AOutScan() method or the DaqOutScan() method from a 2D array
of engineering unit values, such as those provided by Measurement Studio signal generation methods. The converted values are
transferred to the buffer based on the gain, firstPoint, count, and numChannels parameters.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function EngArrayToWinBuf(ByVal gain As MccDaq.Range, ByVal engUnits As Double(,), ByVal
memHandle As IntPtr, ByVal firstPoint As Integer, ByVal count As Integer, ByVal numChannels As Integer)
As MccDaq.ErrorInfo

Public Function EngArrayToWinBuf(ByVal gainArray As MccDaq.Range(), ByVal gainCount As Integer, ByVal
engUnits As Double(,), ByVal memHandle As IntPtr, ByVal firstPoint As Integer, ByVal count As Integer,
ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo EngArrayToWinBuf(MccDaq.Range Gain, double[,] EngUnits, IntPtr MemHandle, int
FirstPoint, int Count, int NumChannels)

public MccDaq.ErrorInfo EngArrayToWinBuf(MccDaq.Range[] GainArray, int GainCount, double [,] EngUnits,
IntPtr MemHandle, int FirstPoint, int Count, int NumChannels)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function EngArrayToWinBuf(ByVal gain As MccDaq.Range, ByVal engUnits As Double(,), ByVal
memHandle As Integer, ByVal firstPoint As Integer, ByVal count As Integer, ByVal numChannels As
Integer) As MccDaq.ErrorInfo

Public Function EngArrayToWinBuf(ByVal gainArray As MccDaq.Range(), ByVal gainCount As Integer, ByVal
engUnits As Double(,), ByVal memHandle As Integer, ByVal firstPoint As Integer, ByVal count As Integer,
ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo EngArrayToWinBuf(MccDaq.Range gain, double [,] engUnits, int memHandle, int
firstPoint, int count, int numChannels)

public MccDaq.ErrorInfo EngArrayToWinBuf(MccDaq.Range[] gainArray, int gainCount, double [,] engUnits,
int memHandle, int firstPoint, int count, int numChannels)

Parameters
gain

The range to use for converting the data. This range should be the same as the range specified for AOutScan() or
DaqOutScan().

gainArray

The array containing the D/A range values used during the analog output scan.

If a gain queue was not used for the scan, this array should only contain 1 element whose value matches the gain used
during the scan. If a gain queue was used during the scan, this array should match the gainArray value used in DaqOutScan
().

If the corresponding range in the gainArray is set to NotUsed (MccDaq.Range.NotUsed), engineering unit values are returned
as integer values.

gainCount

The number of array elements in gainArray. Set gainCount to 1 when no gain queue was used for the scan. If a gain queue
was used for the scan, this number should match the number of gain queue pairs defined in DaqOutScan().

engUnits

The array of data to convert to binary units and store in the windows memory buffer. With the engUnits array, the channel

Page 647 of 700

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

numbers are stored in the first dimension, and the number of points/channel is stored in the second dimension.

memHandle

The handle to the windows memory buffer that holds the binary data that is output. This value should be large enough to hold
(count x numChannels) samples.

firstPoint

The index into the windows memory buffer that will hold the first sample of the converted first channel. The index into the
raw memory is (firstPoint x numChannels) so that converted data always starts with the first channel specified in the scan.
For example, if firstPoint is 14 and the number of channels is 8, the index of the first converted sample is 112.

count

The number of samples per channel to convert from engineering units. count should not exceed Windows buffer size /
(numChannels – firstPoint).

numChannels

The number of channels of data stored in the existing array to be transferred.

Page 648 of 700

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n This method stores the samples specified by firstPoint in the windows memory buffer. Each sample is converted using the
ranges set by gain.

n If the corresponding range in the gainArray is set to NotUsed, engineering unit values are returned as integer values.

Page 649 of 700

EventCallback delegate
The EventCallback delegate is called as a parameter of the EnableEvent() method. A delegate is a data structure that refers either
to a static method, or to a class instance and an instance method of that class.

You create the data structure using the prototype shown below. You call the delegate by passing either its address or a pointer to
the delegate to the callbackFunc parameter of the EnableEvent() method.

Delegate Prototype
VB .NET

Public Sub MyCallback(ByVal BoardNum As Integer, ByVal EventType As MccDaq.EventType, ByVal EventData
As UInt32, ByVal pUserData As System.IntPtr)

C# .NET

public delegate void EventCallback(int BoardNum, MccDaq.EventType EventType, uint EventData, IntPtr
pUserData);

Parameters
BoardNum

Indicates which board caused the event.

EventType

Indicates which event occurred.

EventData

Board-specific data associated with this event. Returns the value of the EventType as listed in the "EventData parameter
values" section below.

pUserData

Pointer to or reference of data supplied by the userData parameter in the EnableEvent() method. Note that before using this
parameter value, it must be cast to the same data type as it was passed to EnableEvent().

Returns

n pUserData – Returns the value specified by the userData parameter in EnableEvent().

EventData parameter values

EventType Value of EventData

OnEndOfAiScan The total number of samples acquired upon the scan completion or end.

OnEndOfAoScan The total number of samples output upon the scan completion or end.

OnDataAvailable The number of samples acquired since the start of the scan.

OnExternalInterrupt The number of interrupts generated since enabling the OnExternalInterrupt
event.

OnPretrigger The number of pretrigger samples available at the time of pretrigger. Value is
invalid for some boards when a TOOFEW error occurs. See board details.

OnScanError The Error code of the scan error.

Page 650 of 700

javascript:void(0)
javascript:void(0)

FlashLED() method
Causes the LED on a USB device to flash.

Member of the MccBoard class.

Function Prototype
VB .NET

Public FunctionFlashLED() As MccDaq.ErrorInfo

C# .NET

public FlashLED()

Note

After calling FlashLED(), wait a few seconds before calling additional methods, or execution of the next method may fail.

Page 651 of 700

javascript:hhctrl.TextPopup(FlashLED,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(FlashLED,termfont,10,10,000,000)

FromEngUnits() method
Converts a single precision voltage (or current) value in engineering units to an integer count value. This function is typically used
to obtain a data value from a voltage value for output to a D/A with methods such as AOut().

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function FromEngUnits(ByVal range As MccDaq.Range, ByVal engUnits As Single, ByRef dataVal As
Short) As MccDaq.ErrorInfo

Public Function FromEngUnits(ByVal range As MccDaq.Range, ByVal engUnits As Single, ByRef dataVal As
System.UInt16) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo FromEngUnits(MccDaq.Range range, float engUnits, out ushort dataVal)

public MccDaq.ErrorInfo FromEngUnits(MccDaq.Range range, float engUnits, out short dataVal)

Parameters
range

The voltage (or current) range to use for the conversion to counts. When using this method to obtain a value to send to a D/A
board, keep in mind that some D/A boards have programmable voltage ranges, and others set the voltage range via
switches on the board. In either case, the desired range must be passed to this method. Refer to board-specific information
for a list of valid range settings.

engUnits

The single precision voltage (or current) value to use for the conversion to counts. Set the value to be within the range
specified by the range parameter.

dataVal

Returns an integer count to this variable that is equivalent to the engUnits parameter using the resolution of the D/A on the
board (if any).

Returns

n An ErrorInfo object that indicates the status of the operation.

n dataVal – the integer count equivalent to engUnits is returned here.

Notes

n This method is not supported for hardware with resolution greater than 16 bits.

The default resolution of this method is 12 bits, so if the device has neither analog input nor analog output, the result is a 12
bit conversion.

If the device has both analog input and analog output, the resolution and transfer function of the D/A converter on the device
is used.

Page 652 of 700

javascript:hhctrl.TextPopup(FromEngUnits,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(FromEngUnits,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(FromEngUnits,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

GetBoardName() method
Returns the name of a specified board.

Member of the MccService class.

Function Prototype
VB .NET

Public Shared Function GetBoardName(ByVal boardNumber As Integer, ByRef boardName As String) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetBoardName(int boardNumber, ref string boardName)

Parameters
boardNumber

Refers either to the board number associated with a board when it was installed, or GETFIRST or GETNEXT.

boardName

A string variable that contains the board name. Refer to the Measurement Computing Device IDs in the Universal Library
User's Guide.

Returns

n An ErrorInfo object that indicates the status of the operation.

n boardName – return string containing the board name.

Notes
There are two ways to use this method:

n Pass a board number as the boardNumber argument. The string that is returned describes the board type of the installed
board.

n Set boardNumber to GETFIRST or GETNEXT to get a list of all board types that are supported by the library.

Set boardNumber to GETFIRST to get the first board type in the list of supported boards. Subsequent calls with
Board=GETNEXT returns each of the other board types supported by the library. When you reach the end of the list,
boardName is set to an empty string. The ulgt04 example program in the installation directory demonstrates how to use this
method.

Page 653 of 700

javascript:hhctrl.TextPopup(GetBoardName,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetBoardName,termfont,10,10,000,000)

GetStatus() method
Returns the status about the background operation currently running.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function GetStatus(ByRef status As Short, ByRef curCount As Integer, ByRef curIndex As Integer,
ByVal functionType As MccDaq.FunctionType) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetStatus(out short status, out int curCount, out int curIndex,
MccDaq.FunctionType functionType)

Parameters
status

Status indicates whether or not a background process is currently executing.

curCount

The curCount parameter specifies how many points have been input or output since the Background process started. Use it to
gauge how far along the operation is towards completion. Generally, curCount returns the total number of samples
transferred between the DAQ board and the Windows data buffer at the time GetStatus() was called.

When you set both the Continuous and Background options, curCount's behavior depends on the board model. Refer to the
board-specific information in the Universal Library User's Guide for the behavior of your board.

With recent MCC DAQ designs, the curCount parameter continually increases in increments of the packet size as Windows'
circular data buffer recycles, until it reaches 231. Since the count parameter is a signed integer, at 2,147,483,647 + 1, the
Count parameter rolls back to a negative number (-2,147,483,647). The count parameter resumes incrementing, eventually
reaching 0 and increasing back up to 2,147,483,647.

The curIndex parameter is usually more useful than the curCount parameter in managing data collected when you set both
the Continuous and Background options.

curIndex

The curIndex parameter is an index into the Windows data buffer. This index points to the start of the last completed channel
scan that was transferred between the DAQ board and the Windows data buffer. If a scan is running but no points in the
buffer have been transferred, curIndex equals -1 in most cases

For Continuous operations, curIndex rolls over when the Windows data buffer is full. This rollover indicates that "new" data is
now overwriting "old" data. Your goal is to process the old data before it gets overwritten. You can keep ahead of the data
flow by copying the old data out of the buffer before new data overwrites it.

The curIndex parameter can help you access the most recently transferred data. Your application does not have to process
the data exactly when it becomes available in the buffer – in fact, you should avoid doing so unless absolutely necessary. The
curIndex parameter generally increments by the packet size, but in some cases the curIndex parameter can vary within the
same scan. One instance of a variable increment is when the packet size is not evenly divisible by the number of channels.

You should determine the best size of the "chunks" of data that your application can most efficiently process, and then
periodically check on the curIndex parameter value to determine when that amount of additional data has been transferred.

Refer to the Universal Library User's Guide for information on your board, particularly when using Pre-Trigger.

functionType

Specifies which scan to retrieve status information about. Set it to one of the constants in the functionType parameter values
section below.

Returns

n An ErrorInfo object that indicates the status of the operation.

n Status – Returns the status of the operation:

0 – a background process is not currently executing.

1 – a background process is currently executing.

n curCount – The current number of samples collected.

n curIndex – The current sample index.

functionType parameter values

AiFunction Specifies analog input scans started with AInScan() or APretrig().

Page 654 of 700

javascript:hhctrl.TextPopup(GetStatus,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(GetStatus,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

AoFunction Specifies analog output scans started with AOutScan().

DiFunction Specifies digital input scans started with DInScan().

DoFunction Specifies digital output scans started with DOutScan().

CtrFunction Specifies counter background operations started with CStoreOnInt() or CInScan().

DaqiFunction Specifies a synchronous input scan started with DaqInScan().

DaqoFunction Specifies a synchronous output scan started with DaqOutScan().

Page 655 of 700

GetTCValues() method
Converts raw thermocouple data from a Windows global memory buffer collected using the DaqInScan() method to a one-
dimensional or two dimensional array of data on a temperature scale (Celsius, Fahrenheit or Kelvin).

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function GetTCValues(ByVal chanArray As Short(), ByVal chanTypeArray As MccDaq.ChannelType,
ByVal chanCount As Integer, ByVal memHandle As IntPtr, ByVal firstPoint As Integer, ByVal count As
Integer, ByVal scale As MccDaq.TempScale, ByVal tempValArray As Single()) As MccDaq.ErrorInfo

Public Function GetTCValues(ByVal chanArray As Short(),ByVal chanTypeArray As MccDaq.ChannelType(),
ByVal chanCount As Integer, ByVal memHandle As IntPtr, ByVal firstPoint As Integer, ByVal count As
Integer, ByVal scale As MccDaq.TempScale, ByRef tempValArray As Double(,)) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo GetTCValues(short[] chanArray, MccDaq.ChannelType[] chanTypeArray, int
chanCount, IntPtr memHandle, int firstPoint, int count, TempScale scale, float[] tempValArray)

public MccDaq.ErrorInfo GetTCValues(short[] chanArray, MccDaq.ChannelType[] chanTypeArray, int
chanCount, IntPtr memHandle, int firstPoint, int count, TempScale scale, double[,] tempValArray)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Copies data to a one-dimensional array of single values:

Public Function GetTCValues(ByVal chanArray As Short(), ByVal chanTypeArray As MccDaq.ChannelType,
ByVal chanCount As Integer, ByVal memHandle As Integer, ByVal firstPoint As Integer, ByVal count As
Integer, ByVal scale As MccDaq.TempScale, ByRef tempValArray As Single) As MccDaq.ErrorInfo

Copies data to a two-dimensional array of double values:

Public Function GetTCValues(ByVal chanArray As Short(),ByVal chanTypeArray As MccDaq.ChannelType(),
ByVal chanCount As Integer, ByVal memHandle As Integer, ByVal firstPoint As Integer, ByVal count As
Integer, ByVal scale As MccDaq.TempScale, ByRef tempValArray As Double(,)) As MccDaq.ErrorInfo

C# .NET

Copies data to a one-dimensional array of single values:

public MccDaq.ErrorInfo GetTCValues(short[] chanArray, MccDaq.ChannelType chanTypeArray, int chanCount,
int memHandle, int firstPoint, int count, MccDaq.TempScale scale, out float tempValArray)

Copies data to a two-dimensional array of double values:

public MccDaq.ErrorInfo GetTCValues(short[] chanArray, MccDaq.ChannelType() chanTypeArray, int
chanCount, int memHandle, int firstPoint, int count, MccDaq.TempScale scale, out double[,]
tempValArray)

Parameters
chanArray

Array containing channel values. Valid channel values are analog and temperature input channels and digital ports.
chanArray must match the channel array used with the DaqInScan() method.

chanTypeArray

Array containing channel types. Each element of this array defines the type of the corresponding element in the chanArray.
chanTypeArray must match the channel type settings used with the DaqInScan() method.

chanCount

Number of elements in chanArray.

memHandle

The memory handle that was returned (by WinBufAlloc(), WinBufAlloc32(), or WinBufAlloc64()) when the buffer was
allocated. The buffer should contain the data that you want to convert.

firstPoint

The index into the raw data memory buffer that holds the first sample of the first channel to be converted. The index into the

Page 656 of 700

javascript:hhctrl.TextPopup(GetTCValues,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(GetTCValues,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(GetTCValues,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(GetTCValues,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:void(0)

raw memory is (firstPoint x chanCount) so that converted data always starts with the first channel specified in the scan. For
example, if firstPoint is 14 and the number of channels is 8, the index of the first converted sample is 112.

count

The number of samples per channel to convert to engineering units. count should not exceed Windows buffer size /
chanCount – firstPoint.

scale

Specifies the temperature scale that the input will be converted to. Choices are MccDaq.TempScale.Celsius,
MccDaq.TempScale.Fahrenheit, or MccDaq.TempScale.Kelvin.

tempValArray

The array to hold the converted data. This array must be allocated by the user, and must be large enough to hold count
samples x the number of temperature channels.

Returns

n An ErrorInfo object that indicates the status of the operation.

n tempValArray – Converted data.

Page 657 of 700

javascript:void(0)

HideLoginDialog() method
Prevents the default login dialog from being shown when a protected function is called while not logged in.

Member of the MccBoard class.

Function Prototypes
VB .NET

Public Function HideLoginDialog(ByVal hide As Boolean) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo HideLoginDialog(System.Boolean hide)

Parameters
hide

If true, the default dialog will not be shown when a protected function is called while the user is not logged in.

Returns

n Error code or 0 if no errors.

Notes

n Overrides InstaCal's Show Login Dialog prompt setting.

Page 658 of 700

InByte() method
Reads a byte from a hardware register on a board.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function InByte(ByVal portNum As Integer) As Integer

C# .NET

public int InByte(int portNum)

Parameters
portNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this parameter to the offset for the desired register. This method takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

Returns

n The current value of the specified register

Notes

n InByte() is used to read 8 bit ports. InWord() is used to read 16-bit ports.

n This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 659 of 700

javascript:hhctrl.TextPopup(InByte,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(InByte,termfont,10,10,000,000)

InWord() method
Reads a word from a hardware register on a board.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function InWord(ByVal portNum As Integer) As Integer

C# .NET

public int InWord(int portNum)

Parameters
portNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this parameter to the offset for the desired register. This method takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

Returns

n The current value of the specified register

Notes

n InByte() is used to read 8 bit ports. InWord() is used to read 16-bit ports.

n This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 660 of 700

javascript:hhctrl.TextPopup(InWord,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(InWord,termfont,10,10,000,000)

OutByte() method
Writes a byte to a hardware register on a board.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function OutByte(ByVal portNum As Integer, ByVal portVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo OutByte(int portNum, int portVal)

Arguments
portNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this parameter to the offset for the desired register. This method takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

portVal

Value that is written to the register.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n OutByte() is used to write to 8 bit ports. OutWord() is used to write to 16-bit ports.

n This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 661 of 700

javascript:hhctrl.TextPopup(OutByte,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(OutByte,termfont,10,10,000,000)

OutWord() method
Writes a word to a hardware register on a board.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function OutWord(ByVal portNum As Integer, ByVal portVal As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo OutWord(int portNum, int portVal)

Parameters
portNum

Register within the board. Boards are set to a particular base address. The registers on the boards are at addresses that are
offsets from the base address of the board (BaseAdr + 0, BaseAdr + 2, etc).

Set this parameter to the offset for the desired register. This method takes care of adding the base address to the offset, so
that the board's address can be changed without changing the code.

PortVal

Value that is written to the register.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n OutByte() is used to write to 8 bit ports. OutWord() is used to write to 16-bit ports.

n This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Page 662 of 700

javascript:hhctrl.TextPopup(OutWord,termfont,10,10,000,000)
javascript:hhctrl.TextPopup(OutWord,termfont,10,10,000,000)

RS485() method
Sets the direction of RS-485 communications port buffers.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function RS485(ByVal transmit As MccDaq.OptionState, ByVal receive As MccDaq.OptionState) As
MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo RS485(MccDaq.OptionState transmit, MccDaq.OptionState receive)

Parameters
transmit

Set to Enabled or Disabled. The transmit RS-485 line driver is turned on. Data written to the RS-485 UART chip is transmitted
to the cable connected to that port.

receive

Set to Enabled or Disabled. The receive RS-485 buffer is turned on. Data present on the cable connected to the RS-485 port
is received by the UART chip.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n You can simultaneously enable or disable the transmit and receive buffers. If both are enabled, data written to the port is
also received by the port. For a complete discussion of RS485 network construction and communication, refer to the CIO-
COM485 or PCM-COM485 hardware manual.

Page 663 of 700

javascript:hhctrl.TextPopup(RS485,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)
javascript:hhctrl.TextPopup(RS485,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

StopBackground() method
Stops one or more subsystem background operations that are in progress for the specified board. Use this method to stop any
method that is running in the background. This includes any method that was started with the Background option, as well as
CStoreOnInt() (which always runs in the background).

Execute StopBackground() after normal termination of all background methods to clear variables and flags.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function StopBackground(ByVal funcType As MccDaq.FunctionType) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo StopBackground(MccDaq.FunctionType funcType)

Parameters
functionType

Specifies which background operation to stop. Set it to one of the constants in the functionType parameter values below.

Returns

n An ErrorInfo object that indicates the status of the operation.

functionType parameter values

AiFunction Specifies analog input scans started with AInScan() or APretrig().

AoFunction Specifies analog output scans started with AOutScan().

DiFunction Specifies digital input scans started with DInScan().

DoFunction Specifies digital output scans started with DOutScan().

CtrFunction Specifies counter background operations started with CStoreOnInt() or CInScan().

DaqiFunction Specifies a synchronous input scan started with DaqInScan().

DaqoFunction Specifies a synchronous output scan started with DaqOutScan().

Page 664 of 700

javascript:hhctrl.TextPopup(StopBackground,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(StopBackground,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

TEDSRead() method
Reads data from a TEDS sensor into an array.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function TEDSRead(ByVal chan As Integer, dataBuffer As Byte(), count As Integer, ByVal options
As MccDaq.TEDSReadOptions) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo TEDSRead(int chan, Byte[] dataBuffer, ref int count, MccDaq.TEDSReadOptions
options)

Parameters
chan

A/D channel number.

dataBuffer

Pointer to the data array.

count

Number of data points to read.

options

Reserved for future use.

Returns

n Error code or 0 if no errors.

options parameter values

Default Reserved for future use.

Page 665 of 700

javascript:hhctrl.TextPopup(TEDSRead,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(TEDSRead,termfont,10,10,000,000)
javascript:void(0)

ToEngUnits() method
Converts an integer count value to an equivalent single precision voltage (or current) value. This method is typically used to obtain
a voltage value from data received from an A/D with methods such as AIn().

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function ToEngUnits(ByVal range As MccDaq.Range, ByVal dataVal As Short, ByRef engUnits As
Single) As MccDaq.ErrorInfo

Public Function ToEngUnits(ByVal range As MccDaq.Range, ByVal dataVal As System.UInt16, ByRef engUnits
As Single) As MccDaq.ErrorInfo

C# .NET

Public MccDaq.ErrorInfo ToEngUnits(MccDaq.Range range, ushort dataVal, out float engUnits)

Public MccDaq.ErrorInfo ToEngUnits(MccDaq.Range range, short dataVal, out float engUnits)

Parameters
range

Voltage (or current) range to use for the conversion to engineering units. When using this method to obtain engineering units
from a value received from an A/D board, keep in mind that some A/D boards have programmable voltage ranges, and
others set the voltage range via switches on the board. In either case, the desired range must be passed to this method.
Refer to board-specific information for a list of valid range settings.

dataVal

An integer count value (typically, one returned from an A/D board).

engUnits

The single precision voltage (or current) value that is equivalent to dataVal is returned to this variable. The value will be
within the range specified by the range parameter.

Returns

n An ErrorInfo object that indicates the status of the operation.

n engUnits – the engineering units value equivalent to dataVal is returned to this variable.

Notes

n This method is not supported for hardware with resolution greater than 16 bits.

The default resolution of this method is 12 bits, so if the device has neither analog input nor analog output, the result will be a
12 bit conversion.

If the device has both analog input and analog output, the resolution and transfer function of the D/A converter on the device
is used.

Page 666 of 700

javascript:hhctrl.TextPopup(ToEngUnits,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ToEngUnits,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

ToEngUnits32() method
Converts an integer count value to an equivalent double precision voltage (or current) value. This method is typically used to obtain
a voltage value from data received from an A/D with methods such as AIn32().

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function ToEngUnits32(ByVal range As MccDaq.Range, ByVal dataVal As Integer, ByRef engUnits As
Double) As MccDaq.ErrorInfo

Public Function ToEngUnits32(ByVal range As MccDaq.Range, ByVal dataVal As UInteger, ByRef engUnits As
Double) As MccDaq.ErrorInfo

C# .NET

Public MccDaq.ErrorInfo ToEngUnits32(MccDaq.Range range, uint dataVal, out double engUnits)

public MccDaq.ErrorInfo ToEngUnits32(MccDaq.Range range, int dataVal, out double engUnits)

Parameters
range

Voltage (or current) range to use for the conversion to engineering units. When using this method to obtain engineering units
from a value received from an A/D board, keep in mind that some A/D boards have programmable voltage ranges, and
others set the voltage range via switches on the board. In either case, the desired range must be passed to this method.
Refer to board-specific information for a list of valid range settings.

dataVal

An integer count value (typically, one returned from an A/D board) to convert to engineering units.

engUnits

The double precision voltage (or current) value that is equivalent to dataVal is returned to this variable. The value will be
within the range specified by the range parameter using the resolution of the A/D on the board.

Returns

n An ErrorInfo object that indicates the status of the operation.

n engUnits – the engineering units value equivalent to dataVal is returned to this variable.

Notes

n This method is typically used to obtain a voltage (or current) value from data received from an A/D with methods such as
AIn32().

n This method should be used for devices with a resolution of 20-bits or more.

The default resolution of this method is 32-bits, so if the device has neither analog input nor analog output, the result will be a
32-bit conversion.

If the device has both analog input and analog output, the resolution and transfer function of the D/A converter on the device
is used.

Page 667 of 700

javascript:hhctrl.TextPopup(ToEngUnits32,termfont,10,10,000,000)
javascript:void(0)
javascript:hhctrl.TextPopup(ToEngUnits32,termfont,10,10,000,000)
javascript:void(0)
javascript:void(0)

WinBufToEngArray() method
Transfers integer values from a Windows buffer to a 2D array as engineering unit values.

The conversion from integer values to engineering unit values uses the A/D resolution of the board associated with the MccBoard
object.

This method is usually used to obtain values compatible with those required by Measurement Studio waveform display controls
from a Windows buffer containing data from a method such as AInScan() or DaqInScan().

The converted values are transferred to the 2D array based on the gain, firstPoint, count, and numChannels parameters.

Member of the MccBoard class.

Function Prototype
VB .NET

Public Function WinBufToEngArray(ByVal gain As MccDaq.Range, ByVal memHandle As IntPtr, ByVal engUnits
As Double(,), ByVal firstPoint As Integer, ByVal count As Integer, ByVal numChannels As Integer) As
MccDaq.ErrorInfo

Public Function WinBufToEngArray(ByVal gainArray As MccDaq.Range(), ByVal gainCount As Integer, ByVal
memHandle As IntPtr, ByVal engUnits As Double(,), ByVal firstPoint As Integer, ByVal count As Integer,
ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo WinBufToEngArray(MccDaq.Range Gain, IntPtr MemHandle, double[,] EngUnits, int
FirstPoint, int Count, int NumChannels)

public MccDaq.ErrorInfo WinBufToEngArray(MccDaq.Range[] GainArray, int GainCount, IntPtr MemHandle,
double[,] EngUnits, int FirstPoint, int Count, int NumChannels)

Deprecated methods

The following methods are deprecated, and should only be used for legacy applications. The methods above are preferred, and
must be used for 64-bit application development.

VB .NET

Public Function WinBufToEngArray(ByVal gain As MccDaq.Range, ByVal memHandle As Integer, ByVal engUnits
As Double(,), ByVal firstPoint As Integer, ByVal count As Integer, ByVal numChannels As Integer) As
MccDaq.ErrorInfo

Public Function WinBufToEngArray(ByVal gainArray As MccDaq.Range(), ByVal gainCount As Integer, ByVal
memHandle As Integer, ByVal engUnits As Double(,), ByVal firstPoint As Integer, ByVal count As Integer,
ByVal numChannels As Integer) As MccDaq.ErrorInfo

C# .NET

public MccDaq.ErrorInfo WinBufToEngArray(MccDaq.Range gain, int memHandle, double[,] engUnits, int
firstPoint, int count, int numChannels)

public MccDaq.ErrorInfo WinBufToEngArray(MccDaq.Range gainArray, int gainCount, int memHandle, double
[,] engUnits, int firstPoint, int count, int numChannels)

Parameters
gain

The range to use for converting scan data. This value should be the same as the range specified for AInScan() or DaqInScan
().

gainArray

The array containing the A/D range values used during the analog input scan.

If a gain queue was not used for the scan, this array should only contain 1 element whose value matches the gain used
during the scan. If a gain queue was used during the scan, this array should match the gainArray value used in ALoadQueue
() or DaqInScan().

If the corresponding range in the gainArray is set to NotUsed (MccDaq.Range.NotUsed), raw data is returned in engineering
unit values.

gainCount

The number of array elements in gainArray. Set gainCount to 1 when no gain queue was used for the scan. If a gain queue
was used for the scan, this number should match the number of gain queue pairs defined in ALoadQueue() or DaqInScan().

memHandle

The handle to the memory buffer holding the raw data to be converted to engineering units. This value should be large

Page 668 of 700

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

enough to hold (count x numChannels) samples.

engUnits

The array to hold the converted data. This array must be allocated by the user, and must be large enough to hold count
samples. The first dimension should be the number of channels. The second dimension should equal the number of
points/channel.

firstPoint

The index into the raw data memory buffer that holds the first sample of the first channel to be converted. The index into the
raw memory is (firstPoint × numChannels) so that converted data always starts with the first channel specified in the scan.
For example, if firstPoint is 14 and the number of channels is 8, the index of the first converted sample is 112.

count

The number of samples per channel to convert to engineering units. count should not exceed Windows buffer size /
(numChannels – firstPoint).

numChannels

The number of channels of data stored in the existing array to be transferred.

Returns

n An ErrorInfo object that indicates the status of the operation.

Notes

n If gainCount is greater than one, the conversions cycle through the array until count samples have been converted. When
only one gain is specified, that gain is applied to all conversions. Data is returned in engineering unit values as a two-
dimensional array.

n If the corresponding range in the gainArray is set to NotUsed, raw data is returned in engineering unit values.

Page 669 of 700

Universal Library example programs sorted by program name
The table below lists Universal Library example programs sorted by the program name. It includes the featured function calls,
notes, and other functions included in the example program. All example programs include the cbDeclareRevision() and
cbErrHandling() functions.

Note: The CWIN sample program directory contains programs A101, A102 and A103 only.

Example UL
program

Featured function Notes Other functions included

CInScan01 cbCInScan() Scans a range of counter input
channels, and writes the data to an
array.

Board 0 must support counter
scans.

cbWinBuffAlloc32()

cbWinBufToArray32()

cbWinBufFree()

CInScan02 cbCInScan()

cbCConfigScan()

Scans a counter input channel in
decrement mode, and writes the
data to an array.

Board 0 must support counter
scans.

cbWinBuffAlloc32()

cbWinBufToArray32()

cbWinBufFree()

CInScan03 cbCInScan()

cbCConfigScan()

Scans a counter input in encoder
mode, and writes the sample data
to an array. This example displays
counts from encoder as phase A,
phase B, and totalizes the index on
Z.

Board 0 must support counter scans
in encoder mode.

cbWinBuffAlloc32()

cbWinBufToArray32()

cbWinBufFree()

DaqInScan01 cbDaqInScan() Synchronously scans analog input
channels, digital input ports, and
counter input channels in the
foreground.

Board 0 must support synchronous
input.

cbDConfigPort()

cbCConfigScan()

DaqInScan02 cbDaqInScan() Synchronously scans analog input
channels, digital input ports, and
counter input channels in the
background.

Board 0 must support synchronous
input.

cbDConfigPort()

cbCConfigScan()

cbStopBackground()

cbGetStatus()

DaqInScan03 cbDaqInScan()

cbGetTCValues()

Synchronously scans analog input
channels, digital input ports, and
thermocouple input channels in the
foreground.

Board 0 must support synchronous
input.

cbDConfigPort()

cbCConfigScan()

DaqOutScan01 cbDaqOutScan() Synchronously writes to an analog
output channel and a digital output
port in the background.

Board 0 must support synchronous
output.

cbDConfigPort()

DaqSetSetpoint01 cbDaqSetSetpoints() Configures setpoints, adds the
setpoint status to the scan list, and
performs asynchronous reads of the
setpoint status.

Board 0 must support cbDaqInScan
().

cbDaqInScan()

cbDConfigPort()

cbGetStatus()

cbStopBackground()

DaqSetTrigger01 cbDaqSetTrigger() Configures start and stop triggers.
These triggers are used to initiate
and terminate A/D conversion using
cbDaqInScan() with the
EXTTRIGGER option selected.

Board 0 must support synchronous
output.

cbDConfigPort()

cbStopBackground()

cbGetStatus()

PulseOutStart01 cbPulseOutStart()

cbPulseOutStop()
Sends a frequency output to an
output timer channel. Board 0 must
have a timer output.

You enter a frequency and a duty

Page 670 of 700

cycle within the timer's range.

TimerOutStart01 cbTimerOutStart()

cbTimerOutStop()
Sends a frequency output to an
output timer channel. Board 0 must
have a timer output.

You enter a frequency within the
timer's range.

ULAI01 cbAIn() cbToEngUnits()

ULAI02 cbAInScan() FOREGROUND mode cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI03 cbAInScan() BACKGROUND mode cbGetStatus()

cbStopBackground()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI04 cbAConvertData() cbAInScan()

cbGetStatus()

cbStopBackground()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI05 cbAInScan() with manual data conversion cbGetStatus()

cbStopBackground()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI06 cbAInScan() CONTINUOUS, BACKGROUND mode cbAConvertData()

cbGetStatus()

cbStopBackground()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI07 cbATrig() cbFromEngUnits()

ULAI08 cbAPretrig() cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI09 cbAConvertPretrigData() BACKGROUND mode cbAPretrig()

cbGetStatus()

cbStopBackground()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI10 cbALoadQueue() cbAInScan()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI11 cbToEngUnits() cbAIn()

ULAI12 cbAInScan() EXTCLOCK mode cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI13 cbAInScan() Various sampling mode options cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI14 cbSetTrigger() EXTTRIGGER mode cbAInScan()

Page 671 of 700

cbFromEngUnits()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAI15 cbAInScan() SCALEDATA mode

Scans a range of A/D input
channels, and stores the scaled data
in an array.

cbScaledWinBufAlloc()

cbScaledWinBufToArray()

cbWinBufFree()

ULAIO01 cbAInScan()

cbAOutScan()

concurrent analog input and output
scans

cbGetStatus()

cbStopBackground()

cbWinArrayToBuf()

cbWinBufAlloc()

cbWinBufFree()

cbWinBufToArray()

ULAO01 cbAOut() cbFromEngUnits()

ULAO02 cbAOutScan() cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULAO03 cbAOut()

cbSetConfig()

Demonstrates the difference
between BIDACUPDATEMODE
settings of UPDATEIMMEDIATE and
UPDATEONCOMMAND.

Board 0 must support
BIDACUPDATEMODE settings, such
as the PCI-DAC6702 and PCI-
DAC6703.

cbFromEngUnits()

ULAO04 cbAOutScan() SCALEDATA mode

Synchronously writes to analog
channels in the background.

ULCT01 cbC8254Config() cbCLoad()

cbCIn()

ULCT02 cbC9513Init()

cbC9513Config()

 cbCLoad()

cbCIn()

ULCT03 cbCStoreOnInt() cbC9513Init()

cbC9513Config()

cbCLoad()

cbCIn()

ULCT04 cbCFreqIn() cbC9513Init()

ULCT05 cbC8536Init()

cbC8536Config()

 cbCLoad()

cbCIn()

ULCT06 cbC7266Config() cbCLoad32()

cbCIn32()

cbCStatus()

ULCT07 cbCLoad32()

cbCIn32()

Board 0 must have an event
counter, such as the miniLAB 1008
or USB-1208LS.

ULDI01 cbDIn() cbDConfigPort()

ULDI02 cbDBitIn() cbDConfigPort()

ULDI03 cbDInScan() cbDConfigPort()

cbGetStatus()

cbStopBackground()

cbWinBufToArray()

cbWinBufFree()

cbWinBufAlloc()

ULDI04 cbDIn() using the AUXPORT

ULDI05 cbDBitIn() using the AUXPORT

ULDI06 cbDConfigBit() cbDBitIn()

Page 672 of 700

ULDO01 cbDOut() cbDConfigPort()

ULDO02 cbDBitOut() cbDOut()

cbDConfigPort()

ULDO04 cbDOut() using the AUXPORT

ULDO05 cbDBitOut() using the AUXPORT cbDOut()

ULEV01* cbEnableEvent()

cbDisableEvent()

using ON_EXTERNAL_INTERRUPT cbDConfigPort()

cbDIn()

ULEV02* cbEnableEvent()

cbDisableEvent()

using ON_DATA_AVAILABLE and
ON_END_OF_AI_SCAN

cbAInScan()

cbStopBackground()

cbToEngUnits()

cbWinBufAlloc()

cbWinBufFree()

cbWinBufToArray()

ULEV03* cbEnableEvent()

cbDisableEvent()

using ON_PRETRIG and
ON_END_OF_AI_SCAN

cbAPretrig()

cbAConvertPretrigData()

cbDConfigPort()

cbDOut()

cbStopBackground()

cbToEngUnits()

cbWinBufAlloc()

cbWinBufFree()

cbWinBufToArray()

ULEV04* cbEnableEvent()

cbDisableEvent()

using ON_END_OF_AO_SCAN cbAOutScan()

cbDConfigPort()

cbDOut()

cbFromEngUnits()

cbStopBackground()

cbWinArrayToBuf()

cbWinBufAlloc()

cbWinBufFree()

ULFI01 cbFileAInScan() cbFileGetInfo()

ULFI02 cbFileRead() cbFileAInScan()

cbFileGetInfo()

ULFI03 cbFilePretrig() cbFileGetInfo()

cbFileRead()

ULFL01 cbFlashLED() Board 0 must have an external LED,
such as the miniLAB 1008 or USB-
1208LS.

ULGT01 cbGetErrMsg() cbAIn()

ULGT03 cbGetConfig() cbGetBoardName()

ULGT04 cbGetBoardName() cbGetConfig()

ULLOG01 cbLogGetFileName() Retrieves the name of a binary log
file.

ULLOG02 cbLogGetFileInfo()

cbLogGetSampleInfo()

cbLogGetAIChannelCount
()

cbLogGetCJCInfo()

cbLogGetDIOInfo()

Retrieves information about the
analog data, CJC data, and digital
port data contained in a binary log
file.

cbLogGetFileName()

ULLOG03 cbLogReadAIChannels()

cbLogReadCJCChannels
()

cbLogReadDIOChannels
()

cbLogReadTimeTags()

Retrieves the analog input data,
CJC temperature data, digital I/O
port data, date values, and time
values logged in a binary file, and
writes the data to separate arrays.

cbLogGetFileName()

cbLogGetSampleInfo()

cbLogGetAIChannelCount()

cbLogGetCJCInfo()

cbLogGetDIOInfo()

cbLogSetPreferences()

Page 673 of 700

ULLOG04 cbLogConvertFile() Converts a binary log file to a
comma-separated values (.csv) text
file or another text file format that
you specify.

cbLogGetSampleInfo()

ULMBDI01 cbDIn() Reads a digital input port on
MetraBus card

ULMBDI02 cbDBitIn() Reads the status of single digital
input bit from MetraBus

ULMBDO01 cbDOut() Writes a byte to digital output ports
on MetraBus card

ULMBDO02 cbDBitOut() Sets the state of a single digital
output bit for MetraBus

ULMM01 cbMemReadPretrig() cbAPretrig()

ULMM02 cbMemRead()

cbMemWrite()

ULMM03 cbAInScan() with EXTMEMORY option cbMemReset()

cbMemRead()

ULTI01 cbTIn() cbGetConfig()

ULTI02 cbTInScan() cbGetConfig()

VIn01 cbVIn() Reads an A/D input channel.

VOut01 cbVOut() Writes to a D/A output channel.

* Example programs ULEV01, ULEV02, ULEV03 and ULEV04 are not available for the C Console.

Page 674 of 700

Universal Library example programs sorted by function call
UL function name Example

program name
Special features/notes

cbAConvertData() ULAI04

ULAI06

cbAConvertPreTrigData() ULAI09

ULEV03*

cbACalibrateData() None No example programs at this time

cbAIn() ULAI01

ULAI11

ULGT01

cbAInScan() ULAIO2

ULAIO3

ULAIO4

ULAIO5

ULAIO6

ULAI10

ULAI12

ULAI13

ULAI14

ULAI15

ULAIO01

ULEV02*

ULMM03

n FOREGROUND mode

n BACKGROUND mode with manual data conversion

n CONTINUOUS BACKGROUND mode

n EXTCLOCK mode

n SCALEDATA mode (ULAI15)

n Various sampling mode options

cbALoadQueue() ULAI10

cbAOut() ULAO01

ULAO03
ULAO03 demonstrates difference between BIDACUPDATEMODE settings of
UPDATEIMMEDIATE and UPDATEONCOMMAND. Board 0 must support
BIDACUPDATEMODE settings, such as the PCI-DAC6702 and PCI-
DAC6703.

cbAOutScan() ULAO02

ULAO04

ULAIO01

ULEV04*

n concurrent cbAInScan() and cbAOutScan()

n SCALEDATA mode (ULAO04)

cbAPretrig() ULAI08

ULAI09

ULEV03*

ULFI03

ULMM01

cbATrig() ULAI07

ULMM01

cbC7266Config() ULCT06

cbC8254Config() ULCT01

cbC8536Config() ULCT05

cbC8536Init() ULCT05

cbC9513Config() ULCT02

ULCT03

cbC9513Init() ULCT02

ULCT03

ULCT04

cbCConfigScan() CInScan02

CInScan03
Demonstrates how to scan a counter input channel in decrement mode, and
then write the data to an array.

Board 0 must support counter scans. For CInScan03, board 0 must support
counter scans in encoder mode.

cbCFreqIn() ULCT04

cbCIn() ULCT01

ULCT02

ULCT05

cbCIn32() ULCT06

ULCT07
For ULCT07, board 0 must have an event counter, such as the miniLAB
1008 or USB-1208LS.

cbCInScan() CInScan01

CInScan02

CInScan03

Demonstrates how to scan a range of counter channels and then write the
data to an array.

The board must support counter scans.

For CInScan03, board 0 must support counter scans in encoder mode.

cbCLoad() ULCT01

ULCT02

ULCT03

Page 675 of 700

ULCT05

cbCLoad32() ULCT06

ULCT07
For ULCT07, board 0 must have an event counter, such as the miniLAB
1008 or USB-1208LS.

cbCStoreOnInt() ULCT03

cbCStatus() ULCT06

cbDaqInScan() DaqInScan01

DaqInScan02

DaqInScan03

DaqOutScan01

DaqSetTrigger01

Demonstrates how to synchronously scan analog, counter, and
thermocouple input channels, and digital input ports. Board 0 must support
synchronous output.

cbDaqOutScan() DaqOutScan01 Demonstrates how to synchronously write to an analog output channel and
digital output port in the background. Board 0 must support synchronous
output.

cbDaqSetSetpoints() DaqSetSetpoints01 Demonstrates how to configure and use setpoints, including how to add the
setpoint status to the scan list and perform asynchronous reads of the
setpoint status.

Board 0 must support cbDaqInScan().

cbDaqSetTrigger() DaqSetTrigger01 Demonstrates how to set up start and stop trigger events. Board 0 must
support synchronous output.

cbDBitIn() ULDI02

ULDI05

ULDI06

ULMBDI02

cbDBitOut() ULDO02

ULDO05

ULMBDO02

cbDConfigBit() ULDI06

cbDConfigPort() ULDI01

ULDI02

ULDI03

ULDO01

ULDO02

ULDO05

ULEV01*

ULEV03*

ULEV04*

cbDeclareRevision() All examples. All example programs use this function

cbDIn() ULDI01

ULDI03

ULDI04

ULEV01*

ULMBDI01

cbDInScan() ULDI03

cbDOut() ULDO01

ULDO02

ULDO04

ULDO05

ULEV03*

ULEV04*

ULMBDO01

ULMBDO02

cbDOutScan() None No example programs at this time

cbDisableEvent()

cbEnableEvent()

ULEV01*

ULEV02*

ULEV03*

ULEV04*

n ON_EXTERNAL_INTERRUPT

n ON_DATA_AVAILABLE

n ON_PRETRIGGER

n ON_END_OF_AO_SCAN

n ON_SCAN_ERROR

n ON_END_OF_AI_SCAN

cbErrHandling() All examples All example programs use this function

cbFileAInScan() ULFI01

ULFI02
Demonstrates how to scan one or more A/D channels and store the
samples in a disk file.

cbFilePretrig() ULFI03 Demonstrates how to stream data continuously to a streamer file until a
trigger is received, then continue data streaming until the total number of
samples minus the number of pretrigger samples is reached.

cbFileRead() ULFI02

ULFI03

Page 676 of 700

cbFlashLED() ULFL01 Flashes the onboard LED for visual identification (board 0 must have an
external LED, such as the miniLAB 1008 or USB-1208LS).

cbFromEngUnits() ULAO01

ULAO03

ULAI07

ULAI14

ULEV04*

cbGetBoardName() ULGT03

ULGT04

cbGetConfig() ULGT03

ULGT04

ULTI01

ULTI02

cbGetErrMsg() ULGT01

cbGetRevision() None No example programs at this time

cbGetStatus() ULAI03

ULAI04

ULAI05

ULAI06

ULAI09

ULAIO01

ULCT03

ULDI03

cbGetTCValues() DaqInScan03 Demonstrates how to retrieve analog, thermocouple, and digital data from
a synchronous scan operation.

Board 0 must support synchronous input.

cbInByte() None No example programs at this time

cbInWord() None No example programs at this time

cbLogConvertFile() ULLOG04 Demonstrates how to convert a binary log file to a .CSV file.

cbLogGetAIChannelCount() ULLOG02

ULLOG03

ULLOG04

Demonstrates how to retrieve the number of analog channels contained in
a binary log file.

cbLogGetAIInfo() ULLOG03 Demonstrates how to retrieve information about the analog input data
contained in a binary log file and then write the data to an array.

cbLogGetCJCInfo()

cbLogGetDIOInfo()
ULLOG02

ULLOG03
Demonstrates how to retrieve information about the CJC temperature data
and digital I/O channel data contained in a binary log file.

cbLogGetFileInfo() ULLOG02 Demonstrates how to retrieve the version level and byte size of a binary
log file.

cbLogGetFileName() ULLOG01

ULLOG02

ULLOG03

Demonstrates how to retrieve the name of a binary log file.

cbLogGetPreferences() None No example programs at this time

cbLogGetSampleInfo() ULLOG02

ULLOG03

ULLOG04

Demonstrates how to retrieve the sample interval, sample count, and the
date and time of the first data point logged in a binary file.

cbLogReadAIChannels()

cbLogReadCJCChannels()

cbLogReadDIOChannels()

cbLogReadTimeTags()

ULLOG03 Demonstrates how to retrieve analog input data, CJC data, DIO channel
data, and date/time values contained in a binary log file, and store the data
in separate arrays.

cbLogSetPreferences() ULLOG03 Demonstrates how to stores preference settings for time stamp data,
analog data, and CJC temperature data.

cbMemRead() ULMM01

ULMM02

ULMM03

cbMemReadPretrig() ULMM01

cbMemReset() ULMM03

cbMemSetDTMode() None No example programs at this time

cbMemWrite() ULMM02

cbOutByte() None No example programs at this time

cbOutWord() None No example programs at this time

cbRS485() None No example programs at this time

cbPulseOutStart()

cbPulseOutStop()

PulseOutStart01 Demonstrates how to start and stop a timer square wave output. Board 0
must have a timer output.

You enter a frequency and a duty cycle within the timer's range.

cbScaledWinArrayToBuf() None No example programs at this time.

Page 677 of 700

cbScaledWinBufAlloc()

cbScaledWinBufToArray()
ULAI15 Demonstrates how to store scaled data in an array.

cbSetConfig() ULAO03 Demonstrates the difference between BIDACUPDATEMODE settings of
UPDATEIMMEDIATE and UPDATEONCOMMAND.

Board 0 must support BIDACUPDATEMODE settings, such as the PCI-
DAC6702 and PCI-DAC6703.

cbSetTrigger() ULAI14

cbStopBackground() ULAIO3

ULAIO4

ULAIO5

ULAIO6

ULAIO9

ULAIO01

ULCT03

ULDI03

ULEV02*

ULEV03*

ULEV04*

concurrent cbAInScan() and cbAOutScan()

cbTIn() ULTI01

cbTInScan() ULTI02

cbTimerOutStart()

cbTimerOutStop()

TimerOutStart01 Demonstrates how to start and stop a timer square wave output. Board 0
must have a timer output.

You enter a frequency within the timer's range.

cbToEngUnits() ULAI01

ULAI07

ULAI11

ULEV02*

ULEV03*

cbVIn() VIn01 Demonstrates how to read an A/D input channel.

cbVOut() VOut01 Demonstrates how to write to a D/A output channel.

cbWinBufAlloc()

cbWinBufFree()

cbWinBufToArray()

ULAI02

ULAI03

ULAI04

ULAI05

ULAI06

ULAI08

ULAI09

ULAI10

ULAI12

ULAI13

ULAI14

ULAI15

ULAIO1

ULAO02

ULCT03

ULDI03

ULEV02*

ULEV03*

ULEV04*

ULEV04 features cbWinBufAlloc() and cbWinBufFree() only

cbWinArrayToBuf() ULAIO01

ULAO02

ULEV04*

cbWinBufAlloc32() CInScan01

CInScan02
Demonstrates how to allocate a Windows global memory buffer for use with
32-bit scan functions.

cbWinBufToArray32() CInScan01

CInScan02
Demonstrates how to copy 32-bit data from a Windows memory buffer into
an array.

* Example programs ULEV01, ULEV02, ULEV03 and ULEV04 are not available for the C Console.

Page 678 of 700

Universal Library for .NET example programs sorted by program name
The table below lists Universal Library for .NET example programs sorted by the program name. It includes the featured method
calls, notes, and other methods included in the example program. All example programs include the DeclareRevision() and
ErrHandling() methods.

Example UL for .NET
program

Featured method Notes Other methods included

CInScan01 CInScan() Scans a range of counter input
channels, and writes the data to an
array.

Board 0 must support counter scans.

WinBuffAlloc32()

WinBufToArray32()

WinBufFree()

CInScan02 CInScan()

CConfigScan()

Scans a counter input channel in
decrement mode, and writes the data
to an array.

Board 0 must support counter scans.

WinBuffAlloc32()

WinBufToArray32()

WinBufFree()

CInScan03 CInScan()

CConfigScan()

Scans a counter input in encoder
mode, and writes the sample data to
an array. This example displays
counts from encoder as phase A,
phase B, and totalizes the index on Z.

Board 0 must support counter scans
in encoder mode.

WinBuffAlloc32()

WinBufToArray32()

WinBufFree()

DaqInScan01 DaqInScan() Synchronously scans analog input
channels, digital input ports and
counter input channels in the
foreground.

Board 0 must support synchronous
input.

DConfigPort()

CConfigScan()

DaqInScan02 DaqInScan() Synchronously scans analog input
channels, digital input ports, and
counter input channels in the
background.

Board 0 must support synchronous
input.

DConfigPort()

CConfigScan()

GetStatus()

StopBackground()

DaqInScan03 DaqInScan()

GetTCValues()
Synchronously scans analog input
channels, digital input ports and
thermocouple input channels in the
foreground.

Board 0 must support synchronous
input.

DConfigPort()

DaqOutScan01 DaqOutScan() Synchronously writes to an analog
output channel and a digital output
port in the background.

Board 0 must support synchronous
output.

DConfigPort()

DaqSetSetpoints01 DaqSetSetpoints() Configures setpoints, adds the
setpoint status to the scan list, and
performs asynchronous reads of the
setpoint status.

Board 0 must support DaqInScan().

DaqInScan()

DConfigPort()

GetStatus()

StopBackground()

DaqSetTrigger01 DaqSetTrigger() Configures start and stop triggers.
These triggers are used to initiate and
terminate A/D conversion using
DaqInScan() with the ExtTrigger
option selected.

Board 0 must support synchronous
output.

DConfigPort()

GetStatus()

StopBackground()

PulseOutStart01 PulseOutStart()

PulseOutStop()

Sends a frequency output to an output
timer channel. Board 0 must have a
timer output.

You enter a frequency and a duty
cycle within the timer's range.

TimerOutStart01 TimerOutStart()

TimerOutStop()

Sends a frequency output to an output
timer channel. Board 0 must have a
timer output.

You enter a frequency within the

Page 679 of 700

timer's range.

ULAI01 AIn() ToEngUnits()

ULAI02 AInScan() Default mode WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI03 AInScan() Background mode GetStatus()

StopBackground()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI04 AConvertData() AInScan()

GetStatus()

StopBackground()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI05 AInScan() With manual data conversion GetStatus()

StopBackground()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI06 AInScan() Continuous Background mode AConvertData()

GetStatus()

StopBackground()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI07 ATrig() FromEngUnits()

ULAI08 APretrig() WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI09 AConvertPretrigData() Background APretrig()

GetStatus()

StopBackground()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI10 ALoadQueue() AInScan()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI11 ToEngUnits() AIn()

ULAI12 AInScan() ExtClock mode WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI13 AInScan() Various sampling mode options WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAI14 SetTrigger() ExtTrigger mode AInScan()

FromEngUnits()

WinBufToArray()

WinBufFree()

WinBufAlloc()

Page 680 of 700

ULAI15 AInScan() ScaleData mode

Scans a range of A/D input channels,
and stores the scaled data in an
array.

ScaledWinBufAlloc()

ScaledWinBufToArray()

WinBufFree()

ULAIO01 AInScan()

AOutScan()

Concurrent analog input and output
scans

GetStatus()

StopBackground()

WinArrayToBuf()

WinBufAlloc()

WinBufFree()

WinBufToArray()

ULAO01 AOut() FromEngUnits()

AOut()

ULAO02 AOutScan() WinBufToArray()

WinBufFree()

WinBufAlloc()

ULAO03 AOut()

DacUpdate()

SetDACUpdateMode()

Demonstrates difference between
BoardConfig.DACUpdate.Immediate
and
BoardConfig.DACUpdate.OnCommand
D/A update modes. Board 0 must
support DAC update mode settings,
such as the PCI-DAC6700s.

FromEngUnits()

ULAO04 AOutScan() ScaleData mode

Synchronously writes to analog
channels in the background.

ULCT01 C8254Config() CLoad()

CIn()

ULCT02 C9513Init()

C9513Config()

 CLoad()

CIn()

ULCT03 CStoreOnInt() C9513Init()

C9513Config()

CLoad()

CIn()

ULCT04 CFreqIn() C9513Init()

ULCT05 C8536Init()

C8536Config()

 CLoad()

CIn()

ULCT06 C7266Config() CLoad32()

CIn32()

CStatus()

ULCT07 CLoad32()

CIn32()

Board 0 must have an event counter,
such as the miniLAB 1008 or USB-
1208LS.

ULDI01 DIn() DConfigPort()

ULDI02 DBitIn() DConfigPort()

ULDI03 DInScan() DConfigPort()

GetStatus()

StopBackground()

WinBufToArray()

WinBufFree()

WinBufAlloc()

ULDI04 DIn() Using the AuxPort

ULDI05 DBitIn() Using the AuxPort

ULDI06 DConfigBit() DBitIn()

ULDO01 DOut() DConfigPort()

ULDO02 DBitOut() DOut()

DConfigPort()

ULDO04 DOut() Using the AuxPort

Page 681 of 700

ULDO05 DBitOut() Using the AuxPort DOut()

ULEV01 EnableEvent()

DisableEvent()

Using OnExternalInterrupt DConfigPort()

DIn()

ULEV02 EnableEvent()

DisableEvent()

Using OnDataAvailable and
OnEndOfAiScan

AInScan()

StopBackground()

ToEngUnits()

WinBufAlloc()

WinBufFree()

WinBufToArray()

ULEV03 EnableEvent()

DisableEvent()

Using OnPretrig and OnEndOfAiScan APretrig()

AConvertPretrigData()

DConfigPort()

DOut()

StopBackground()

ToEngUnits()

WinBufAlloc()

WinBufFree()

WinBufToArray()

ULEV04 EnableEvent()

DisableEvent()

Using OnEndOfAoScan AOutScan()

DConfigPort()

DOut()

FromEngUnits()

StopBackground()

WinArrayToBuf()

WinBufAlloc()

WinBufFree()

ULFI01 FileAInScan() FileGetInfo()

ULFI02 FileRead() FileAInScan()

FileGetInfo()

ULFI03 FilePretrig() FileGetInfo()

FileRead()

ULFL01 cbFlashLED() Board 0 must have an external LED,
such as the miniLAB 1008 or USB-
1208LS.

ULGT01 GetErrMsg() AIn()

ULGT03 MccBoard class
properties:

BoardConfig,
DioConfig,
ExpansionConfig

Use MccBoard class properties to get
configuration information for a board.

GetBoardName()

ULGT04 GetBoardName() MccDaq.MccBoard.BoardName
property

MccDaq.GlobalConfig.NumBoards
property

ULLOG01 GetFileName() Retrieves the name of a binary log
file.

ULLOG02 GetFileInfo()

GetSampleInfo()

GetAIChannelCount()

GetCJCInfo()

GetDIOInfo()

Retrieves analog data, CJC data, and
digital port data contained in a binary
log file.

GetFileName()

ULLOG03 ReadAIChannels()

ReadCJCChannels()

ReadDIOChannels()

ReadTimeTags()

Retrieves the analog input data, CJC
temperature data, digital I/O port
data, date values, and time values
logged in a binary file, and writes the
data to separate arrays.

GetFileName()

GetSampleInfo()

GetAIChannelCount()

GetCJCInfo()

GetDIOInfo()

Page 682 of 700

SetPreferences()

ULLOG04 ConvertFile() Converts a binary log file to a
comma-separated values (.csv) text
file or another text file format that
you specify.

GetSampleInfo()

ULMM01 MemReadPretrig() APretrig()

ULMM02 MemRead()

MemWrite()

ULMM03 AInScan() With ExtMemory option MemReset()

MemRead()

ULTI01 TIn()

ULTI02 TInScan()

VIn01 VIn() Reads an A/D input channel.

VOut01 VOut() Writes to a D/A output channel.

Page 683 of 700

Universal Library for .NET example programs sorted by method call
UL for .NET method name Example

program name
Special features/notes

ACalibrateData() None No example programs at this time

AConvertData() ULAI04

ULAI06

AConvertPreTrigData() ULAI09

ULEV03

AIn() ULAI01

ULAI11

ULGT01

AInScan() ULAIO2

ULAIO3

ULAIO4

ULAIO5

ULAIO6

ULAI10

ULAI12

ULAI13

ULAI14

ULAI15

ULEV02

ULMM03

n Default mode

n Background mode with manual data conversion

n Continuous Background mode

n ExtClock mode

n ScaleData mode (ULAI15)

n Various sampling mode options

ALoadQueue() ULAI10

AOut() ULAO01

ULAO03
Demonstrates difference between BoardConfig.DACUpdate.Immediate and
BoardConfig.DACUpdate.OnCommand D/A update modes. Board 0 must
support DAC update mode settings, such as the PCI-DAC6702 and PCI-
DAC6703.

AOutScan() ULAO02

ULAO04

ULAIO01

ULEV04

n concurrent AInScan() and AOutScan()

n ScaleData mode (ULAO04)

APretrig() ULAI08

ULAI09

ULEV03

ULFI03

ULMM01

ATrig() ULAI07

ULMM01

C7266Config() ULCT06

C8254Config() ULCT01

C8536Config() ULCT05

C8536Init() ULCT05

C9513Config() ULCT02

ULCT03

C9513Init() ULCT02

ULCT03

ULCT04

CConfigScan() CInScan02

CInScan03
Demonstrates how to scan a counter input channel in decrement mode, and
then write the data to an array.

Board 0 must support counter scans.

For CInScan03, board 0 must support counter scans in encoder mode.

CFreqIn() ULCT04

CIn() ULCT01

ULCT02

ULCT05

CIn32() ULCT06

ULCT07
For ULCT07, board 0 must have an event counter, such as the miniLAB
1008 or USB-1208LS.

CInScan() CInScan01

CInScan02

CInScan03

Demonstrates how to scan one or more counter input channels and then
write the data to an array.

Board 0 must support counter scans. For CInScan03, board 0 must support
counter scans in encoder mode.

CLoad() ULCT01

ULCT02

ULCT03

ULCT05

Page 684 of 700

CLoad32() ULCT06

ULCT07
For ULCT07, board 0 must have an event counter, such as the miniLAB
1008 or USB-1208LS.

ConvertFile() ULLOG04 Demonstrates how to convert a binary log file to a .CSV or .TXT format.

CStatus() ULCT06

CStoreOnInt() ULCT03

DacUpdate() ALAO03 Demonstrates the difference between BoardConfig.DACUpdate.Immediate
and BoardConfig.DACUpdate.OnCommand D/A update modes.

Board 0 must support DAC update mode settings, such as the PCI-
DAC6702 and PCI-DAC6703.

DaqInScan() DaqInScan01

DaqInScan02

DaqInScan03

Demonstrates how to synchronously scan analog, counter, and
thermocouple input channels, and digital input ports. Board 0 must support
synchronous input.

DaqOutScan() DaqOutScan01 Demonstrates how to synchronously write to an analog output channel and
digital output port in the background. Board 0 must support synchronous
output.

DaqSetSetpoints() DaqSetSetpoints01 Demonstrates how to configure and use setpoints, including how to add the
setpoint status to the scan list and perform asynchronous reads of the
setpoint status.

Board 0 must support DaqInScan().

DaqSetTrigger() DaqSetTrigger01 Demonstrates how to set up start and stop trigger events, and display input
channel data.

DBitIn() ULDI02

ULDI05

ULDI06

DBitOut() ULDO02

ULDO05

DConfigBit() ULDI06

DConfigPort() ULDI01

ULDI02

ULDI03

ULDO01

ULDO02

ULDO05

ULEV01

ULEV03

ULEV04

DeclareRevision() All examples All example programs use this method

DIn() ULDI01

ULDI03

ULDI04

ULEV01

DInScan() ULDI03

DOut() ULDO01

ULDO02

ULDO04

ULDO05

ULEV03

ULEV04

DOutScan() None No example programs at this time

EnableEvent()

DisableEvent()
ULEV01

ULEV02

ULEV03

ULEV04

n OnExternalInterrupt

n OnDataAvailable

n OnPretrigger

n OnEndOfAoScan

n OnScanError

n OnEndOfAiScan

ErrHandling() All examples All example programs use this method

FileAInScan() ULFI01

ULFI02
Demonstrates how to scan one or more A/D channels and store the
samples in a disk file.

FilePretrig() ULFI01

ULFI02

ULFI03

Demonstrates how to stream data continuously to a streamer file until a
trigger is received, then continue data streaming until the total number of
samples minus the number of pretrigger samples is reached.

FileRead() ULFI02

ULFI03

FlashLED() ULFL01 Flashes the onboard LED for visual identification (board 0 must have an
external LED, such as the miniLAB 1008 or USB-1208LS).

Page 685 of 700

FromEngUnits() ULAO01

ULAO03

ULAI07

ULAI14

ULEV04

GetAIInfo() ULLOG02 Demonstrates how to retrieve analog input data contained in a binary log
file.

GetBoardName() ULGT03

ULGT04

GetCJCInfo() ULLOG02

ULLOG03
Demonstrates how to retrieve CJC temperature data contained in a binary
log file.

GetDACStartup() None No example programs at this time

GetDACUpdateMode() None No example programs at this time

GetDIOInfo() ULLOG02

ULLOG03
Demonstrates how to retrieve digital I/O port data contained in a binary log
file.

GetErrMsg() ULGT01

GetFileInfo() ULLOG02 Demonstrates how to retrieve the version level and byte size of a binary
log file.

GetFileName() ULLOG01

ULLOG02

ULLOG03

ULLOG04

Demonstrates how to retrieve the name of a binary log file.

GetPreferences() None No example programs at this time

GetRevision() None No example programs at this time

GetSampleInfo() ULLOG02

ULLOG03
Demonstrates how to retrieve the sample interval, sample count, and the
date and time of the first data point logged in a binary file.

GetStatus() ULAI03

ULAI04

ULAI05

ULAI06

ULAI09

ULAIO01

ULCT03

ULDI03

GetTCValues() DaqInScan03 Demonstrates how to retrieve analog. thermocouple, and digital data from
a synchronous scan operation. Board 0 must support synchronous input.

InByte() None No example programs at this time

InWord() None No example programs at this time

MccDaq.MccBoard class
properties:

BoardConfig, DioConfig, and
ExpansionConfig

ULGT03

ULGT04
Use the MccBoard class properties to get configuration information for a
board.

MemRead() ULMM01

ULMM02

ULMM03

MemReadPretrig() ULMM01

MemReset() ULMM03

MemSetDTMode() None No example programs at this time

MemWrite() ULMM02

OutByte() None No example programs at this time

OutWord() None No example programs at this time

ReadAIChannels()

ReadCJCChannels()

ReadDIOChannels()

ReadTimeTags()

ULLOG03 Demonstrates how to retrieve analog input data, CJC data, DIO port data,
and date/time values contained in a binary log file, and then store the data
in separate arrays.

RS485() None No example programs at this time

PulseOutStart()

PulseOutStop()

PulseOutStart01 Demonstrates how to send a frequency output to a timer output channel.
Board 0 must have a timer output.

You enter a frequency and a duty cycle within the timer's range.

ScaledWinArrayToBuf() None No example programs at this time

ScaledWinBufAlloc()

ScaledWinBufToArray()
ULAI15 Demonstrates how to store scaled data in an array.

SetDACStartup() None No example programs at this time

SetDACUpdateMode() ULAO03 Demonstrates difference between BoardConfig.DACUpdate.Immediate and

Page 686 of 700

BoardConfig.DACUpdate.OnCommand D/A update modes.

Board 0 must support DAC update mode settings, such as the PCI-
DAC6702 and PCI-DAC6703.

SetPreferences() ULLOG03 Demonstrates how to store preference settings for time stamp data, analog
data, and CJC temperature data.

SetTrigger() ULAI14

StopBackground() ULAIO3

ULAIO4

ULAIO5

ULAIO6

ULAIO9

ULAIO01

ULCT03

ULDI03

ULEV02

ULEV03

ULEV04

Concurrent AInScan() and AOutScan()

TIn() ULTI01

TInScan() ULTI02

TimerOutStart()

TimerOutStop()

TimerOutStart01 Demonstrates how to send a frequency output to a timer output channel.
Board 0 must have a timer output.

You enter a frequency within the timer's range.

ToEngUnits() ULAI01

ULAI07

ULAI11

ULEV02

ULEV03

VIn() VIn01 Demonstrates how to read an A/D input channel.

VOut() VOut01 Demonstrates how to write to a D/A output channel.

WinArrayToBuf() ULAIO01

ULAO02

ULEV04

WinBufAlloc()

WinBufFree()

WinBufToArray()

ULAI02

ULAI03

ULAI04

ULAI05

ULAI06

ULAI08

ULAI09

ULAI010

ULAI012

ULAI013

ULAI014

ULAIO1

ULAO02

ULCT03

ULDI03

ULEV02

ULEV03

ULEV04
(WinBufAlloc() and
WinBufFree() only)

WinArrayToBuf() ULAI01

ULAI02

ULAI04

WinArrayAlloc32() CInScan01

CInScan02
Demonstrates how to allocate a Windows global memory buffer for use with
32-bit scan functions.

WinBufToArray32() CInScan01

CInScan02
Demonstrates how to copy 32-bit data from a Windows global memory
buffer into an array.

Page 687 of 700

Error Codes
Error codes that are returned when running Universal Library or Universal Library for .NET are listed below. Universal Library .NET
errors can be referenced from the MccDaq.ErrorInfo.Message property.

Each entry in the list has four parts:

n Error code number

n Symbolic name

n Error message

n Explanation of the error

Both the Universal Library function and its Universal Library .NET equivalent method are referred to when appropriate. Error code
and error messages are identical for both programming libraries. The only difference in the error names used by each library is the
case the Universal Library error names are all uppercase (for example NOERRORS), while the Universal Library for .NET error
names are mixed case (for example NoErrors).

0 NOERRORS No error has occurred

 The function executed successfully.

1 BADBOARD Invalid board number

 The BoardNum argument that was specified does not match any of the boards that are listed in the configuration file. Run
the configuration program to check which board numbers are configured.

2 DEADDIGITALDEV Digital device is not responding - is base address correct?

 The digital device on the specified board is not responding. Either the board was installed incorrectly or the board is
defective. Run the configuration program and make sure that the correct board was installed.

3 DEADCOUNTERDEV Counter device is not responding - is base address correct?

 The counter device on the specified board is not responding. Either the board was installed incorrectly or the board is
defective. Run the configuration program and make sure that the correct board was installed.

4 DEADDADEV D/A is not responding - is base address correct?

 The D/A device on the specified board is not responding. Either the board was installed incorrectly or the board is
defective. Run the configuration program and make sure that the correct board was installed.

5 DEADADDEV A/D is not responding - is base address correct?

 The A/D device on the specified board is not responding. Either the board was installed incorrectly or the board is
defective. Run the configuration program and make sure that the correct boards was installed.

6 NOTDIGITALCONF Selected board does not have digital I/O.

 A digital I/O function or method was called with a board number that referred to a board that does not support digital I/O.
Run the configuration program to see which type of board that board number refers to.

7 NOTCOUNTERCONF Selected board does not have a counter.

 A counter function or method was called with a board number that referred to a board that does not have a counter. Run
the configuration program to see which type of board that board number refers to.

8 NOTDACONF Selected board does not have a D/A.

 An analog output function or method was called with a board number that referred to a board that does not have an
analog output (D/A). Run the configuration program to see which type of board the board number refers to.

9 NOTADCONF Selected board does not have an A/D.

 An analog input function or method was called with a board number that referred to a board that does not have an analog
input (A/D). Run the configuration program to see which type of board that board number refers to.

10 NOTMUXCONF Selected board does not have thermocouple inputs.

 A thermocouple input function or method was called with a board number that does not support thermocouple inputs, or is
not connected to an EXP board. Run the configuration program to view/change the board configuration.

11 BADPORTNUM Invalid digital port number.

 The Port number that was specified for a digital I/O function does not exist on the specified board.

12 BADCOUNTERDEVNUM Invalid counter device.

 The Counter Number that was specified for a counter function does not exist on the board that was specified.

13 BADDADEVNUM Invalid D/A device.

 The D/A channel that was specified for an analog output function does not exist on the board that was specified.

14 BADSAMPLEMODE Invalid sample mode.

 A sample mode that is not supported on this board (SINGLEIO, DMAIO or BLOCKIO) was specified in the Options
argument. Try running the function without setting any of the Sample Mode options.

15 BADINT Board configured for invalid interrupt level.

 No interrupt was selected in InstaCal and one is required, or the board is set for "compatible mode" and the interrupt
level selected is not supported in this mode. Interrupts above 7 are not valid in compatible mode. Either change the
switch setting on the board to "enhanced mode", or change the interrupt level with the configuration program to

Page 688 of 700

something less than 8.

16 BADADCHAN Invalid A/D channel number.

 An invalid channel argument was passed to an analog input function or method. The range of valid channel numbers
depends on which A/D board you are using - refer to the board manual. For some boards it also depends on how the
board is configured (with a switch). For those boards run the configuration program and check how many channels the
board is configured for.

17 BADCOUNT Invalid count.

 An invalid Count argument was specified to a function or method. If this error occurs during cbAInScan()/AInScan(),
increasing the Count should correct the problem. For boards using DMAIO, adjust the data buffer and Count above
(HighChan-LowChan+1)*Rate/100 for CONTINUOUS mode scans. However, those boards using BLOCKIO, require a user
buffer and Count large enough to hold at least one half FIFO worth of samples (typically, 512 samples) for CONTINUOUS
mode scans.

18 BADCNTRCONFIG Invalid counter configuration specified.

 An invalid Config argument was passed to cbC8254Config/C8254Config. The only legal values are HIGHONLASTCOUNT,
ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE and HARDWARESTROBE.

19 BADDAVAL Invalid D/A value.

 An invalid D/A value was passed as an argument/parameter to an analog output function or method. The only legal
values are 0 to 4,095 for 12-bit boards or 0 to 65,535 for 16-bit boards (see the "Visual Basic signed integers" discussion
at the beginning of the "Counter Boards" section in the Universal Library User's Guide).

20 BADDACHAN Invalid D/A channel number.

 An invalid D/A channel was passed as an argument/parameter to an analog output function or method. The legal range of
values depends on which D/A board you are using. Refer to the board manual to find how many D/A channels it has.

22 ALREADYACTIVE Background operation already in progress.

 An attempt was made to start a second background process on the same board before the first one had completed.
Background processes are started whenever the BACKGROUND option is used by cbCStoreOnInt()/CStoreOnInt(). To
stop a background operation, call cbStopBackground()/StopBackground(). To wait for a background process to complete.
To wait for a background process to complete call cbGetStatus()/GetStatus() and wait for status=IDLE.

23 PAGEOVERRUN DMA transfer crossed page boundary, may have gaps in data.

 When a DMA transfer crosses a 64K memory page boundary on boards without FIFO buffers, there may be a small gap
(missing samples) in the data. For applications requiring high speed transfers of greater than 32K samples, please select
a board with a FIFO buffer. For boards without, check the data for gaps and do not specify rates over that at which
gapless data may be taken. This is system-specific, so you must determine the rate by experimentation.

24 BADRATE Invalid sampling rate.

 Invalid sampling rate argument was specified. The rate was either zero, a negative number or it was higher than the
selected board supports. Refer to board-specific information for board maximum rates.

25 COMPATMODE Board switches set for Compatible mode.

 An operation was attempted that is not possible when the board's switch is" set for 'compatible' operation. The Most likely
causes are due to using the BLOCKIO option or the pre-triggering functions. Either turn off the 'compatible' mode switch
on the board or don't use the BLOCKIO option or the pre-triggering functions.

26 TRIGSTATE Incorrect initial trigger state - trigger must start at TTL low.

 Boards that use "polled gate" triggering require that the trigger be "off" when a pre-trigger functions is first called. It then
waits for the trigger signal. Make sure that the Trigger Input line (usually D0) is held at TTL low before calling the pre-
trigger function.

27 ADSTATUSHUNG A/D is not responding.

 The A/D board is not responding as it should. Usually indicates some kind of hardware problem - either defective
hardware or more than one board at the same base address.

28 TOOFEW Trigger occurred before the requested number of samples were
collected.

 A pre-trigger function or method was called and the trigger signal occurred before the requested number of samples could
be collected. This is only a warning message. The function or method continued anyway. The data that was returned to
the array will contain fewer than the expected number of points. The function or method will return the actual number of
pre-trigger points and the total number of points. You can use these two values to find your way around the data in the
array.

29 OVERRUN Data overrun - data was lost.

 Data was lost during an analog input because the computer could not keep up with the A/D sampling rate. This typically
can only happen with the file input functions or methods, or by using SINGLIO mode. Possible solutions include lowering
the sampling rate, defragmenting the "streamer" file, switching to a RAM disk, or lowering the count.

30 BADRANGE Invalid voltage or current range.

 Invalid Range argument was specified to an analog input or output function or method. The board does not support the
gain you specified. Refer to board-specific information for a list of allowable ranges.

31 NOPROGGAIN This A/D board does not have programmable gain.

 Invalid Range argument was passed to an analog input function or method. The selected board does not support
programmable gains so the only valid Range argument is 0. (This argument is ignored for these board types in later
versions of the library.)

32 BADFILENAME Specified file name is not valid.

Page 689 of 700

 The FileName argument/parameter that was passed to a file function is not valid. It is either an empty string or a NULL
pointer.

33 DISKISFULL Disk is full, could not complete operation.

 A file operation failed before completing because the disk that it was writing to is full. Try erasing some files from the
disk. If this error occurred during either cbFileAInScan()/FileAInScan() or cbFilePretrig()/FilePretrig() it indicates another
problem. The disk space for these commands should have been previously allocated with the MAKESTRM.EXE program. If
this error is generated when data is being collected it indicates that you did not allocate a large enough file with
MAKESTRM.EXE.

34 COMPATWARN Board switch set to compatible mode - sampling speed may be
limited.

 The board's switch is set for "compatible mode." When in "compatible mode," BLOCKIO transfers are not possible.
BLOCKIO sampling was specified but it has automatically been changed to DMAIO transfers. The maximum sampling rate
will be limited to the maximum rate for DMA transfers. Change the "compatible mode" switch on the board if you want to
use BLOCKIO transfers.

35 BADPOINTER Pointer is not valid.

 An invalid (NULL) pointer was passed as an argument/parameter to a function or method.

37 RATEWARNING Sample rate may be too fast for SINGLEIO mode.

 The specified sampling rate MAY be too high. The maximum allowable sampling rate depends very much on the computer
that the program is running on. This warning is generated based on the slowest CPU speed. Your computer may be able
to sustain faster rates, but, you should expect the computer to lock up (fail to respond to keyboard input) if you do
exceed the sampling rate your computer can sustain.

38 CONVERTDMA CONVERTDATA cannot be used with DMAIO and BACKGROUND.

 The CONVERTDATA and BACKGROUND options can not be used together when the board is transferring data via DMA.
Possible solutions include: Use cbAConvertData()/AConvertData() to convert the data after it is collected. Don't use the
BACKGROUND option. Use the BLOCKIO option if your A/D board supports it. Use the SINGLEIO option if your computer
is fast enough to support the selected sampling rate.

39 DTCONNECTERR Board does not support the DTCONNECT option.

 The DTCONNECT option was passed to an analog input function or method. The selected board does not support that
option.

40 FORECONTINUOUS CONTINUOUS can only be run with BACKGROUND.

 The CONTINUOUS option was passed to a function or method without also setting the BACKGROUND option. This is not
allowed. Any time you set the CONTINUOUS option you must also set the BACKGROUND option.

41 BADBOARDTYPE This function or method cannot be used with this board.

 An attempt was made to call a function or method for a board that does not support that function or method.

42 WRONGDIGCONFIG Digital port not configured correctly for requested operation.

 Some of the digital bits or ports (FIRSTPORTA - EIGHTHPORTCH) must be configured as inputs OR outputs but not both.
An attempt was made to use a digital input function or method on a port or bit that was configured as an output or vice
versa. Use cbDConfigPort()/DConfigPort() or cbDConfigBit()/DConfigBit() to switch a port's (or bits) direction. If the board
you are using contains configurable port types and you do not call cbDConfigPort()/DConfigPort() or cbDConfigBit
()/DConfigBit() in your program, then all of the configurable ports will be in an unknown state (input or output).

43 NOTCONFIGURABLE This digital port is not configurable (it's an In/Out port).

 cbDConfigPort()/DConfigPort() or cbDConfigBit()/DConfigBit() was called for a port that is not configurable. Check the
PortNum argument passed to cbDConfigPort() and make sure that it is in the range FIRSTPORTA - EIGHTHPORTCH. If
PortNum is AUXPORT, make sure your hardware supports configuration of this port type. If not then there is no need to
call this function or method.

44 BADPORTCONFIG Invalid digital port configuration.

 The Direction argument passed to cbDConfigPort()/DConfigPort() or cbDConfigBit()/DConfigBit() is invalid. It must be set
to either DIGITALIN or DIGITALOUT.

45 BADFIRSTPOINT First point number is not valid.

 The FirstPoint argument to cbFileRead ()/FileRead() is invalid. It is either a negative number or it is larger then the
number of points in the file.

46 ENDOFFILE Attempted to read past the end of the file.

 cbFileRead()/FileRead() attempted to read beyond the end of the file. Check the file length with cbFileGetInfo()/FileGetInfo
() and make sure that the FirstPoint and Count arguments to cbFileRead()/FileRead() are correct for that file length.

47 NOT8254CTR This board does not have an 8254 counter.

 cbC8254Config()/C8254Config()was called for a board that has a counter but not an 8254 counter. This function or
method can only be used with an 8254 counter.

48 NOT9513CTR This board does not have a 9513 counter.

 cbC9513Config()/C9513Config()was called for a board that has a counter but not a 9513 counter. This function or method
can only be used with a 9513 counter.

49 BADTRIGTYPE Invalid TrigType.

 cbATrig()/(ATrig()) was called with an invalid TrigType argument. It must be set to either TRIGABOVE or TRIGBELOW.

50 BADTRIGVALUE Invalid TrigValue.

 cbATrig()/ATrig() was called with an invalid TrigValue argument/parameter. It must be in the range 0 - 4,095 for 12-bit

Page 690 of 700

boards or 0 to 65,535 for 16-bit boards (see the "Visual Basic signed integers" discussion at the beginning of the "Counter
Boards" section in the Universal Library User's Guide.)

52 BADOPTION Invalid option specified for this function or method.

 The Option argument contains an option that is not valid for this function or method.

53 BADPRETRIGCOUNT Invalid PreTrigCount specified.

 Either cbAPretrig()/APretrig()or cbFilePretrig()/FilePretrig() was called with an invalid PretrigCount argument. The pre-
trigger count must not be <0, and must be less than TotalCount – 512. It also must be less than 32k for cbAPretrig
()/APretrig(), and less than 16k for cbFilePretrig()/FilePretrig().

55 BADDIVIDER Invalid FOutDivider value.

 The FOutDivider argument to cbC9513Init()/C9513Init() is not valid. It must be in the range 0 – 15.

56 BADSOURCE Invalid FOutSource value.

 The FOutSource argument to cbC9513Init() (C9513Init()) is not valid. It must be one of the following values: CTRINPUT1,
CTRINPUT2, CTRINPUT3, CTRINPUT4, CTRINPUT5, GATE1, GATE2, GATE3, GATE4, GATE5, FREQ1, FREQ2, FREQ3,
FREQ4, FREQ5 (for example 0 to 15).

57 BADCOMPARE Invalid compare value.

 One or both of the compare arguments to cbC9513Init()/C9513Init() are not valid. They must be set to (CB)ENABLED or
(CB)DISABLED (1 or 0).

58 BADTIMEOFDAY Invalid TimeOfDay value.

 The TimeOfDay argument to cbC9513Init()/C9513Init() is not valid. It must be set to either ENABLED or DISABLED (1 or
0).

59 BADGATEINTERVAL Invalid Gate Interval value.

 The GateInterval argument to cbCFreqIn()/CFreqIn() is not valid. It must be greater than 0.

60 BADGATECNTRL Invalid Gate Control value.

 The GateControl argument to cbC9513Config()/C9513Config() is not valid. It must be in the range 0 -7.

61 BADCOUNTEREDGE Invalid Counter Edge value.

 The CounterEdge argument to cbC9513Config()/C9513Config() is not valid. It must be set to either POSITIVEEDGE or
NEGATIVEEDGE.

62 BADSPCLGATE Invalid SpecialGate value.

 The SpecialGate argument to cbC9513Config()/C9513Config() is not valid. It must be set to either (CB)ENABLED or (CB)
DISABLED (1 or 0).

63 BADRELOAD Invalid Reload value.

 The Reload argument to cbC9513Config()/C9513Config() is not valid. It must be set to either LOADREG or
LOADANDHOLDREG.

64 BADRECYCLEFLAG Invalid Recycle Mode value.

 The RecycleMode argument to cbC9513Config()/C9513Config() is not valid. It must be set to either (CB)ENABLED or (CB)
DISABLED (1 or 0).

65 BADBCDFLAG Invalid BCD Mode value.

 The BCDMode argument/parameter to cbC9513Config()/C9513Config() is not valid. It must be set to either (CB)ENABLED
or (CB)DISABLED (1 or 0).

66 BADDIRECTION Invalid Count Direction value.

 The CountDirection argument to cbC9513Config() (C9513Config()) is not valid. It must be set to either COUNTUP or
COUNTDOWN.

67 BADOUTCONTROL Invalid Output Control value.

 The OutputControl argument to cbC9513Config() (C9513Config()) is not valid. It must be set to either ALWAYSLOW,
HIGHPULSEONTC, TOGGLEONTC, DISCONNECTED or LOWPULSEONTC.

68 BADBITNUMBER Invalid BitNum specified.

 The BitNum argument to cbDBitIn() or cbDBitOut() (DBitIn() or DBitOut()) is not valid. The valid range of bit numbers
depends on the selected board. If it is a DIO24 compatible board, the maximum bit number is 23. If it's a DIO96, the
maximum bit number is 95. Refer to board-specific information in the Universal Library User's Guide or in your hardware
manual.

69 NONEENABLED None of the counter channels were enabled.

 None of the counter channels were marked as (CB)ENABLED in the CntrControl array that was passed to cbCStoreOnInt
()/CStoreOnInt(). At least one of the counter channels must be enabled.

70 BADCTRCONTROL An element of Cntr Control array not set to ENABLED or DISABLED

 One of the elements of the CntrControl array that was passed to cbCStoreOnInt()/(CStoreOnInt()) was set to something
other then (CB)ENABLED or (CB)DISABLED. The array must have at least ten elements, and the first ten elements must
be set to either (CB)ENABLED or (CB)DISABLED.

71 BADEXPCHAN Invalid EXP channel specified.

 An invalid channel was passed to one of the thermocouple input commands. The channel number when using an EXP
board must be ≥16. The maximum allowable channel number depends on which EXP board is being used (and how many
of them). Refer to the board manual to find the number of channels.

72 WRONGADRANGE Board set to wrong A/D range for reading thermocouples.

Page 691 of 700

 A thermocouple input function or method was called to read an EXP board input. The EXP board is connected to an A/D
board with hardware selected gain that is set to the wrong range. When using EXP boards with thermocouples, the A/D
must be set to the –5 to +5 volt range when available. When using RTD sensors, the range is 0 to 10V when available.

73 OUTOFRANGE Temperature input is out of range.

 A thermocouple input function or method returned an invalid temperature. This usually indicates an open connection in the
thermocouple or its connection to the mux board.

74 BADTEMPSCALE Invalid temperature scale specified

 The Scale argument to a thermocouple input function or method is not valid. It must be set to either CELSIUS,
FAHRENHEIT, KELVIN, VOLTS or NOSCALE.

Set to VOLTS to read the voltage input of a thermocouple. Refer to board-specific information in the Universal Library
User's Guide to determine if the hardware supports this option.

Set to NOSCALE to retrieve raw data from a device. Specifying NOSCALE returns calibrated data, however a cold junction
compensation (CJC) correction factor is not applied to the returned values. Refer to board-specific information in the
Universal Library User's Guide to determine if the hardware supports this option.

76 NOQUEUE Specified board does not have channel/gain queue.

 The function or method that was called requires that the board has a channel/gain queue. The specified board does not
have a queue.

77 CONTINUOSCOUNT Count must be > the packet size to use continuous mode.

 The Count argument is not valid for continuous mode. Using BLOCKIO mode, the Count argument must be large enough
to cause at least one interrupt. This is usually half the size of the boards FIFO (typical sizes are 256, 512, and 1,024).
Refer to the board-specific information in the Universal Library User's Guide.

78 UNDERRUN D/A FIFO went empty during output.

 The specified D/A output rate could not be sustained. Try increasing the size of the data buffer or reducing the update
rate to eliminate the error.

79 BADMEMMODE Invalid memory mode specified.

 The memory mode that was selected with cbMemSetDTMode()/MemSetDTMode() is not one of the valid modes.

80 FREQOVERRUN Measured frequency too high for selected gating interval.

 The GateInterval argument used with cbCFreqIn()/CFreqIn() is too large to measure the frequency of the signal
connected to the counter. The counter is overflowing. Decrease the gating interval to eliminate the error.

81 NOCJCCHAN A CJC Channel must be configured to make temperature
measurements.

 When the board was installed with the InstaCal installation program, no Cold Junction Compression (CJC) channel was
selected. To use the temperature measurement functions or methods with thermocouples, you must first select a CJC
channel on the A/D board and then rerun the InstaCal installation program.

82 BADCHIPNUM Invalid ChipNum specified.

 An invalid ChipNum argument was used with cbC9513Init()/C9513Init(). If the board is CTR05, set ChipNum to 0. If the
board is a CTR10, set ChipNum to either 0 or 1.

83 DIGNOTENABLED The digital I/O on this board is not enabled.

 When the board was installed with the InstaCal installation program, the expansion digital I/O was set to DISABLED. To
use these digital I/O lines, you must enable the digital I/O on the board (with a jumper) and then re-run the InstaCal
installation program and set the digital I/O to ENABLED.

84 CONVERT16BITS CONVERTDATA option can not be used with 16-bit A/D converters.

 When using a 16-bit A/D (DAS1600/16), if you try to use the CONVERTDATA option with cbAInScan()/AInScan() or call
cbAConvertData()/AConvertData(), this error is returned. (This has been updated in later versions of the library so that it
is ignored for boards for which it is inappropriate.)

85 NOMEMBOARD The EXTMEMORY option requires that a MEGA-FIFO be attached.

 Attempt to use a cbMem_() function or Mem_() method without a MEGA-FIFO board installed. Install MEGA-FIFO with
InstaCal.

86 DTACTIVE No memory read/write allowed while DT transfer in progress.

 A read or write to a memory board was attempted while data was being transferred via DT-Connect.

87 NOTMEMCONF Specified board is not a memory board.

 The specified board is not a memory board. This function or method only works with memory boards.

88 ODDCHAN The first channel in scan and number of channels must be even (0, 2,
4, etc).

 Some boards use a channel/gain queue that require the first channel in the queue and the number of channels in the
queue always be an even channel. This error can occur even when you are not in the process of loading the queue. Some
boards use the queue automatically with cbAInScan()/AInScan(). On those boards the low channel must be an even
number.

89 CTRNOINIT Counter was not configured or initialized.

 You attempted to use cbCLoad() or cbCIn() (CLoad() or CIn()) before initializing and configuring the counter.

90 NOT8536CTR This board does not have an 8536 counter chip.

 An attempt has been made to use 8536 initialization or configuration on board without an 8536 chip.

Page 692 of 700

91 FREERUNNING Board doesn't time A/D sampling. Collecting at fastest possible
speed.

 This board does not have an A/D pacer mechanism and you have called cbAInScan()/(AInScan(). The A/D will be
sampled in a tight software loop as fast as the CPU can execute the instructions. The speed of sampling is dependent on
the computer and the concurrent tasks.

92 INTERRUPTED Operation interrupted with Ctrl-C key.

 A foreground operation was stopped before completion because either the Ctrl-C or Ctrl-Break keys were pressed.

93 NOSELECTORS No selector could be allocated.

 A Windows selector required by the library could not be allocated. Close any open Windows applications that are not
required to be running, and try again.

94 NOBURSTMODE This board does not support burst mode.

 An attempt was made to use the BURSTMODE option on a board which does not support that option.

95 NOTWINDOWSFUNC This function is not available in Windows library.

 The library function you called is not supported in the current revision of Universal Library for Windows Languages. It may
be supported in the future. Contact technical support.

96 NOTSIMULCONF Board not configured for SIMULTANEOUS option.

 The configuration file of the D/A board in InstaCal must be set for simultaneous update before you use the
SIMULTANEOUS option of cbAOutScan()/AOutScan(). The jumpers on the D/A board must be set for simultaneous update
before it will work.

97 EVENODDMISMATCH An even channel is in an odd slot in the queue, or vice versa.

 The channel gain queue on some A/D boards has a restriction that the channel numbers must be in even queue positions
and odd channel numbers must be in odd queue positions.

98 M1RATEWARNING Sampling speed to system memory MAY be too fast.

 The A/D board sampling speed you have requested may be too fast for the computer system bus transfer to complete
before the next packet is ready for transfer. If this is the case, data will overrun and sample data will be garbled. This
warning is initiated whenever you request a sample rate over 625 kHz, AND the sample set is larger than the FIFO buffer
on the board, AND an external memory board, such as a MEGA-FIFO is not being used. Your system may be able to
handle the rate requested but only experimentation will bear this out. Your system may be capable of the full 1 MHz rate
directly to system memory.

99 NOTRS485 Selected board is not a RS-485 board.

 An attempt was made to call cbRS485()/RS485() with a board that is not RS485 compatible.

100 NOTDOSFUNCTION This function is not available in DOS.

 The function that was called is not available in the DOS version of the Universal Library.

101 RANGEMISMATCH Bipolar and unipolar ranges cannot be used together in A/D queue.

 The channel/gain queue should only be loaded (via cbALoadQueue()/ALoadQueue()) with all unipolar or bipolar ranges.

102 CLOCKTOOSLOW Sampling rate is too high for clock speed; change clock jumper on
the board.

 The sampling rate that you requested is too fast. The A/D board pacer might be capable of running at a higher rate.
Check the board for an XTAL jumper and, if it is not set for the highest rate, place the jumper in the position for the
highest rate. After the jumper is set, re-run InstaCal.

103 BADCALFACTORS Calibration factors are invalid - Disabling software calibration.

 The selected board uses software calibration and the stored calibration factors are invalid. Run InstaCal and calibrate the
board before using it.

104 BADCONFIGTYPE Invalid configuration information type specified.

 An invalid ConfigType argument was passed to either cbGetConfig() or cbSetConfig().

105 BADCONFIGITEM Invalid configuration item specified.

 An invalid ConfigItem argument was passed to either cbGetConfig() or cbSetConfig().

106 NOPCMCIABOARD Cannot access the PCMCIA board.

 Cannot access the specified PCMCIA board. Make sure that the PCMCIA Card & Socket Services are installed correctly
and that the board was installed in the system correctly via InstaCal.

107 NOBACKGROUND Board does not support background operation.

 The BACKGROUND option was used and the specified board does not support background operation.

108 STRINGTOOSHORT The string argument is too short for the string being returned.

 The string passed to a library function or method is to small to contain the string that is being returned. Increase the size
of the string to the minimum size specified for the function or method that you are using.

109 CONVERTEXTMEM CONVERTDATA not allowed with EXTMEMORY option.

 You requested both the CONVERTDATA and EXTMEMORY option. These options cannot be used together. Collect the data
without the CONVERTDATA option. After the data has been collected, read it back from the memory card (cbMemRead
()/MemRead()or cbMemReadPretrig()/ MemReadPretrig()), and use cbAConvertData()/AConvertData()) to convert the
data.

110 BADEUADD Program error bad values used in cbFromEngUnits or cbToEngUnits().

 Invalid floating point data was used in cbFromEngUnits()/FromEngUnits()or cbToEngUnits/ToEngUnits(). Check the

Page 693 of 700

arguments passed to the relevant function or method.

111 DAS16JRRATEWARNING Rates greater than 125 kHz must use on board 10 MHz clock.

 If a rate greater than 125 kHz is selected and the on board jumper is set for 1 MHz when using the CIO-DAS16/Jr, this
warning is generated. Place the jumper on the 10MHz position and update your InstaCal settings.

112 DAS08TOOLOW_RATE The desired sample rate is below hardware minimum.

 Increase the value of the Rate argument in cbAInScan()/AInScan(). The lowest pacer frequency is the clock frequency
(usually 8 MHz ÷ 2) ÷ by 65,535 for the CIO-, PC104 and PCM- DAS08.

114 AMBIGSENSORONGP More than one temperature sensor type defined for EXP-GP.

 Thermocouple and RTD types are both defined for an EXP-GP. cbTIn()/(TIn() and cbTInScan()/TInScan()) require that
only one be defined to operate. Use InstaCal to set one of the sensor types to "Not Installed".

115 NOSENSORTYPEONGP No temperature sensor type defined for EXP-GP.

 Neither Thermocouple nor RTD types are defined for an EXP-GP. cbTIn()/(TIn() and cbTInScan()/TInScan()) require that
one and only one be defined to operate. Use InstaCal to set one of the sensor types to a predefined type.

116 NOCONVERSIONNEEDED Selected 12-bit board already returns converted data.

 Some 12-bit boards do not need to have their data converted after a call to cbAInScan()/AInScan() with the
NOCONVERTDATA option. These boards return no channel tags and therefore return data in its proper format. Calling
cbAConvertData()/AConvertData() with data generated from these boards will generate this warning.

117 NOEXTCONTINUOUS CONTINUOUS mode cannot be used with EXTMEMORY.

 CONTINUOUS mode is ignored when used with the EXTMEMORY option.

118 INVALIDPRETRIGCONVERT cbAConvertPretrigData called after cbAPretrig failed.

 The data you are attempting to convert with cbAConvertPretrigData()/ AConvertPretrigData() can not be converted
because cbAPretrig()/APretrig() did not return a complete data set, probably due to an early trigger.

119 BADCTRREG Bad counter argument passed to cbCLoad()

 The RegNum argument passed to cbCLoad() (CLoad()) is not a valid register.

120 BADTRIGTHRESHOLD Low trigger threshold is greater than high threshold.

 The LowThreshold arguments to cbSetTrigger()/SetTrigger() must be < the HighThreshold.

121 BADPCMSLOTREF NO PCM Card was found in the specified slot.

 This is usually caused by swapping PCMCIA cards and not re-running InstaCal. Run InstaCal.

122 AMBIGPCMSLOTREF Two identical PCM cards found. Please specify exact slot in InstaCal.

 This error occurs in DOS mode only when InstaCal is configured for a PCMCIA card in "any slot". To correct the problem,
run InstaCal, go to the Install menu and pop up the board's menu. Highlight PCMCIA slot and choose either "0" or "1".

123 BADSENSORTYPE Invalid sensor type selected in InstaCal.

 The specified sensor type is not included in the allowed list of thermocouple/RTD types. Set the sensor type to a
predefined type using InstaCal.

126 CFGFILENOTFOUND Cannot find CB.CFG file.

 The CB.CFG file could not be found. This file should be located in the same directory in which you installed the software.

127 NOVDDINSTALLED The CBUL.386 virtual device driver is not installed.

 The Windows device driver CBUL.386 is not installed on your system. Normally, it will be automatically installed when you
run the standard installation program. The following line should be in your \windows\system.ini file in the [386Enh]
section:

128 NOWINDOWSMEMORY Requested amount of Windows page-locked memory is not available.

 The Windows device driver could not allocate the required amount of physical memory. This error should not normally
occur unless you are collecting very large amounts of data or your system is very memory constrained. If you are
collecting a very large block of memory, try collecting a smaller amount. If this is not an option, than consider using
cbFileAInScan()/FileAInScan() instead of cbAInScan()/AInScan(). Also, if you are running other programs, try shutting
them down.

129 OUTOFDOSMEMORY Not enough DOS memory available.

 Try closing down any unneeded programs that are running.

130 OBSOLETEOPTION Obsolete option specified for cbSetConfig/cbGetConfig.

 The specified configuration item is no longer supported in the 32 bit version of the Universal Library.

131 NOPCMREGKEY No registry entry for this PCMCIA card.

 When running under Windows/NT, there must be an entry in the system registry for each PCMCIA card that you will be
using with the system. This is ordinarily taken care of automatically by the Universal Library installation program. If this
error occurs, contact technical support for assistance.

132 NOCBUL32SYS CBUL32.SYS device driver is not installed.

 The Windows device driver CBUL.SYS is not installed on your system. Normally, it will be automatically installed when you
run the MCC standard installation program. Contact technical support for assistance.

133 NODMAMEMORY No DMA memory available to device driver.

 The Windows device driver could not allocate the minimum required amount of memory for DMA. If you are sampling at
slower speeds, you can specify SINGLEIO in the Options argument to cbAInScan()/(AInScan(). This will prevent the
library from attempting to use DMA. In general though, this error should not ordinarily occur. Contact technical support

Page 694 of 700

for assistance.

134 IRQNOTAVAILABLE IRQ not available.

 The Interrupt Level that was specified for the board (in InstaCal) conflicts with another board in your computer. Try
switching to a different interrupt level.

135 NOT7266CTR This board does not have an LS7266 counter.

 This function or method can only be used with a board that contains an LS7266 chip. These chips are used on various
quadrature encoder input boards.

136 BADQUADRATURE Invalid Quadrature argument passed to cbC7266Config().

 The Quadrature argument must be set to either NO_QUAD, X1_QUAD, X2_QUAD, or X4_QUAD.

137 BADCOUNTMODE Invalid counting mode specified.

138 BADENCODING Invalid DataEncoding argument passed to cbC7266Config().

 The DataEncoding argument must be set to either BCD_ENCODING or BINARY_ENCODING.

139 BADINDEXMODE Invalid IndexMode argument passed to cbC7266Config()

 The IndexMode argument must be set to either INDEX_DISABLED, LOAD_CTR, LOAD_OUT_LATCH, or RESET_CTR.

140 BADINVERTINDEX Invalid InvertIndex argument passed to cbC7266Config()

 The InvertIndex argument must be set to either (CB)ENABLED or (CB)DISABLED.

141 BADFLAGPINS Invalid FlagPins argument passed to cbC7266Config()

 The FlagPins argument must be set to either CARRY_BORROW, COMPARE_BORROW, CARRYBORROW_UPDOWN, or
INDEX_ERROR.

142 NOCTRSTATUS This board does not support cbCStatus()

 This board does not return any status information.

143 NOGATEALLOWED Gating cannot be used when indexing is enabled.

 Gating and indexing can not be used simultaneously. If Gating is set to (CB)ENABLED, then IndexMode must be set to
INDEX_DISABLED.

144 NOINDEXALLOWED Indexing not allowed in non-quadrature mode

 Indexing is not supported when the Quadrature argument is set to NO_QUAD.

145 OPENCONNECTION Temperature input has open connection

146 BMCONTINUOUSCOUNT Count must be integer multiple of packet size for Continuous mode.

147 BADCALLBACKFUNC Invalid pointer to callback function or delegate passed as argument.

148 MBUSINUSE Metrabus in use

149 MBUSNOCTLR Metrabus I/O card has no configured controller card

150 BADEVENTTYPE Invalid event type specified for this board.

 Although this board does support cbEnableEvent()/EnableEvent(), it does not support one or more of the event types
specified.

151 ALREADYENABLED Event handler is already enabled for this event type.

 There is already an event handler bound to one or more of the events specified. To attach the new handler to the event
type, first disable and disconnect the current handler using cbDisableEvent()/DisableEvent().

152 BADEVENTSIZE Invalid event count has been specified

 The ON_DATA_AVAILABLE event requires an event count greater than (0).

153 CANTINSTALLEVENT Unable to install event handler

 An internal error occurred while trying to setup the event handling.

154 BADBUFFERSIZE Buffer is too small for operation

 The memory allocated by cbWinBufAlloc()/WinBufAlloc() is too small to hold all the data specified in the operation.

155 BADAIMODE Invalid analog input mode

 Invalid analog input mode (RSE, NRSE, DIFF).

156 BADSIGNAL Invalid signal type specified

 The specified signal type does not exist, or is not valid for signal direction specified.

157 BADCONNECTION message

 The specified connection does not exist, or is not valid for the signal type and direction specified.

158 BADINDEX Invalid index specified.

 For Index >0, indicates that the specified index is beyond the end of the internal list of output connections assigned to the
specified signal type.

Page 695 of 700

159 NOCONNECTION Invalid connection

 No connection is assigned to the specified signal.

160 BADBURSTIOCOUNT Count cannot be greater than the FIFO size for BURSTIO mode.
Furthermore, Count must be integer multiple of number of channels
in scan.

 When using BURSTIO mode, the count entered cannot be larger than the FIFO size.

161 DEADDEV Device has stopped responding. Please check connections.

 Check cable connections to USB device and to your computer's USB port.

163 INVALIDACCESS Required access or privilege not acquired for specified operation.
Please check for other users of device and restart application.

 You are currently not the device owner and therefore cannot change the state or configuration of the Ethernet device with
functions such as cbAOut()/AOut(), cbDBitOut/DBitOut(), cbAInScan()/AInScan(), cbFlashLED()/FlashLED(), and others.
However, you can still read the state or configuration of the Ethernet device with functions such as cbAIn()/AIn(),
cbDBitIn()/DBitIn(), and so on.

164 UNAVAILABLE Device unavailable at time of request. Please repeat operation.

 You requested an operation that conflicts with an operation in progress on the device. This error usually occurs in
multithreaded applications or if you are running multiple applications that access the device. Both types of operations are
not supported.

165 NOTREADY Device is not ready to send data. Please repeat operation.

 You requested an operation that conflicts with an operation in progress on the device. This error can occur during device
initialization.

169 BITUSEDFORALARM The specified bit is used for alarm.

 You attempted to set the state of a digital output bit that is configured as an alarm input.

170 PORTUSEDFORALARM One or more bits on the specified port are used for alarm.

 You attempted to write to a digital output port that contains a bit configured as an alarm input.

171 PACEROVERRUN Pacer overrun; external clock rate too fast.

 You set the external clock rate to a value that is higher than the rate supported by the board.

172 BADCHANTYPE Invalid channel type specified.

 You set the channel type to a type that is not supported by the board.

173 BADTRIGSENSE Invalid trigger sensitivity specified.

 You set the trigger sensitivity to a value that is not supported by the board.

174 BADTRIGCHAN Invalid trigger channel specified.

 You set the trigger channel to a value that is not supported by the board.

175 BADTRIGLEVEL Invalid trigger level specified.

 You set the trigger level to a value that is not supported by the board.

176 NOPRETRIGMODE Pretrigger mode is not supported for the specified trigger type.

 You selected a trigger source that does not support pre-trigger data acquisitions.

177 BADDEBOUNCETIME Invalid debounce timing specified.

 You set the debounce time to a value that is not supported by the board.

178 BADDEBOUNCETRIGMODE Invalid debounce trigger mode specified.

 You set the debounce trigger mode to a value that is not supported by the board.

179 BADMAPPEDCOUNTER Invalid mapped channel specified.

 You mapped to a counter input channel that is not supported by the board.

180 BADCOUNTERMODE Invalid counter mode specified.

 This function cannot be used with the current mode of the specified counter.

181 BADTCCHANMODE Single-ended mode cannot be used for temperature input.

 You specified single-ended mode for use with a temperature input.

182 BADFREQUENCY Invalid frequency specified.

 You specified a frequency value that is not supported by the board.

183 BADEVENTPARAM Invalid event parameter specified.

 You specified an event parameter that is not supported by the board.

184 NONETIFC No interface devices were found with the required PAN and channel.

 No interface devices were detected whose PAN ID and RF channel number match those of a remote device.

185 DEADNETIFC The interface device(s) with the required PAN and channel has failed.
Please check the connection.

 The interface device whose PAN ID and RF channel number match a remote device is not responding. Check the USB
connection to the computer.

186 NOREMOTEACK The remote device is not responding to commands and queries.
Please check the device.

Page 696 of 700

 The wireless remote device is not responding. Check that the device is powered, that its PAN ID and RF channel match
the interface device, and that the LEDs are functioning.

187 INPUTTIMEOUT The device acknowledged the operation, but has not completed
before the timeout.

 The operation was acknowledged but has timed out before it was completed.

188 MISMATCHSETPOINTCOUNT Number of setpoints is not equal to number of channels with a
setpoint flag set.

 Set the number of setpoints equal to the number of channels with a setpoint flag set.

189 INVALIDSETPOINTLEVEL Setpoint level is outside channel range.

 You specified a setpoint level that is outside of the range supported by the board.

190 INVALIDSETPOINTOUTPUTTYPE Setpoint Output Type is invalid.

 You specified a setpoint output type that is not supported by the board.

191 INVALIDSETPOINTOUTPUTVALUE Setpoint Output Value is outside channel range.

 You specified a setpoint output value that is outside of the range supported by the board.

192 INVALIDSETPOINTLIMITS Setpoint Comparison Limit B greater than Limit A.

 Set the setpoint comparison value for limit A to be larger than the value set for limit B.

193 STRINGTOOLONG The string length entered is too long for this operation.

 Enter a string up to the maximum number of characters specified for the function or method that you are using.

194 INVALIDLOGIN An invalid user name or password has been entered.

 Check that the password and user name entered were correct. If either has been lost, use the device reset button to
reset the device to default values.

195 SESSIONINUSE Device session is already in use.

 Another user is currently logged in to a device session. Only one device session can be opened at a time.

196 NOEXTPOWER External power is not connected.

 External power is required. Connect the device to an external power supply.

197 BADDUTYCYCLE Invalid duty cycle specified.

 You attempted to set the duty cycle to a value not supported by the hardware.

200-
299

200-299 Internal 16-bit error

 Internal error occurred in the library. Refer to the specific errors below:

201 CANT_LOCK_DMA_BUF DMA buffer could not be locked.

 There is not enough physical memory to lock down enough DMA memory for this operation. Try closing out other
applications, or installing additional RAM.

202 DMA_IN_USE DMA already controlled by another driver.

 The DMA controller is currently being used by another device, such as another DMA board or the floppy drive.

203 BAD_MEM_HANDLE Invalid Windows memory handle.

 The memory handle supplied is invalid. Memory handles supplied to library functions and methods should be allocated
using cbWinBufAlloc()/WinBufAlloc(), and should not be de-allocated until BACKGROUND operations using this buffer are
complete or cancelled with cbStopBackground()/StopBackground().

300-
399

300-399 Internal 32-bit error. See specific errors below.

304 CFG_FILE_READ_FAILURE Error reading from configuration file.

 The program was unable to read the configuration file CB.CFG. Confirm that CB.CFG was not deleted, moved, or
renamed since the software installation.

305 CFG_FILE_WRITE_FAILURE Error writing to configuration file.

 The program was unable to write to the configuration file CB.CFG. Confirm that CB.CFG is present and that its attributes
are not set for Read-only. Also, check that not more than one application is trying to access this file.

308 CFGFILE_CANT_OPEN Cannot open configuration file.

 The program was unable to open the configuration file CB.CFG. Confirm that CB.CFG was not deleted, moved, or
renamed since the software installation.

325 BAD_RTD_CONVERSION Overflow of RTD conversion.

 Either cbTIn()/TIn() or cbTInScan()/TInScan() returned an invalid temperature conversion. Confirm that the configuration
matches the RTD type, and physical EXP board settings; pay particular attention to gain settings and RTD base resistance.
Also, check that the RTD leads are securely attached to the EXP terminals. Finally, confirm that the board is measuring
reasonable voltages via cbAIn()/AIn().

326 NO_PCI_BIOS PCI BIOS not present on the PC.

 Could not locate the BIOS for the PCI bus. Consult PC supplier for proper installation of the PCI BIOS.

327 BAD_PCI_INDEX Specified PCI board not detected.

 The specified PCI board was not detected. Check that the PCI board is securely installed into the PCI slot. Also, run

Page 697 of 700

InstaCal to locate/set valid base address and configuration.

328 NO_PCI_BOARD Specified PCI board not detected.

 The specified PCI board was not detected. Check that the PCI board is securely installed into the PCI slot. Also, run
InstaCal to locate/set valid base address and configuration.

334 CANT_INSTALL_INT Cannot install interrupt handler. IRQ already in use.

 The device driver could not enable requested interrupt. Check that the selected IRQ is not already in use by another
device. This error can also occur if a FOREGROUND scan was aborted; in such cases, rebooting the PC will correct the
problem.

339 CANT_MAP_PCM_CIS Unable to access Card Information Structure.

 A resource conflict between the specified PCMCIA or PC-Card device and another device prevents the system from
allocating sufficient resources to map the onboard CIS.

344 NOMOREFILES No more files in the directory.

 The end of the log file was reached before the file header was read.

345 BADFILENUMBER No file exists for the specified file number.

 The specified binary file number does not exist.

347 LOSSOFDATA The file may not contain all of the data from the logging session
because the logging session was not terminated properly.

 The log file may be incomplete if the logging session is not properly terminated. Always end a logging session by pressing
the data logging button until the LED turns off. Possible data loss may occur if the end of the log file is reached before the
file header is read.

348 INVALIDBINARYFILE The file is not a valid MCC binary file.

 The binary file was not logged from an MCC USB device with data logging capability, or the binary file was logged during
a data logging session that was not properly terminated and is missing information.

349 INVALIDDELIMITER Invalid delimiter specified for CSV file extension.

 When converting a binary log file to a comma-separated values text file (.CSV), the delimiter character must be set to a
comma.

400-
499

PCMCIA error Card & Socket Service error. Contact the manufacturer.

500-
599

Internal DOS error Contact the manufacturer.

600-
699

Internal Windows error Refer to specific errors below.

603 WIN_CANNOT_ENABLE_INT Cannot enable interrupt. IRQ already in use.

 The device driver could not enable requested interrupt. Check that the selected IRQ is not already in use by another
device. This error can also occur if a FOREGROUND scan was aborted; in such cases, rebooting the PC will correct the
problem.

605 WIN_CANNOT_DISABLE_INT Cannot disable interrupts.

 The device driver was unable to disable the IRQ. This can occur when interrupts are generated too fast for the PC to
complete servicing. For example, sampling at high frequencies (above ~2 kHz) with scan mode set for SINGLEIO can lead
to this error. Frequently, an OVERRUN error accompanies this condition.

606 WIN_CANT_PAGE_LOCK_BUFFER Insufficient memory to page lock data buffer.

 There is not enough physical memory to lock down the entire data buffer. Try closing out other applications, selecting
smaller data buffers, or installing additional RAM.

630 NO_PCM_CARD PCM card not detected.

 The specified PCMCIA card was not detected. Confirm that the PCM card is securely plugged into PCMCIA slot. If the
board continues to return this error, run InstaCal to reset the configuration.

801 INVALIDGAINARRAYLENGTH The number of elements in the gain array must equal the number of
channels in the scan.

 This error is generated when WinBufToEngArray() is called with the number of elements in gainArray is not equal to the
number of channels specified. Make sure that the number of elements in the array is the same as the number of channels
in the scan.

802 INVALIDDIMENSION0LENGTH The length of dimension 0 in the data array must equal the number of
channels in the scan.

 This error is generated when WinBufToEngArray() is called with the length of dimension 0 of EngUnits not equal to the
number of channels specified. Make sure that the length of dimension 0 in the array is the same as the number of
channels in the scan.

1000 NOTEDSSENSOR No TEDS sensor was detected on the specified channel.

 Connect a TEDS sensor to the specified channel.

1001 INVALIDTEDSSENSOR Connected TEDS sensor to the specified channel is not supported.

Page 698 of 700

 Connect a TEDS sensor that is supported by the hardware to the specified channel.

1002 CALIBRATIONFAILED Calibration failed.

 The attempt to calibrate the device has failed.

1003 BITUSEDFORTERMINALCOUNTSTATUS The specified bit is used for terminal count status.

 The terminal count status must be disabled for a digital bit before it can be used for timer output or DIO operations.

1004 PORTUSEDFORTERMINALCOUNTSTATUS One or more bits on the specified port are used for terminal count
status.

 The terminal count status must be disabled for all digital bits before the port can be used for digital operations.

1005 BADEXCITATION Invalid excitation specified

 Refer to board-specific information for valid values.

1006 BADBRIDGETYPE Invalid bridge type specified

 Refer to board-specific information for valid values.

1007 BADLOADVAL Invalid load value specified

 Refer to board-specific information for valid values.

1008 BADTICKSIZE Invalid tick size specified

 Refer to board-specific information for valid values.

INVALIDGAINARRAYLENGTH and INVALIDDIMENSION0LENGTH errors only occur in the .NET
class library. The Universal Library will not print or stop if these errors occur, regardless of the error
handling configuration specified by the call to MccService.ErrHandling. These errors must be checked
by examining the ErrorInfo object returned from MccBoard.WinBufToEngArray.

Page 699 of 700

PDF Document
This help file is also available in PDF on our web site at www.mccdaq.com/pdfs/manuals/Universal-Library-Help.pdf.

Adobe® Reader® is required to view this document. Click on the link below to go to the Adobe Reader home page where you can
download a free copy of Adobe Reader.

Page 700 of 700

http://www.mccdaq.com/pdfs/manuals/Universal-Library-Help.pdf
http://www.adobe.com/products/acrobat/readstep2.html

	Welcome to Universal Library Help
	MCC management committed to your satisfaction
	Redistribution, Trademark, and Copyright Information
	About this Document
	Contact Measurement Computing Corporation
	Universal Library User's Guide
	Universal Library Overview
	Installation and Configuration
	Installing the Universal Library and InstaCal
	Universal Library support for .NET
	CB.CFG Configuration File
	Redistributing a custom UL application

	How to Use the Library
	Getting Started
	Differences Between the UL and UL for .NET
	Using the Universal Library
	Using the Universal Library in Windows
	Universal Library Language Interface

	Using the Universal Library for .NET
	Configuring a UL for .NET Project
	Universal Library for .NET Language Interface

	Analog Input Hardware
	CIO-DAS08 Series, PCI-DAS08, and PC104-DAS08
	CIO-DAS08/JR Series
	CIO-DAS1400 Series and CIO-DAS1600 Series
	CIO-DAS16 Series and PC104-DAS16 Series
	CIO-DAS48-PGA, CIO-DAS48-I
	CIO-DAS800 Series
	DEMO-BOARD
	miniLAB 1008
	PCI-2500 Series
	PCI-DAS1602, PCI-DAS1200 and PCI-DAS1000 Series
	PCI-DAS4020/12
	PCI-DAS6000 Series
	PCI-DAS64/M1/16, PCI-DAS64/M2/16
	PCI-DAS6402/16, CIO-DAS6402 Series, and PCI-DAS3202/16
	PCIe-DAS1602/16
	PCIM-DAS1602/16, PCIM-DAS16JR/16
	PCM-DAS08
	PCM-DAS16 Series and PC-CARD-DAS16 Series
	PPIO-AI08
	USB-1208FS and USB-1408FS
	USB-1208FS-Plus and USB-1408FS-Plus
	USB-1208HS Series
	USB-1208LS
	USB-1602HS Series
	USB-1604HS Series
	USB-1608FS and USB-1608FS-Plus
	USB-1608G Series
	USB-1608HS Series
	USB-1616FS
	USB-1616HS Series
	USB-1616HS-BNC
	USB-204, USB-201
	USB-2404-60 and USB-2404-10
	USB-2404-UI
	USB-2408 Series
	USB-2416 Series
	USB-2500 Series
	USB-7202
	USB-7204

	Analog Output Hardware
	CIO- and PCIM-DDA06 Series
	CIO-DAC Series (excluding HS) and PC104-DAC06
	CIO-DAC04/12-HS
	cSBX-DDA04
	PCI-DAC6702, PCI-DAC6703
	PCI-DDA02, DDA04, and DDA08 Series
	PCM-DAC Series and PC-CARD-DAC08
	USB-3100 Series
	USB-3101FS

	COM Devices
	COM422 Series
	COM485 Series

	Counter Boards
	CTR Series
	PCI-INT32, CIO-INT32
	PPIO-CTR06
	QUAD02 Series and QUAD04 Series
	USB-QUAD08
	USB-4300 Series

	Digital Input Hardware
	CIO-DI Series and PC104-DI48
	CIO-DISO48

	Digital Input/Output Hardware
	AC5 Series
	CIO-PDMA16 and CIO-PDMA32
	DEMO-BOARD
	DIO Series (Excluding USB)
	DIO24/CTR3 and D24/CTR3 Series
	PCI-DIO48/CTR15
	PCIe-DIO24 and PCIe-DIO96H
	PDISO8 Series and PDISO16 Series
	Switch & Sense 8/8
	USB-1024 Series and USB-DIO24 Series
	USB-DIO96H (formerly USB-1096HFS), USB-DIO96H/50
	USB-SSR Series

	Digital Output Hardware
	CIO-DO Series and PC104-DO48
	CIO-RELAY Series
	USB-ERB Series

	Expansion Hardware
	AI-EXP32
	AI-EXP48
	CIO-EXP Series
	MEGA-FIFO

	MetraBus Hardware
	MDB64 Series
	MEM Series Relay
	MIO and MII Digital I/O
	MSSR-24

	Temperature Input Hardware
	CIO-DAS-TEMP
	CIO-DAS-TC, PCI-DAS-TC
	USB-5200 Series
	USB-TEMP Series, USB-TC Series
	WEB-TEMP, WEB-TC
	WLS Series

	Measurement Computing Device IDs

	Universal Library Function Reference
	Function Reference Overview
	Introduction
	Overview of UL Functions
	Analog I/O Functions
	Configuration Functions
	Counter Functions
	Data Logger Functions
	Digital I/O Functions
	Error Handling Functions
	Memory Board Functions
	Revision Control Functions
	Streamer File Functions
	Synchronous I/O Functions
	Temperature Input Functions
	Windows Memory Management Functions
	Miscellaneous Functions

	Overview of UL for .NET Methods and Properties
	Analog I/O Methods
	Configuration Methods and Properties
	Counter Methods
	Data Logger Methods and Property
	Digital I/O Methods
	Error Handling Methods and Properties
	Memory Board Methods
	Revision Control Methods
	Streamer File Methods
	Synchronous I/O Methods
	Temperature Input Methods
	Windows Memory Management Methods
	Miscellaneous Methods

	UL Functions
	Analog I/O functions
	cbAConvertData()
	cbAConvertPreTrigData()
	cbACalibrateData()
	cbAIn()
	cbAIn32()
	cbAInScan()
	cbALoadQueue()
	cbAOut()
	cbAPretrig()
	cbAOutScan()
	cbATrig()
	cbVIn()
	cbVIn32()
	cbVOut()

	Configuration functions
	cbGetConfig()
	cbGetConfigString()
	cbGetSignal()
	cbSelectSignal()
	cbSetConfig()
	cbSetConfigString()
	cbSetTrigger()

	Counter functions
	cbC7266Config()
	cbC8254Config()
	cbC8536Config()
	cbC8536Init()
	cbC9513Config()
	cbC9513Init()
	cbCClear()
	cbCConfigScan()
	cbCFreqIn()
	cbCIn()
	cbCIn32()
	cbCIn64()
	cbCInScan()
	cbCLoad()
	cbCLoad32()
	cbCLoad64()
	cbCStatus()
	cbCStoreOnInt()
	cbPulseOutStart()
	cbPulseOutStop()
	cbTimerOutStart()
	cbTimerOutStop()

	Data Logger functions
	cbLogConvertFile()
	cbLogGetAIChannelCount()
	cbLogGetAIInfo()
	cbLogGetCJCInfo()
	cbLogGetDIOInfo()
	cbLogGetFileInfo()
	cbLogGetFileName()
	cbLogGetPreferences()
	cbLogGetSampleInfo()
	cbLogReadAIChannels()
	cbLogReadCJCChannels()
	cbLogReadDIOChannels()
	cbLogReadTimeTags()
	cbLogSetPreferences()

	Digital I/O functions
	cbDBitIn()
	cbDBitOut()
	cbDConfigBit()
	cbDConfigPort()
	cbDIn()
	cbDInScan()
	cbDOut()
	cbDOutScan()

	Error Handling functions
	cbErrHandling()
	cbGetErrMsg()

	Memory Board functions
	cbMemRead()
	cbMemReadPretrig()
	cbMemReset()
	cbMemSetDTMode()
	cbMemWrite()

	Revision Control functions
	cbDeclareRevision()
	cbGetRevision()

	Streamer File functions
	cbFileAInScan()
	cbFileGetInfo()
	cbFilePretrig()
	cbFileRead()

	Synchronous I/O functions
	cbDaqInScan()
	cbDaqOutScan()
	cbDaqSetSetpoints()
	cbDaqSetTrigger()

	Temperature Input functions
	cbTIn()
	cbTInScan()

	Windows Memory Management functions
	cbWinBufAlloc()
	cbWinBufAlloc32()
	cbWinBufAlloc64()
	cbWinBufFree()
	cbWinArrayToBuf()
	cbWinBufToArray()
	cbWinBufToArray32()
	cbScaledWinArrayToBuf()
	cbScaledWinBufAlloc()
	cbScaledWinBufToArray()

	Miscellaneous functions
	cbDeviceLogin()
	cbDeviceLogout()
	cbDisableEvent()
	cbEnableEvent()
	cbFlashLED()
	cbFromEngUnits()
	cbGetBoardName()
	cbGetStatus()
	cbGetTCValues()
	cbInByte()
	cbInWord()
	cbOutByte()
	cbOutWord()
	cbRS485()
	cbStopBackground()
	cbTEDSRead()
	cbToEngUnits()
	cbToEngUnits32()
	User Callback

	UL for .NET Classes, Methods, and Properties
	UL for .NET Class Library
	UL for .NET class library overview
	DataLogger class
	ErrorInfo class
	GlobalConfig class
	MccBoard class
	MccService class

	Analog I/O methods
	ACalibrateData()
	AConvertData()
	AConvertPreTrigData()
	AIn()
	AIn32()
	AInScan()
	ALoadQueue()
	AOut()
	AOutScan()
	APretrig()
	ATrig()
	VIn()
	VIn32()
	VOut()

	Configuration methods and properties
	BoardConfig property
	BoardConfig.DACUpdate()
	BoardConfig.GetAdRetrigCount()
	BoardConfig.GetBaseAdr()
	BoardConfig.GetBoardType()
	BoardConfig.GetCiNumDevs()
	BoardConfig.GetClock()
	BoardConfig.GetDACRetrigCount()
	BoardConfig.GetDACStartup()
	BoardConfig.GetDACUpdateMode()
	BoardConfig.GetDeviceId()
	BoardConfig.GetDeviceNotes()
	BoardConfig.GetDiNumDevs()
	BoardConfig.GetDmaChan()
	BoardConfig.GetDtBoard()
	BoardConfig.GetIntLevel()
	BoardConfig.GetNumAdChans()
	BoardConfig.GetNumDaChans()
	BoardConfig.GetNumExps()
	BoardConfig.GetNumIoPorts()
	BoardConfig.GetPanID()
	BoardConfig.GetRange()
	BoardConfig.GetRFChannel()
	BoardConfig.GetRSS()
	BoardConfig.GetUsesExps()
	BoardConfig.GetWaitState()
	BoardConfig.SetAdRetrigCount()
	BoardConfig.SetBaseAdr()
	BoardConfig.SetClock()
	BoardConfig.SetDACStartup()
	BoardConfig.SetDACRetrigCount()
	BoardConfig.SetDACUpdateMode()
	BoardConfig.SetDeviceId()
	BoardConfig.SetDeviceNotes()
	BoardConfig.SetDmaChan()
	BoardConfig.SetIntLevel()
	BoardConfig.SetNumAdChans()
	BoardConfig.SetPanID()
	BoardConfig.SetRange()
	BoardConfig.SetRFChannel()
	BoardConfig.SetWaitState()

	BoardNum property
	CtrConfig property
	CtrConfig.GetCtrType()

	DioConfig property
	DioConfig.GetConfig()
	DioConfig.GetCurVal()
	DioConfig.GetDevType()
	DioConfig.GetDInMask()
	DioConfig.GetDOutMask()
	DioConfig.GetNumBits()

	ExpansionConfig property
	ExpansionConfig.GetBoardType()
	ExpansionConfig.GetCjcChan()
	ExpansionConfig.GetMuxAdChan1()
	ExpansionConfig.GetMuxAdChan2()
	ExpansionConfig.GetNumExpChans()
	ExpansionConfig.GetRange1()
	ExpansionConfig.GetRange2()
	ExpansionConfig.GetThermType()
	ExpansionConfig.SetCjcChan()
	ExpansionConfig.SetMuxAdChan1()
	ExpansionConfig.SetMuxAdChan2()
	ExpansionConfig.SetRange1()
	ExpansionConfig.SetRange2()
	ExpansionConfig.SetThermType()

	GetSignal() method
	NumBoards property
	NumExpBoards property
	SelectSignal() method
	SetTrigger() method

	Counter methods
	C7266Config()
	C8254Config()
	C8536Config()
	C8536Init()
	C9513Config()
	C9513Init()
	CClear()
	CConfigScan()
	CFreqIn()
	CIn()
	CIn32()
	CIn64()
	CInScan()
	CLoad()
	CLoad32()
	CLoad64()
	CStatus()
	CStoreOnInt()
	PulseOutStart()
	PulseOutStop()
	TimerOutStart()
	TimerOutStop()

	DataLogger methods and property
	ConvertFile()
	FileName property
	GetAIChannelCount()
	GetAIInfo()
	GetCJCInfo()
	GetDIOInfo()
	GetFileInfo()
	GetFileName()
	GetPreferences()
	GetSampleInfo()
	ReadAIChannels()
	ReadCJCChannels()
	ReadDIOChannels()
	ReadTimeTags()
	SetPreferences()

	Digital I/O methods
	DBitIn()
	DBitOut()
	DConfigBit()
	DConfigPort()
	DIn()
	DInScan()
	DOut()
	DOutScan()

	Error handling method and properties
	ErrHandling() method
	LogToFile() property
	Message() property
	Value() property

	Memory board methods
	MemRead()
	MemReadPretrig()
	MemReset()
	MemSetDTMode()
	MemWrite()

	Revision control methods
	DeclareRevision()
	GetRevision()
	Version property

	Streamer file methods
	FileAInScan()
	FileGetInfo()
	FilePretrig()
	FileRead()

	Synchronous I/O methods
	DaqInScan()
	DaqOutScan()
	DaqSetSetpoints()
	DaqSetTrigger()

	Temperature input methods
	TIn()
	TInScan()

	Windows memory management methods
	WinArrayToBuf()
	WinBufAlloc()
	WinBufAllocEx()
	WinBufAlloc32()
	WinBufAlloc32Ex()
	WinBufAlloc64()
	WinBufAlloc64Ex()
	WinBufFree()
	WinBufFreeEx()
	WinBufToArray()
	WinBufToArray32()
	ScaledWinArrayToBuf()
	ScaledWinBufAlloc()
	ScaledWinBufAllocEx()
	ScaledWinBufToArray()

	Miscellaneous methods, properties, and delegates
	BoardName property
	DeviceLogin()
	DeviceLogout()
	DisableEvent()
	EnableEvent()
	EngArrayToWinBuf()
	EventCallback delegate
	FlashLED()
	FromEngUnits()
	GetBoardName()
	GetStatus()
	GetTCValues()
	HideLoginDialog()
	InByte()
	InWord()
	OutByte()
	OutWord()
	RS485()
	StopBackground()
	TEDSRead()
	ToEngUnits()
	ToEngUnits32()
	WinBufToEngArray()

	Example Programs
	UL example programs sorted by program name
	UL example programs sorted by function call
	UL for .NET example programs sorted by program name
	UL for .NET example programs sorted by method call

	Error Codes
	PDF Document

