
 9 Low-cost, Data Acquisition and Control

 9 Built-in BASIC Programming Language

 9 Stand-alone or PC-connected Operation

 9 Supports High-and Low-speed Applications

 9 Eight Built-in Analog Input Channels

 9 Four Built-in Digital Output Channels

 9 Four Built-in Digital Input Channels

 9 Replaces Controllers many times its Price and Complexity

DI-159 High Speed PLC with Embedded BASIC

DI-159 PLC Close-up

LED Indication
General purpose LED0 and LED1
Heart Beat LED indicates activity

Bulkhead
Mounting Ears

Analog In Channels 0-3
±10VFS, ±150V transient, max.

Mini-B USB connection

Bulkhead
Mounting Ears

General Purpose push-button

DI-159 PLC Description

www.dataq.com 2 330-668-1444

Analog In Channels 4-7
±10VFS, ±150V transient, max.

Four Digital Output Channels
30 VDC max., 0.5 A sink current max.

Model DI-159 PLC (programmable logic controller) is a first-of-its-kind product to leverage low cost, but extremely powerful 32-bit
microcontrollers to provide a fully integrated solution that is easily programmed for a vast array of data acquisition and control ap-
plications. Alternative products (both PACs and PLCs) use complex programming language environments like C, .NET, LabVIEW,
Domore!, Productivity3000, or other proprietary software that requires either a major time investment to understand and apply, or the
need to hire expensive system integrators and consultants. In contrast, the integrated BASIC programming approach of the DI-159
PLC allows anyone with rudimentary programming skills to construct effective control systems in mere minutes. The product so
tightly integrates the programming language with data acquisition and I/O hardware that many complex control scenarios may be
implemented with only a few BASIC instructions.

The DI-159 PLC offers most of the data acquisition features of the popular DATAQ Instruments DI-149 Data Acquisition Starter Kit.
It provides eight protected analog input channels, each with a ±10 VFS range and 10 bits of ADC resolution. Also provided are four
each general purpose digital inputs and outputs. The outputs can switch up to 30 V/500 mA loads, and the inputs detect TTL thresh-
olds over a maximum applied range of ±30 V peak. Also provided for general-purpose use are two LEDs and one push button switch.

Wrapped around this data acquisition core is an embedded BASIC language compiler called StickOS from www.CPUStick.com that
provides single-instruction access to each analog input and digital I/O port, as well as the LEDs and switch. The language supports
real time performance to allow precisely timed operations that are so critical for many process control applications. It features four
tick timers, each independently programmable to 250 µs resolution. This real time core is then leveraged by a powerful and familiar
BASIC command set that supports block statements (IF, THEN, ELSE, etc.), strings, arrays, mathematical expressions, and much
more.

The DI-159 PLC provides a USB port interface and can be used under any operating system that can run a terminal emulator and
hook a COM port. A connected terminal emulator provides direct access to the DI-159 PLC’s embedded BASIC programming
environment and, depending upon the emulator, the ability to save and load an unlimited number of programs beyond the DI-159
PLC’s built-in flash memory limit of three. Emulators that are available online for free are Terminator and Konsole (Linux), iTerm2
(OS X), and PuTTY and TeraTerm (Windows). Also for the Windows environment the DI-159 PLC is supplied with a Visual Basic.
NET application that allows terminal emulation, and BASIC program storage and retrieval. The DI-159 PLC’s BASIC compiler is
pre-programmed with a demo application that works with the Windows application to record DI-159 PLC analog and digital data to a
connected PC in a Microsoft Excel-compatible format. Also included with the DI-159 PLC is a USB cable. Purchase the optional AC
adaptor (connects to the USB cable) for stand-alone, computer-independent control applications.

Four Digital Input Channels
±30V max., TTL threshold levels

http://www.dataq.com/products/startkit/di149.htm

330-668-1444 3 www.dataq.com

1.612"

5.500"

4.750"

4.250"

0.750"

2.625"

Ø 0.200"
(2 places)

Eight Analog Input Channels
Connect the DI-159 PLC to any pre-amplified signal in the typical
range of ±5 to ±10 VFS.

Four Digital Inputs
Four discrete inputs allow the DI-159 PLC to access and process
external, discrete (on/off) events.

Four High Voltage Digital Outputs
Four digital outputs allow the DI-159 PLC to initiate external
discrete (on/off) control. Loads up to 30 V peak at 500 mA are
supported.

10-bit ADC resolution
Provides 19.5 mV resolution across the entire DI-159 PLC mea-
surement range.

Ruggedized Inputs
All eight DI-159 PLC analog inputs are protected to ±150 V peak.
Discrete inputs are protected to ±30 V peak. Accidents that hap-
pen are quickly forgiven.

Noise-cancelling Analog Input Configuration
The noise-immunity of differential inputs minimizes the effects of
common mode noise so often encountered in industrial measure-
ments.

DI-159 PLC Features

DI-159 PLC Dimensional Drawing

USB Interface
The DI-159 PLC is provided with a built-in USB interface, allow-
ing it to be connected, powered, and operated from any laptop or
desktop PC. For stand-alone control applications, the provided
USB interface cable provides power to the DI-159 PLC using an
optional AC adaptor.

Wide OS support
A signed driver is provided with the DI-159 PLC that allows
trouble-free installation for Windows XP and both 32- and 64-bit
versions of Windows Vista, Windows 7, and Windows 8. Since the
DI-159 PLC hooks a COM port, ubiquitous support is provided
for any other OS using standard programming tools and emula-
tors.

Embedded BASIC Programming Environment
The DI-159 PLC embeds a microcontroller-resident, interactive
BASIC programming environment that includes a program editor,
interactive debugger, performance profiler, and flash-based file
system, all running entirely within DI-159 PLC hardware and
controlled thru an interactive command-line user interface. Access
the programming environment through any terminal emulator
operating under any operating system.

www.dataq.com 4 330-668-1444

DI-159 PLC Block Diagram

+V

Typical Analog In
(8 times)

10

1M

1M
0.1μf

160K ½Vref

0.001μf

160K

0.001μf

Ch0 - Ch7

Typical Digital In
(4 times)

47K

½Vref

100pf

Di0 - Di3

47K

4.7K

10K

+V

Typical Digital Out
(4 times)

Do0 - Do3

USB
Connector

Panel

+V

Led0 Led1Heart Beat

Le
d0

Le
d1

Push Button

PB

PIC32MX440

Non-Volatile

Flash

Memory

512K
BASIC

● Editor

● Compiler

● Debugger

● Profiler

● File System

● DI-159 PLC I/O Subsystem

10

RAM

Memory

64K

330-668-1444 5 www.dataq.com

Typical DI-159 PLC Analog Connections

* DATAQ Instruments’ hardware and software products are NOT designed to be used in the diagnosis and treatment of humans, nor are they to be used as critical components in any life-
support systems whose failure to perform can reasonably be expected to cause significant injury to humans.

Analog Out

+-

±10VFS

Equipment*

Model DI-159 PLC

PC

USB Cable

(7 more analog input channels as needed)

PC running any OS capable of
hooking a COM port.

www.dataq.com

+ - + -+ -+ -
DO1DO0 DO2 DO3

+ -+ - +

LED0

Heart Beat

LED1

+ - --+
Ch0

-+
Ch1

-+
Ch2

-+
Ch3 DI2 DI3

Digital Inputs (±30 V max.)Analog Inputs (±10 VFS, ±150 V max)
DI1DI0

+ - + -+ -+ -
Ch5Ch4

Analog Inputs (±10 VFS, ±150 V max) Digital Outputs (30 VDC max.)
Ch6 Ch7

Programmable Logic Controller (PLC) Starter Kit

Download software
at dataq.com/159

Model DI-159 PLC

Power
+ + +

- - -

Transducer/Sensor**

Model DI-159 PLC

USB Cable

R250*

*Model R250 resistor required for 4-20mA outputs
**Typical Transducer/Sensor above includes pressure, load, torque, etc.

PC

PC running any OS capable of
hooking a COM port.

w
w

w
.dataq.com

+
-

+
-

+
-

+
-

D
O

1
D

O
0

D
O

2
D

O
3

+
-

+
-

+

LE
D

0

H
eart B

eat

LE
D

1

+
-

-
-

+
C

h0

-
+

C
h1

-
+

C
h2

-
+

C
h3

D
I2

D
I3

D
igital Inputs (±30 V

 m
ax.)

A
nalog Inputs (±10 V

FS
, ±150 V

 m
ax)

D
I1

D
I0

+
-

+
-

+
-

+
-

C
h5

C
h4

A
nalog Inputs (±10 V

FS
, ±150 V

 m
ax)

D
igital O

utputs (30 V
D

C
 m

ax.)
C

h6
C

h7

Program
m

able Logic C
ontroller (PLC

) Starter K
it

D
ow

nload softw
are

at dataq.com
/159

M
odel D

I-159 PLC

Typical voltage mode connection

Typical current mode connection

www.dataq.com 6 330-668-1444

Typical DI-159 PLC Analog Connections

Typical multi-channel analog connection

w
w

w
.dataq.com

+
-

+
-

+
-

C
h2

-
+

C
h3

D
I2

D
igital Inputs (±30 V

 m
ax.)

A
nalog Inputs (±10 V

FS
, ±150 V

 m
ax)

D
i1

D
i0

Program
m

able Logic C
ontroller (PLC

) Starter K
it

TTL or
Switch
Closure

Switch ClosureTTL

0V

30V Max

1.8V Threshold
up to 4 places

Analog Out

+-

±10VFS

Equipment

Model DI-159 PLC

PCAnalog Out
±10VFS

+

-

USB Cable
PC running any OS capable of
hooking a COM port.

www.dataq.com

+ - + -+ -+ -
DO1DO0 DO2 DO3

+ -+ - +

LED0

Heart Beat

LED1

+ - --+
Ch0

-+
Ch1

-+
Ch2

-+
Ch3 DI2 DI3

Digital Inputs (±30 V max.)Analog Inputs (±10 VFS, ±150 V max)
DI1DI0

+ - + -+ -+ -
Ch5Ch4

Analog Inputs (±10 VFS, ±150 V max) Digital Outputs (30 VDC max.)
Ch6 Ch7

Programmable Logic Controller (PLC) Starter Kit

Download software
at dataq.com/159

Model DI-159 PLC

DI-159 PLC Digital Input Connections

The DI-159 PLC’s provides four discrete input channels that can adapt to a wide range of signal types. Internal pull-ups are provided,
so they can be used with any type of dry-contact switches. When connecting to process discretes, the inputs will tolerate ±30 V with-
out damage. Software access to the digital input ports is tightly integrated with the embedded BASIC programming language, and
easily manipulated. See the programming examples in this data sheet for more information.

330-668-1444 7 www.dataq.com

Typical DI-159 PLC Digital Output Connections
The DI-159 PLC’s digital outputs are not your ordinary transistor switches. Each of four channels features a dedicated MOSFET
that can handle high voltage and current loads with built-in electrostatic discharge protection. It can switch loads of up to 30 Volts
(DC or peak AC) and 500 mA. Use it to control relays when the load to be switched exceeds the 30 V/500 mA spec of the port, or to
control the load directly where it does not. Software access to the digital output ports is tightly integrated with the embedded BASIC
programming language, and easily manipulated. See the programming examples in this data sheet for more information.

+
-

+
-

+
-

D
O

1
D

o2
D

o3
D

igital O
utputs (30 V

D
C

 m
ax.)

10K

+3.3V

10

Load

*

500mA
Max

*Clamping diode required
 for inductive loads

4.7K

V
+

-
To control

logic

30 VDC
or peak AC

Field ConnectionsInternal to DI-159 PLC

Typical DI-159 PLC Deployment Block Diagram
One General-purpose push button
Two General-purpose LEDs

4 discrete outputs
±30V @ 500µA max.

4 discrete inputs (±30V)
8 analog inputs (±10V)

AC Adapter for
stand-alone
operation

General-purpose terminal emulator
Windows: HyperTerminal; TeraTerm
Linux: Terminator; Guake
Mac: iTerm2

DATAQ Terminal
Windows-based terminal emulator
and Logger (included)

For program development
and data logging

www.dataq.com 8 330-668-1444

Included Terminal Emulator for Windows
The DI-159 PLC can connect to any terminal emulator program running under any operating system that can hook a COM port.
DATAQ Terminal is a VB.NET-based, open source VT-100 terminal emulator and data recorder that runs under Windows, and is
included with the DI-159 PLC. It provides the ability to store and retrieve BASIC program files to and from the hard drive, and the
contents in its Output window can be directed to a text file for a permanent record. Then use the Terminal program to open the file in
Microsoft Excel. Finally, the terminal emulator supports VT100-like editing using your keyboard’s cursor-control keys.

Load Program
from Disk

Save Program
to Disk

Run Program Stop Program Clear Window Enable Edit
Window

Program Edit
Window

Program Output
Window

Export to
Excel

Stream Data
to File

Pause
Stream

Clear
Display

The DI-159 PLC BASIC Programming and Control Environment
The BASIC programming engine that is embedded within the DI-159 PLC offers a powerful development platform that doesn’t sac-
rifice ease-of-use or utility. The environment offers transparent line-by-line compilation, as well as integer variable, string variable,
and array support. Block-structured programming is also supported using easily-recognized IF, FOR, WHILE, DO, and GOSUB
constructs. This environment is so familiar and comfortable to anyone with rudimentary programming skills, that you’ll know how
to use it after a simple glance and review. See the BASIC Quick Reference Guide following the example programs for an overview of
all supported commands and statements . The following is a brief list of the BASIC programming environment’s major features:

Integrated Program Debugger
Easily track down problems with your code using breakpoints, assertions, and watch points. Debugging tools also include program
trace mode, single stepping, and edit-and-continue. You can even use the built-in profiler to determine where your program spends its
time so you can optimize it as required.

Built-in File System
The DI-159 PLC’s BASIC program supports flash memory that allows you to load and store multiple programs (three maximum),
each with its own file name. An unlimited number of programs may be loaded using any terminal emulator that supports file trans-
fers, like the DATAQ Terminal utility program provided with the instrument and the freely available TeraTerm application.

Real Time PLC Performance
The embedded BASIC engine even offers real time performance to rival its most costly competitive alternatives. Four timers are
available for general-purpose use, each providing jitter-free and consistent timing operations with 250 microsecond resolution. The
timers provide maskable software interrupts that you can use for very precise scheduling of process events without the need for com-
plex, external hardware timers.

Immediate-mode allows Keyboard-control over Inputs and Outputs
A simple, single line instruction reads any analog input. Another sets (or reads) the state of a digital I/O port. For example, led0=0
lights general-purpose LED0, and led0=1 turns it off.

Autorun Mode and Built-in Flash Memory Enable Stand-alone Control
After you’ve written and tested your BASIC program using a connected PC with a terminal emulator, save it to the DI-159 PLC’s
non-volatile memory, and type autorun at the command prompt. Then deploy the DI-159 PLC powered from the optional AC adaptor
as a stand-alone controller. Upon applying power to the DI-159 PLC, the instrument automatically initializes itself and begins run-
ning your program. It’s that simple.

330-668-1444 9 www.dataq.com

Programming Examples

Example #1

Object Boilerplate code that must be included at the beginning of every program that uses the specified I/O points. *

Code

 10 dim c0 as pin Ch0 for analog input
 20 dim c1 as pin Ch1 for analog input
 30 dim c2 as pin Ch2 for analog input
 40 dim c3 as pin Ch3 for analog input
 50 dim c4 as pin Ch4 for analog input
 60 dim c5 as pin Ch5 for analog input
 70 dim c6 as pin Ch6 for analog input
 80 dim c7 as pin Ch7 for analog input
 90 dim i0 as pin Di0 for digital input
100 dim i1 as pin Di1 for digital input
110 dim i2 as pin Di2 for digital input
120 dim i3 as pin Di3 for digital input
130 dim o0 as pin Do0 for digital output
140 dim o1 as pin Do1 for digital output
150 dim o2 as pin Do2 for digital output
160 dim o3 as pin Do3 for digital output
170 dim push_button as pin Pb for digital input
180 dim led0 as pin Led0 for digital output
190 dim led1 as pin Led1 for digital output
200 rem your program starts here

‘map analog input 0 to BASIC variable “c0”
‘map analog input 1 to BASIC variable “c1”
‘map analog input 2 to BASIC variable “c2”
‘map analog input 3 to BASIC variable “c3”
‘map analog input 4 to BASIC variable “c4”
‘map analog input 5 to BASIC variable “c5”
‘map analog input 6 to BASIC variable “c6”
‘map analog input 7 to BASIC variable “c7”
‘map digital input 0 to BASIC variable “i0”
‘map digital input 1 to BASIC variable “i1”
‘map digital input 2 to BASIC variable “i2”
‘map digital input 3 to BASIC variable “i3”
‘map digital output 0 to BASIC variable “o0”
‘map digital output 1 to BASIC variable “o1”
‘map digital output 2 to BASIC variable “o2”
‘map digital output 3 to BASIC variable “o3”
‘map pushbutton to BASIC variable “push_button”
‘map LED0 to BASIC variable “led0”
‘map LED1 to BASIC variable “led1”

Comment

These instructions map the various DI-159 PLC analog input and digital I/0 points so the BASIC program can use
them. You can rename them as necessary (e.g. change “c0” to “MotorVoltage”), and you can even omit those that
will not be used by your program. In this example all I/O points have been mapped to the variable names that im-
mediately follow the “dim” statement.

* Note that for clarity this code will not be shown in all other examples, so all subsequent programming examples
begin with line 200.

Example #2

Object Flash general-purpose LED0 at a precise one second on/off interval.

Code

200 let led0 = 0
210 configure timer 0 for 1 s
220 on timer 0 do gosub flasher
230 while 1 do
240 endwhile
250 sub flasher
260 let led0 = !led0
270 endsub

‘start with LED on
‘configure one of four timers for 1 sec interval
‘execute subroutine “flasher” when timer fires
‘do nothing while waiting for the timer to fire
‘
‘end up here when timer fires
‘invert the state of LED0 (turn off if on, and on if off)
‘return to waiting for the timer to fire again

Comment

This example demonstrates the real time power of the BASIC program, the ease with which it can manipulate pe-
ripherals, and one of many block statements (gosub, in this case). A single statement configures a timer for a precise
interval, and another single statement defines the state of the peripheral (LED0 in this case.) Timer intervals can be
configured in seconds (s), milliseconds (ms), or microseconds (us) and and can range from milliseconds to hours.

Aside from actually applying a DI-159 PLC in your control application, the best way to understand how easy the instrument is to use
is by example. The following just scratches the surface, but should give you a solid understanding of the range of DI-159 PLC control
possibilities. Note that explanatory comments appear in these examples on the same line as the code to conserve space. Since the
BASIC engine supports comments using the familiar REM statement, comments would actually appear as program lines.

www.dataq.com 10 330-668-1444

330-668-1444 11 www.dataq.com

Programming Examples (continued)

Example #3

Object Flash both LEDs at precisely different rates, LED1 at four times the rate of LED0.

Code

200 let led0 = 0
210 let led1 = 0
220 configure timer 0 for 1000 ms
230 configure timer 1 for 250 ms
240 on timer 0 do gosub flash_led0
250 on timer 1 do gosub flash_led1
260 while 1 do
270 endwhile
280 sub flash_led0
290 let led0 = !led0
300 endsub
310 sub flash_led1
320 let led1 = !led1
330 endsub

‘begin with both LEDs on
‘
‘configure first of four timers for 1 sec interval
‘configure second of four timers for 1/4 sec interval
‘execute subroutine “flash_led0” when timer0 fires
‘execute subroutine “flash_led1” when timer1 fires
‘do nothing while waiting for the timers to fire
‘
‘end up here when timer0 fires
‘invert the state of LED0 (turn off if on, and on if off)
‘return to waiting for timers to fire again
‘end up here when timer1 fires
‘invert the state of LED1 (turn off if on, and on if off)
‘return to waiting for timers to fire again

Comment Extends the example above to include two timers, each running at a precise, independent, and different rate. Each
timer indirectly controls the state of a peripheral, in this case the two general-purpose LEDs.

Example #4

Object Flash both LEDs at precisely different rates, LED1 at four times the rate of LED0, and control digital outputs DO0
and DO1 in the same way.

Code

200 let led0 = 0
210 let led1 = 0
220 let o0 = 1
230 let o1 = 1
240 configure timer 0 for 1000 ms
250 configure timer 1 for 250 ms
260 on timer 0 do gosub flash_led0
270 on timer 1 do gosub flash_led1
280 while 1 do
290 endwhile
300 sub flash_led0
310 let led0 = !led0
320 let o0 = !o0
330 endsub
340 sub flash_led1
350 let led1 = !led1
360 let o1 = !o1
370 endsub

‘begin with both LEDs on
‘
‘begin with both digital outputs on
‘
‘configure first of four timers for 1 sec interval
‘configure second of four timers for 1/4 sec interval
‘execute subroutine “flash_led0” when timer0 fires
‘execute subroutine “flash_led1” when timer1 fires
‘do nothing while waiting for the timers to fire
‘
‘end up here when timer0 fires
‘invert the state of LED0 (turn off if on, and on if off)
‘invert the state of digital out 0 (turn off if on, and on if off)
‘return to waiting for timers to fire again
‘end up here when timer1 fires
‘invert the state of LED1 (turn off if on, and on if off)
‘invert the state of digital out 1 (turn off if on, and on if off)
‘return to waiting for timers to fire again

Comment A slight modification to Example #3 includes digital outputs DO0 and DO1 in the state changes of LEDs 0 and 1.

Example #5

Object Use BASIC’s bitwise expressions to change the state of the LEDs in binary-count order from 00 (off, off) to 11 (on,
on) each time the general-purpose pushbutton is pressed. Also introduces BASIC’s FOR/NEXT block statement.

Code

200 dim count, i as byte
210 let count = 3
220 let led0 = 1
230 let led1 = 1
240 while 1 do
250 while push_button do
260 endwhile
270 gosub debounce
280 let count = count-1
290 let led0 = count&1
300 let led1 = count>>1&1
310 while !push_button do
320 gosub debounce
330 endwhile
340 endwhile
350 sub debounce
360 for i = 1 to 200
370 next
380 endsub

‘define variables COUNT and I as byte (0-255)
‘set two LSBs of COUNT to 1
‘set initial LED states to match initial COUNT value (both LEDs off)
‘
‘loop continuously
‘wait for pushbutton to be pressed (low true)

‘de-bounce the pushbutton to get one clean transition
‘the LEDs are low true, so we’ll decrement COUNT
‘LED0 is LSB, so mask COUNT LSB state by ANDing with 1
‘LED1 is second LSB, so right-shift COUNT one bit, then AND with 1
‘wait for the pushbutton to be released
‘de-bounce pushbutton again to get a clean transition
‘end one pushbutton cycle
‘do it again
‘pushbutton de-bounce subroutine.
‘do nothing for 200 cycles while the pushbutton settles down

‘return from the subroutine

Comment Note that the pushbutton and LEDs are low true. A 0 written to either LED lights it, and the pushbutton transitions
from 1 to 0 when pressed.

Programming Examples (continued)

Example #6

Object Create a square wave output with a frequency that’s proportional to the magnitude of the voltage applied to an ana-
log input channel.

Code

200 dim o0 as pin Do0 for frequency output
210 dim New_o0
220 let o0 = 100
230 configure timer 0 for 100 ms
240 on timer 0 do gosub Update
250 while 1 do
260 endwhile
270 sub Update
280 let New_o0 = c0/100+100
290 if o0!=New_o0 then
300 let o0 = New_o0
310 endif
330 endsub

‘re-dimension digital out 0 to be a frequency output
‘define variable New_o0
‘set the square wave frequency output at o0 to 100 Hz
‘set timer to update 10 times per second
‘go to subroutine Update whenever timer 0 fires
‘loop while waiting for the timer to fire
‘
‘get here when the timer fires
‘calculate a new frequency where c0 = analog input 0
‘don’t write the value if it hasn’t changed
‘New_o0 is a different value so change the frequency

Comment

Note that the pushbutton and LEDs are low true. A 0 written to either LED lights it, and the pushbutton transitions
from 1 to 0 when pressed. Any DI-159 PLC digital output port may be programmed to output a precise frequency
using the method shown here. Frequency can range from 0 to several kHz in 1 Hz steps. Analog input values are in
millivolts and range from ±10,000. The calculation in line 280 above yields a frequency scaled between DC and 200
Hz for a –full scale to +full scale range respectively.

www.dataq.com 12 330-668-1444

330-668-1444 13 www.dataq.com

Example #7

Object
Print variables in this order: sample counter, all eight analog channels, and the state of the digital inputs and out-
puts. Pressing the general-purpose pushbutton resets the sample counter, and the digital output states reflect the
value of the sample counter. Finally, LED0 and LED1 display the state of the two LSBs of the sample rate counter.

Code

200 dim cr
210 configure timer 0 for 1 s
220 on timer 0 do gosub readin
230 on push_button==0 do cr = 0
240 while 1 do
250 endwhile
260 sub readin
270 cr = cr+1
280 let o0 = cr&1
290 let o1 = cr&2
300 let o2 = cr&4
310 let o3 = cr&8
320 print cr, c0, c1, c2, c3, c4, c5,c6,
 c7, i0, i1, i2, i3, o0, o1, o2, o3
330 led0 = o0
340 led1 = o1
350 endsub

‘dimension cr, which will be used as a counter
‘set up a timer for a sample rate of 1 Hz
‘go to subroutine ‘readin’ when the timer fires
‘reset the sample counter if the pushbutton is pressed
‘do nothing while waiting for the 1 Hz timer to fire
‘arrive here when the timer fires
‘increment the sample rate counter
‘assign dig out 0 to the LSB of the sample counter
‘assign dig out 1 to bit 1 of the sample counter
‘assign dig out 2 to bit 2 of the sample counter
‘assign dig out 3 to the MSB of the sample counter
‘stream sample counter, all analog input values, and
‘state of the digital inputs and outputs
‘assign the state of dig out 0 to LED0
‘assign the state of dig out 1 to LED1
‘return

Comment This example, when used with the provided DATAQ Terminal program for Windows, allows recorded values to be
streamed to a CSV file via the PRINT statement, which is easily imported to Microsoft Excel.

Programming Examples (continued)

330-668-1444 14 www.dataq.com

General Statements
Line delete program line
line statement // comment enter program line
variable[$] = expression, ... assign variable
? [dec|hex|raw] expression, ...[;] print strings/expressions
assert expression break if expression is false
data n [, ...] read-only data
dim variable[$][[n]] [as ...], ... dimension variables
end end program
halt loop forever
input [dec|hex|raw] variable[$], ... input data
label label read/data label
let variable[$] = expression, ... assign variable
print [dec|hex|raw] expression, ...[;] print strings/expressions
read variable [, ...] read data into variables
rem remark remark
restore [label] restore data pointer
sleep expression (s|ms|us) delay program execution
stop insert breakpoint in code
vprint var[$]=[dec|hex|raw] expr, ... print to variable

Commands
<Ctrl-C> stop running program
auto [line] automatically number program lines
clear [flash] clear ram [and flash] variables
cls clear terminal screen
cont [line] continue program from stop
delete ([line][-[line]]|subname) delete program lines
dir list saved programs
edit line edit program line
help [topic] online help
list ([line][-[line]]|subname) list program lines
load name load saved program
memory print memory usage
new erase code ram and flash memories
purge name purge saved program
renumber [line] renumber program lines (and save)
run [line] run program
save [name|library] save code ram to flash memory
undo undo code changes since last save
upgrade upgrade StickOS firmware!
Uptime print time since last reset

DI-159 PLC Embedded BASIC Quick Reference Guide

Modes
analog [millivolts] set analog voltage scale
autorun [on|off] autorun mode (on reset)
echo [on|off] terminal echo mode
indent [on|off] listing indent mode
numbers [on|off] listing line numbers mode
pins [assign [pinname|none]] set/display pin assignments
prompt [on|off] terminal prompt mode
step [on|off] debugger single-step mode
trace [on|off] debugger trace mode
watchsmart [on|off] low-overhead watchpoint mode

Block Statements
if expression then
 [elseif expression then] [else]
endif

for variable = expression to expression [step expression]
[(break|continue) [n]]
next

while expression do
 [(break|continue) [n]]
endwhile

do
 [(break|continue) [n]]
until expression

gosub subname [expression, ...]

sub subname [param, ...] [return]
endsub

Device Statements
timers:
configure timer n for n (s|ms|us)
on timer n do statement
off timer n disable timer interrupt
mask timer n mask/hold timer
interrupt unmask timer n unmask timer interrupt
watchpoints:
on expression do statement
off expression disable expr watchpoint
mask expression mask/hold expr watchpoint
unmask expression unmask expr watchpoint

Expressions
the following operators are supported as in C, in order of decreasing precedence:
n decimal constant
0xn hexadecimal constant
‘c’ character constant
variable simple variable
variable[expression] array variable element
variable# length of array or string
() grouping
! ~ logical not, bitwise not
* / % multiply, divide, mod
+ - add, subtract
>> << shift right, left
<= < >= > inequalities
== != equal, not equal
| ^ & bitwise or, xor, and
|| ^^ && logical or, xor, and

Strings
V$ is a null-terminated view into a byte array v[]
string statements:

dim, input, let, print, vprint
if expression relation expression then
while expression relation expression
do until expression relation expression

string expressions:
“literal” literal string
variable$ variable string variable$
[start:length] variable substring
+ concatenates strings
string relations:
<= < >= > inequalities
== != equal, not equal
~ !~ contains, does not contain

Variables
all variables must be dimensioned

variables dimensioned in a sub are local to that sub
simple variables are passed to sub params by reference
array variable indices start at 0
v is the same as v[0], except for input/print statements

ram variables:
dim var[$][[n]]

dim var[[n]] as (byte|short)

flash parameter variables:
dim varflash[[n]] as flash

pin alias variables:
dim varpin[[n]] as pin pinname for \
(digital|analog|frequency) \

(input|output) \

absolute variables:
dim varabs[[n]] at address addr

dim varabs[[n]] as (byte|short) at address addr

system variables (read-only):
analog getchar keychar msecs nodeid random seconds
ticks ticks_per_msec

Signal Inputs
Analog Inputs

Number of Channels: 8
Configuration: Differential

Full Scale Range: ±10VFS
Input impedance: 2 MΩ, differential

Isolation: none
Overall inaccuracy: ±64mV (at 25°C)

Minumum common mode rejection: 40db @ 50-60 Hz and @ 25°C
Max input without damage: ±75 V peak continuous

±150 V peak, one minute or less
Max common mode voltage: ±10V
Analog frequency response: -3db @ 1,000 Hz

Digital Inputs
Number of Channels: 4

Pull-up value: 47 KΩ
Isolation: none

Input high voltage threshold: 1.8 V minimum
Input low voltage threshold: 1.4 V maximum
Absolute maximum values: ±30 VDC

Digital Outputs
Number of Channels: 4

Isolation: none
Absolute max ratings: Voltage: 30 VDC or peak AC

Sink current: 0.5 A
Source current: 3 mA
On resistance < 2 Ω

Power
Power Consumption: <1.0 Watt, via USB interface

* 11,000 Hz for 11 enabled channels (8 analog, 3 digital)

ADC Characteristics
Resolution: Overall: approx. 1 part in 1,024 (10-bit)

Above zero: approx. 1 part in 511
Below zero: approx. 1 part in 512

Max sample throughput rate: 10,000 Hz*
Min sample throughput rate: 11.44 Hz

Sample rate timing accuracy: 50 ppm

Indicators, Controls, and Connections
Interface: USB 2.0 (mini-B style connector)

Indicators (LED): Three. Two for general-purpose use , one
reserved for activity indication.

Push button: General-purpose use
Input Connections: Two 16-position terminal strips

Environmental
Operating Temperature: 0°C to 35°C (32°F to 95°F)

Operating Humidity: 0 to 90% non-condensing
Storage Temperature: -20°C to 45°C (-4°F to 113°F)

Storage Humidity: 0 to 90% non-condensing

Physical Characteristics
Enclosure: Hardened Plastic
Mounting: Desktop; bulkhead

Dimensions: 2.625D × 5.5W × 1.53H in.
(6.67D × 13.97W × 3.89H cm.)

Weight: < 4 oz. (< 140 grams)

Software Support
Embedded: StickOS(TM) BASIC

Downloadable: DI-159 PLC Windows-based Utiltiy software
for terminal emulation, program archive, data
logging. Provided as a VB.NET application
that supports Windows XP and both 32- and
64-bit versions of Windows Vista, Windows 7,
and Windows 8.

DI-159 PLC Specifications

330-668-1444 15 www.dataq.com

http://www.cpustick.com

Description Order No.
DI-159 Programmable Logic Controller (PLC)
Data acquisition and control package consisting of embedded StickOS(TM) BASIC, DI-159 PLC hardware, and USB
cable. Windows-based utility software is availabe via free download from www.dataq.com/159

DI-159

Optional Accessories
101085
Power supply adapter (USB to AC). 101085

101017-RPS
Australian Adapter for power supply 101085. 101017-RPS

101017-RPE
European Adapter for power supply 101085. 101017-RPE

101017-RPA
SPARE US Adapter for power supply 101085
(one already ships with 101085).

101017-RPA

101017-RPK
UK Adapter for power supply 101085. 101017-RPK

Ordering Guide

Included

101085

USB Cable
(1 meter)

DI-159-PLC

241 Springside Drive
Akron, Ohio 44333

Phone: 330-668-1444
Fax: 330-666-5434

Data Acquisition Product Links
(click on text to jump to page)

Data Acquisition | Data Logger | Chart Recorder

StickOS is a registered trademark of CPUStick.com. DATAQ, the DATAQ logo and WinDaq are registered trademarks of DATAQ Instruments, Inc. All rights reserved.
Copyright © 2013 DATAQ Instruments, Inc.

The information on this data sheet is subject to change without notice.

Optional Accessories

101017-RPS 101017-RPK 101017-RPE 101017-RPA*

*USA adapter is included with purchase of 101085

http://www.dataq.com
http://www.dataq.com/data-logger/data-logger.html
http://www.dataq.com/c_cr

	DI-149 Description
	DI-149 Close-up
	DI-149 Features
	DI-149 Dimensional Drawing
	DI-149 Block Diagram
	Included WinDaq/Lite Recording Software

